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ABSTRACT: Predicting the drug−target binding affinity (DTA)
is crucial in drug discovery, and an increasing number of
researchers are using artificial intelligence techniques to make
such predictions. Many effective deep neural network prediction
models have been proposed. However, current methods need
improvement in accuracy, complexity, and efficiency. In this study,
we propose a method based on a multiscale 2-dimensional
convolutional neural network (CNN), namely ImageDTA. Many
studies have shown that CNN achieves good learning effects with
limited data. Therefore, we take a unique perspective by treating
the word vector encoded with a simplified molecular input line
entry system (SMILES) string as an “image” and processing it like handling images, fully leveraging the efficient processing
capabilities of CNN for image data. Furthermore, we show that ImageDTA has higher training and inference efficiency than
pretrained large models and outperforms attention-based graph neural network models in accuracy and interpretability. We also use
visualization techniques to select appropriate convolutional kernel sizes, thereby increasing the network’s interpretability.

1. INTRODUCTION
The process of discovering drugs through traditional experi-
ments is both time-consuming and expensive.1,2 Deep learning
has been used to develop models predicting drug−target binding
affinity (DTA). One such model is DeepDTA,3 which uses
convolutional neural networks (CNN) to learn drug−target
feature representations from protein sequences and simplified
molecular input line entry system (SMILES) strings represent-
ing drug molecules. WideDTA4 is an extension of the DeepDTA
method and uses additional features such as protein domains,
motif information, and maximum common substructures
(MCS) of molecules. However, these methods using a 1-
dimensional CNN (1D-CNN) and pooling operations can lead
to information loss, making it difficult to further improve the
accuracy of predictions.

GraphDTA5 is a model proposed by Nguyen et al. that
encodes drugs as undirected graphs with a feature map and an
adjacent matrix. It uses graph convolutional networks,6 graph
attention networks,7 and graph isomorphic networks8 to learn
features from drug molecular strings. GraphCL-DTA9 intro-
duced a graph contrastive learning method that preserves the
semantic information on molecular graphs. GraphscoreDTA10

developed a novel graph neural network strategy that combines
Vina distance optimization to predict DTA. However, the
complex graph structures of these models make their
interpretability a barrier for domain experts to adopt.11 With
unique ethical and regulatory requirements, the biomedical
field’s demand for interpretable deep models continues to grow.

Some other studies utilize large, pretrained models to learn
features of protein sequences12 and then use deep neural
network models to predict DTA. Furthermore, this method
relies on additional pretraining and fine-tuning stages for
efficient protein sequence encoding, leading to low training and
inference efficiency.

Some research has been conducted using attention-based
models, which have also contributed to the prediction of DTA.
AttentionDTA13 performs an attention-like process on Deep-
DTA between the convolutional features of the drug and the
target. DrugBAN14 is a domain-adaptive deep bilinear attention
network for drug−target binding affinity prediction based on
molecular graphs and protein sequences. DrugVQA15 proposes
a question-answering model for drug−target interaction tasks,
utilizing sequential attention mechanisms to capture the
dependency relationships of dynamic CNN. Fang et al.
proposed ColdDTA,16 which uses data augmentation and
attention-based feature fusion to improve the generalization
ability to predict DTA. Although attention-based models can
effectively build long-range dependency relationships, the
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relatively limited, well-annotated medical image data makes it
difficult for such models to extract diverse global features,
leading to attention collapse.17

DeepGS18 encodes SMILES strings into a 100 × 100 matrix
using Smi2Vec and then utilizes a 23 × 23 convolutional kernel
for feature extraction. However, the use of a fixed convolutional
kernel size results in cutting SMILES characters, which can
damage their specific semantic information. Additionally, the
fixed kernel size cannot effectively extract the structural
information on different substructures (MCS) in drug
molecules.

In this paper, we present a novel 2D-CNN model based on
multiscale large convolutional kernels called ImageDTA. We
treat protein sequences and drug SMILES strings as text
containing biological language and perform word vector
encoding. This encoding form is simple, easy to understand,
and maximally preserves semantic information. We take a
unique perspective of treating the word vector encoding small
molecules of the drug as an “image” and use a multiscale 2D-
CNN to perform feature learning on the “image”, fully utilizing
the ability of CNN to efficiently process image data. In situations
with limited data, CNN models can achieve better learning
effects than attention mechanism models.17 In our model, we
use an h × w convolutional kernel, where w is the dimension of
the word vector encoding, which replaces the commonly used
pooling operation in CNN, and the advantage is to avoid the loss
of semantic information caused by pooling operations.

Some studies have shown that drugs are represented by the
most common substructures, known as the ligand MCS.4,19

Based on the research findings related to drug molecules, we
have chosen convolutional kernel sizes. Additionally, we utilized
visualization techniques to experimentally compare the impact
of different convolutional kernel quantities and sizes, thereby
demonstrating the superior interpretability of our model. To
evaluate the effectiveness of ImageDTA’s performance, we
conducted comparison experiments on the Davis20 and KIBA21

data sets. We compared ImageDTA with state-of-the-art
methods in terms of concordance index (CI)22 and mean
squared error (MSE). The results showed that ImageDTA
achieves comparable or higher prediction accuracy, training, and
inference efficiency than pretrained large models and better
prediction accuracy and interpretability than models based on
attention and graph neural networks.

Our paper’s main contributions are as follows:

• We used multiple single-layer multiscale 2D-CNNs
horizontally instead of stacking networks vertically,
which significantly increased the interpretability of the
network. This resulted in a competitive or even better
performance than state-of-the-art on the public data sets
Davis and KIBA.

• We treated the word vector-encoded SMILES sequences
as “images” and processed them like handling images,
which provided a unique perspective.

• We replaced traditional pooling operations in CNN with
superlarge convolutional kernels, which preserved more
semantic information.

2. MATERIAL AND METHODS
2.1. Data Sets. To evaluate the predictive performance of

the proposed model, we utilized two public data sets for DTA
prediction: Davis and KIBA. These data sets address the issue of

data heterogeneity, and their specific statistical details are
presented in Table 1 below.

2.1.1. Davis. The data set comprised 442 kinase proteins and
68 inhibitory drug small molecules, resulting in 30,056 binding
affinity pairs. Most protein lengths were concentrated between
400 and 1500, with a peak distribution around 500 and a
maximum length of 2549. The lengths of drug SMILES followed
a Gaussian distribution, with most falling between 40 and 60 and
a maximum length of 103. The strength of the interaction
between target and drug molecules was calculated based on the
logarithm of the kinase dissociation constant Kd; we transform
Kd value to pKd, as shown in the following eq 1.
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2.1.2. KIBA. The data set used in this study was obtained
through the KIBA method, which processed and screened
246,088 binding pairs made by 467 proteins and 52,498 ligands.
Ultimately, 229 unique proteins, 2111 unique small-molecule
drugs, and 118,254 complex macromolecules were identified.
Protein sequence lengths were between 200 and 1500, with most
around 700 and a maximum length of 4128. The lengths of the
SMILES for drug molecules were mostly around 50, with a
maximum length of 590.

According to Öztürk et al.,3 99% of protein pairs in the KIBA
data set had a Smith−Waterman similarity of at most 60%, while
92% of protein pairs in the Davis data set had a target similarity
of at most 60%, indicating that both data sets are nonredundant.
2.2. Model Architecture. The overall architecture of

ImageDTA is shown in Figure 1. First, the amino acid sequence
of proteins and the SMILES string of drugs were used as input.
The drug molecule SMILES strings and protein sequences were
input into the embedding layer. The drug molecules and
proteins were encoded into 128-dimensional word vectors in
this layer. Then, nine 2D-CNNs were extracted from the drug
molecules, fusing these features with the First Concatenation
layer. A combination network consisting of a three-layer 1D-
CNN and a max-pooling layer extracted features from the
protein sequences. To capture the local and global dependencies
of the feature vectors, we applied a two-layer bidirectional long−
short-term memory (BiLSTM) on the feature map from the
Second Concatenation layer. Finally, after fusing the drug
molecule features, protein features, and the output of the
BiLSTM, they were input into the fully connected layer for
prediction.

In our model, we used MSE as the loss function and Adam as
the optimizer. The activation function for the fully connected
layer was the rectified linear unit (ReLU). The ReLU and MSE
are detailed in eqs 2 and 3:
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Table 1. Statistical Analysis of Benchmark Datasets

data set no. of proteins no. of compounds no. of interactions

Davis 442 68 30,056
KIBA 229 2111 118,254
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where n is the number of samples, yi is the predicted value and y̑i
is the ground truth.
2.3. Drug and Protein Representation. The invention of

SMILES was intended to help computers read molecular
structures. It is a chemical notation that allows for efficient
applications, including rapid retrieval and substructure searches.
Similarly, protein sequences are encoded using label encodings.
However, since drug molecules and protein sequences have
varying lengths, network models often truncate or pad
sequences, which may result in the loss of feature information
or the addition of noise. For the Davis and KIBA data sets, we
selected protein sequences and drug molecules of SMILES
string lengths of 1000 and 100, respectively. If a protein
sequence exceeds 1000 or a drug molecule SMILES string is over
the set lengths, truncation is performed; otherwise, zero-padding
is used to complete the sequences. Then, we utilized the Torch
Embedding layer to represent characters with 128-dimensional
word vectors. After converting the drug molecule SMILES
strings into word vectors, we viewed them as “images” of the
drug molecules, containing semantic and structural information,
allowing us to use 2D-CNN for feature learning.

Because the length of the protein sequence is 1000, to
improve the model’s efficiency, we used a method similar to that
in DeepDTA, which involves using a three-layer 1D-CNN and a
max-pooling layer for processing. The final features of the max-
pooling layers were concatenated with the drug’s representa-
tions and fed into three FC layers.

2.4. Multiscale 2D-CNN Layer. We used the SMILES
strings of drugs as input. In previous studies, 1D-CNN was used
to extract structural features from drug strings. However, it is
difficult to capture global feature information at different scales.
Therefore, we used a set of multiscale 2D-CNN, which allowed
the model to obtain richer local and global features from the
SMILES strings. In the 2D-CNN, we used large convolutional
kernels to replace the pooling operation, reducing feature loss.
This part of the model consists of nine 2D-CNNs with different
scale kernels arranged horizontally, as shown in Figure 2.

First, to obtain more semantic information about SMILES
strings, we converted the input strings into a word vector matrix
of size length × em_dim, where em_dim = 128 is the word vector
encoding dimension and length = 100 is the length of SMILES
strings. In order to more accurately capture “chemical words”
and enhance the model’s local sensitivity and global difference
judgment ability, we introduced nine 2D-CNNs with different
convolutional kernel sizes. Table 2 shows specific convolutional
kernel information. The design of the size and number of
convolutional kernels were based on a study (Wozńiak et al.,
2018), which compared about 2K molecules in pairs and showed
that the patterns used by chemists to distinguish a set of
molecules, such as the maximum common substructure (MCS),
were the “chemical words”. The substructure size represented
the characteristics of small drug molecules; the number of
characters in the substructure (MCS) of drug molecules was
between 1 and 29, most of which were 8−12 characters.

Figure 1. Architecture of the ImageDTA for drug−target binding affinity (DTA) prediction.
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We developed a horizontally distributed CNN, allowing each
convolutional layer to extract features from drug molecules
within a specific receptive field (determined by the convolu-
tional kernel size). To accommodate different sizes of the MSC,
we designed nine horizontally distributed CNNs with convolu-
tional kernels of varying sizes, ensuring that the model captures
the features of drug molecules with different MSC sizes. This
design approach was intended to address the limitations of
traditional CNNs, such as ResNet, composed of multiple layers
stacked deeply, making it difficult to control the receptive field of
the CNN and also challenging to theoretically explain the use of
convolutional kernels of different sizes to extract MSCs of
varying sizes. Especially in the field of drug development, an
unexplainable complex network cannot truly gain the trust and
understanding of drug developers, and it is difficult to use in
actual drug discovery work.11 Therefore, we adopted a simpler
horizontally distributed CNN structure model, reducing the
level of the network and further increasing the interpretability of
the model.
2.5. Concatenation Layer. First Concatenation layer: The

drug molecule features extracted by 2D-CNNs at different scales
were merged. Assuming that the feature vector of the drug is Fi =

{f1i ,f 2
i ,..., f ni }, where i ∈ [1,9], the feature fusion of the nine

convolutional layers is

=

= { }

H F F
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where n, t, m ∈ N+.
Second Concatenation layer: Similar to the algorithm of the

First Concatenation layer, we fused the output of the drug string
feature fusion layer with protein features as the input for the
BiLSTM layer.

Assuming the protein feature vector is P = {p1,p2,···,pn}, the
output of the fusion layer is.

=H H Pconcat( , )second first (5)

Third Concatenation layer: The outputs of the First
Concatenation layer, Protein Representation, and the Second
Concatenation layer were fused as the input for the fully
connected layer.

=H H P Hconcat( , , )third first second (6)

3. RESULTS AND DISCUSSION
3.1. Evaluation Metrics. We used CI22 to evaluate the

performance of ImageDTA.

Figure 2. Framework of multiscale 2D-CNNs (em_dim = 128).

Table 2. Informations of Convolutional Kernel Sizesa

input operator

length × em_dim Conv2d, 1 × em_dim
length × em_dim Conv2d, 2 × em_dim
length × em_dim Conv2d, 4 × em_dim
length × em_dim Conv2d, 8 × em_dim
length × em_dim Conv2d, 10 × em_dim
length × em_dim Conv2d, 12 × em_dim
length × em_dim Conv2d, 16 × em_dim
length × em_dim Conv2d, 32 × em_dim
length × em_dim Conv2d, 64 × em_dim

aLength = 100, em_dim = 128.

Table 3. Hyperparameters of ImageDTA

parameters range

batch size 512
embedding dimensional 128
dropout 0.1
optimizer Adam
learning rate 0.0005
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where bi is the prediction value for δi, bj is the prediction value for
δj, h(x) is the step function, and Z is the normalized
hyperparameter. Commonly, the step function h(x) is defined
as follows
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MSE is a statistical measure that evaluates the error directly.
See eq 3.

3.2. Comparison of the Prediction Efficiency. We
proposed ImageDTA model to learn features for drugs and
targets based on their word embedding. In this section, the Davis
and KIBA data sets were utilized to evaluate the performance of
the model. In ImageDTA, the hyperparameters used in these
two data sets are shown in Table 3.

We compared our model with the following benchmark
models: DeepDTA, DeepGS, WideDTA, GraphDTA, FusionD-
TA, AttentionDTA, DeepCDA,23 FingerDTA,24 and TEFD-
TA.25

In Table 4, we listed the performance of all the
aforementioned models evaluated on the Davis and KIBA data
sets. As shown, ImageDTA outperforms most of the models.
Specifically, compared to the baseline model, ImageDTA
improves the CI index by 0.006 and reduces MSE by 0.014 on
the Davis data set, except for FusionDTA; on the KIBA data set,
our ImageDTA can achieve competitive or even better
performance in terms of CI and MSE compared to the
aforementioned baseline models.

From the training and inference efficiency perspective, we
compared our model with GraphDTA and FusionDTA using a
graphics processing unit (RTX5000 16G). The results are
shown in Table 5.

As can be seen from the above table, the ImageDTA model is
faster in training and inference time. Although our model was
slightly slower in inference and training time compared to
GraphDTA, it performed better in terms of predictive ability,
especially on the Davis data set.
3.3. Performance Comparison of the Predicted and

Real Values. In this section, we compared the predicted and
real values for the Davis and KIBA data sets. As shown in Figure
3, the results confirm that ImageDTA predicts DTAs very close
to the real values for the Davis and KIBA data sets.
3.4. Model Analysis. In order to select the most suitable

convolution kernel size for extracting drug features, we used the
heat map visualization technique Grad-CAM26 of the CNN to
understand the decision-making process of the deep learning
model in image classification tasks. Grad-CAM generated a heat
map by calculating the gradient of each feature map of the CNN,
showing image areas crucial for the model to make correct
decisions. The color of the Grad-CAM heat map ranged from
purple to yellow; the closer the color on the heatmap is to yellow,
the more attention the model devotes to that region.

Table 4. Performance Comparison of Different Models on
Davis and KIBA

CI MSE

method Davis KIBA Davis KIBA

DeepDTA 0.878 0.863 0.261 0.194
DeepGS 0.882 0.863 0.252 0.194
AttentionDTA 0.885 0.861 0.241 0.174
WideDTA 0.886 0.875 0.262 0.179
DeepCDA 0.891 0.889 0.248 0.176
GraphDTA 0.893 0.891 0.229 0.139
FingerDTA 0.895 0.885 0.234 0.150
FusionDTA 0.913 0.906 0.208 0.130
TEFDTA 0.890 0.860 0.199 0.184
ImageDTA 0.901 0.886 0.215 0.147

Table 5. Comparing the ImageDTA against the Alternative
Methods, i.e., GraphDTA and FusionDTA, in Terms of the
Training and Inference Times on Graphics Processing Units
(s/epoch)

model
runtime of training for

Davis data set (s/epoch)
runtime of inference for
KIBA data set (s/epoch)

Davis KIBA Davis KIBA

GraphDTA 6 45 2 9
FusionDTA 335 1255 53 212
ImageDTA 87 300 7 26

Figure 3. Comparison of the correlation between the predicted and real values for Davis and KIBA Data.
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Figure 4. Drug molecules (length = SMILES string’s size).

Figure 5. Feature heat maps obtained from 10 drug molecules under 9 different sizes of convolution kernels. In each heatmap, the arrangement order of
the drug molecules from top to bottom is no. 1−10 (Figure 4).

Table 6. Drug SMILES String and Target Sequence

type string/sequence length

drug C1CC(�NO)C2�C1C�C(C�C2)C3�CN(N�C3C4�CC�NC�C4)CCO 48
protein MRGARGAWDFLCVLLLLLRVQTGSSQPSVSPGEPSPPSIHPGKSDLIVRVGDEIRLLCTDPGFVKWTFEILDETNENKQNEWIT- 976

EKAEATNTGKYTCTNKHGLSNSIYVFVRDPAKLFLVDRSLYGKEDNDTLVRCPLTDPEVTNYSLKGCQGKPLPKDLRFIPDP-
KAGIMIKSVKRAYHRLCLHCSVDQEGKSVLSEKFILKVRPAFKAVPVVSVSKASYLLREGEEFTVTCTIKDVSSSVYSTWKRE-
NSQTKLQEKYNSWHHGDFNYERQATLTISSARVNDSGVFMCYANNTFGSANVTTTLEVVDKGFINIFPMINTTVFVNDGEN-
VDLIVEYEAFPKPEHQQWIYMNRTFTDKWEDYPKSENESNIRYVSELHLTRLKGTEGGTYTFLVSNSDVNAAIAFNVYVNT-
KPEILTYDRLVNGMLQCVAAGFPEPTIDWYFCPGTEQRCSASVLPVDVQTLNSSGPPFGKLVVQSSIDSSAFKHNGTVECKAY-
NDVGKTSAYFNFAFKGNNKEQIHPHTLFTPLLIGFVIVAGMMCIIVMILTYKYLQKPMYEVQWKVVEEINGNNYVYIDPTQLP-
YDHKWEFPRNRLSFGKTLGAGAFGKVVEATAYGLIKSDAAMTVAVKMLKPSAHLTEREALMSELKVLSYLGNHMNIVNLLG-
ACTIGGPTLVITEYCCYGDLLNFLRRKRDSFICSKQEDHAEAALYKNLLHSKESSCSDSTNEYMDMKPGVSYVVPTKADKRR-
SVRIGSYIERDVTPAIMEDDELALDLEDLLSFSYQVAKGMAFLASKNCIHRDLAARNILLTHGRITKICDFGLARDIKNDSNYV-
VKGNARLPVKWMAPESIFNCVYTFESDVWSYGIFLWELFSLGSSPYPGMPVDSKFYKMIKEGFRMLSPEHAPAEMYDIMKTC-
WDADPLKRPTFKQIVQLIEKQISESTNHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQPLLVHDDV
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We randomly selected 10 drug molecules from the Davis data
set, as shown in Figure 4. Additionally, we used the Grad-CAM
visualization technique to present the heat maps of each
SMILES string under different sizes of convolution kernels, as
shown in Figure 5. The feature heat maps of the CNN were used
to directly view the contributions of different sizes of
convolution kernels to the predicted features.

In the analysis of drug molecule sequences, Figure 5 illustrates
the focal points of different convolutional kernels when
processing sequences. The closer the color on the heatmap is
to yellow, the more attention the model devotes to that region.
Specifically, a (1 × 128) convolutional kernel was depicted as a
smaller highlighted area on the heatmap, indicating that the
network devotes more attention to these local regions.
Conversely, larger convolutional kernels appeared as larger
highlighted areas on the heatmap, signifying that the network is
capturing broader sequence features. By analyzing the heatmap,
we gained a better understanding of how the model processed

information through convolutional kernels of varying sizes. This
understanding can aid in designing more effective network
architectures, such as deciding which parts of the network to
employ convolutional kernels with a local receptive field and
which parts to use a wider receptive field to capture global
information.

In Figure 5, the ninth convolution kernel contains a significant
amount of white space. This may be attributed to the following
reasons: First, when the molecular sequence length provided
was <100, substantial padding of zeros was applied to
compensate for the deficiency. When extracting these features
using the large (64 × 128) convolutional kernel, an excessive
amount of zero values impacted the model’s learning ability,
leading to an inability to extract sufficiently accurate features.
Additionally, this white space indicated that certain structural
drug molecules were unsuitable for feature extraction using an
oversized convolutional kernel. These observations prompted us
to prioritize them as a focal point for our next research
endeavors.

We selected a drug−target pair as shown in Table 6. The
heatmap of the feature map extracted by multiscale 2D-CNNs
from the drug SMILES string is shown in Figure 6.

From Figure 6, it can be seen that all nine convolutional
kernels can ignore the padded zeros and effectively extract the
local relationships of the drug molecules we are interested in.
The three sizes of convolutional kernels (8 × 128), (10 × 128),
and (12 × 128) were designed based on the MCS. The heatmap
generated by the three convolutional kernels above indicates
that they predominantly focus on characters 3 to 20 in the
SMILES string, corresponding to the atoms of the drug, as
highlighted by the light green circles in Figure 7, can be
considered potential binding sites with the protein shown in
Table 6.

4. CONCLUSIONS
We proposed a novel model based on multiscale 2D-CNNs to
predict DTA using protein sequences and drug SMILES strings
and learn drug features. Additionally, we used three layers of 1D-
CNN to learn features from the protein sequences, along with
three fully connected layers in the affinity prediction task. We
conducted our experiments on the Davis and KIBA data sets.
The results showed that ImageDTA significantly improved

Figure 6. Heatmap of the feature map extracted by multiscale 2D-CNNs from the drug SMILES string.

Figure 7. Molecular graph corresponds to the SMILES string for the
drug, where the numbers in the graph represent the positional indices of
the atoms in the string. The light green circles highlight the drug atoms
that the three (8 × 128), (10 × 128), and (12 × 128) sized
convolutional kernels focus on.
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performance compared to baseline methodologies for the Davis
and KIBA data sets. Furthermore, our model, made to learn drug
features from SMILES strings, outperformed methods based on
pretrained large models, attention mechanisms, and graph
neural network structures in terms of computational efficiency,
accuracy, and interpretability. The major contribution of this
study is in the following three aspects: First, by using multiple
single-layer multiscale 2D-CNNs horizontally instead of
stacking networks vertically, the interpretability of the network
was significantly increased, resulting in a competitive or even
better performance compared with the state-of-the-art on the
public data sets of Davis and KIBA. Second, we took a unique
perspective by treating the word vector encoded with SMILES
strings as an “image” and processing them like handling an
image. Third, we replaced traditional pooling operations in
CNN with superlarge convolutional kernels, preserving more
semantic information. Furthermore, in the future, we will focus
on developing a method based on multiscale 2D-CNN to learn
efficient representations of protein sequences.
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