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Abstract: This article presents evidence for the long-range previtreous changes of two static proper-
ties: the dielectric constant (ε) and its strong electric field related counterpart, the nonlinear dielectric
effect (NDE). Important evidence is provided for the functional characterizations of ε(T) temperature
changes by the ‘Mossotti Catastrophe’ formula, as well as for the NDE vs. T evolution by the relations
resembling those developed for critical liquids. The analysis of the dynamic properties, based on the
activation energy index, excluded the Vogel–Fulcher–Tammann (VFT) relation as a validated tool for
portraying the evolution of the primary relaxation time. This result questions the commonly applied
‘Stickel operator’ routine as the most reliable tool for determining the dynamic crossover temperature.
In particular, the strong electric field radically affects the distribution of the relaxation times, the form
of the evolution of the primary relaxation time, and the fragility. The results obtained in this paper
support the concept of a possible semi-continuous phase transition hidden below Tg. The studies
were carried out in supercooled squalene, a material with an extremely low electric conductivity, a
strongly elongated molecule, and which is vitally important for biology and medicine related issues.

Keywords: molecular liquid; nonlinear dielectric effect; glass transition; ODIC; pretransitional effect

1. Introduction

The problem of supercooled liquids has been an intensive field of research for decades.
Nevertheless, it remains one of the most fundamental challenges for 21st-century science.
One of the hallmark features that attracts particular attention are the long-range previtreous
changes of dynamic properties, starting even at 100 K above the glass temperature Tg, for
viscosity η or for the equivalent primary relaxation time τ There is a widespread belief that
previtreous effects are related only to dynamic properties, which exhibit some of the hall-
marks of universality and are conceptually expressed by the Super-Arrhenius (SA) relation:

τ(T) = τ0 exp
(

Ea(T)
RT

)
(1)

where Ea(T) denotes the apparent and temperature-dependent activation energy. Parallel
relations take place for η(T) or σ(T) behaviour. It is empirically stated that the glass
temperature Tg may be defined as a temperature when τ(T) ≈ 100 s and η(T) ≈ 1013

Poise. For a low molecular weight liquid, the pre-exponential factor is τ0 ∼ 10−14 s. For
the basic Arrhenius dependence Ea(T) = Ea = const in the given temperature domain.

There are some indications for previtreous changes in the heat capacity, which is the
most representative thermodynamic magnitude. However, these changes only appear in a
narrow range of temperatures above Tg, and to date, no common functional description
has been found.

This article presents evidence for the long-range previtreous changes of the dielectric
constant, which is the basic ‘static’ property. These changes are associated with the specific
previtreous evolution of dynamic properties. Moreover, these changes extend to the
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behaviours under the strong electric field, which has been tested in a way that has been, so
far, relatively unexplored.

The aforementioned behaviours have been found in squalene ((C5H8)6, triterpene), a
compound with enormous biological [1] and medical potential [2,3], that has been used
in the pharmaceutical [4,5] and food [6,7] industries due to its emollient, skin hydration,
antioxidant, and anticancer properties. The dietary presence of squalene in olive oil was
suggested as the key factor in reducing cancer mortality in Mediterranean countries [7].
However, both its synthesis and characterization still constitute a challenge for chemists
and biochemists [8–10]. From this point of view, squalene, i.e., 2,6,10,15,19,23-hexamethyl-
2,6,10,14,18,22-tetracosahexaene, is a naturally occurring terpenoid hydrocarbon with a
strongly elongated form and a weak permanent dipole moment (µ ≈ 0.6D) [11]. The
important feature of squalene is its extremely low electric conductivity, which facilitates
measurements under the strong electric field and enables the minimization of the biasing
effect impacts of the electric conductivity.

When discussing the previtreous dynamics, it is notable that the SA Equation (1)
mainly has a cognitive meaning and cannot be used for portraying the experimental
data due to the unknown form of the apparent activation energy. Consequently, a re-
placement scaling relation must be developed. For decades the leading position was the
Vogel–Fulcher–Tamman (VFT) relation:

τ(T) = τ0 exp
(

DTT0

T − T0

)
(2)

where T0 is the VFT estimation of the ideal glass temperature, which is also linked to a
hypothetical phase transition; DT is the fragility strength coefficient.

Comparing Equations (1) and (2), one obtains: Ea(T) = RDTT0/t, where t = (T− T0)/T
is the relative dimensionless distance from the singular temperature T0. It is useful to recall
the link of the SA Equation (1) to the fragility, or the basic ‘quasi-universal’ metric for the
previtreous behaviour, which shows the distortion from the reference Arrhenius behaviour:

m =

[
dlog10τ(T)
d
(
Tg/T

) ]
T=Tg

(3)

For the basic Arrhenius behaviour, m = log10τ
(
Tg
)
− log10τ0 ≈ 16. The weak slowing

down below the Arrhenius pattern is related to m < 30 and is referred to as the ‘strong’
glass former. Systems with the essential SA dynamics, and m > 30, are called ‘fragile’. The
maximal reported value is: m > 200 [12–15]. One may extend Equation (3) into the pre-
vitreous domain by introducing m

(
T > Tg

)
as the apparent fragility, which is also known

as the steepness index. By comparing Equations (1)–(3), one obtains: DT = 590/(m− 16).
The enormous previtreous slowing down indicates the broadband dielectric spectroscopy
(BDS) as the key research tool because it can cover 12–17 decades in frequency/time during
a single measurement process. The BDS can detect the primary relaxation time, as well as
the distribution, the other relaxation processes, the DC electric conductivity, etc. [16–20]

In the last decade, the fundamental authority and importance of the VFT relation
have been questioned. This, in turn, has led to the emergence of competing depen-
dences. To this end, it is worth recalling the MYEGA equation, which avoids the final
temperature singularity [21]:

τ(T) = τ0exp
(

K
T

exp
(

C
T

))
(4)

where T > Tg, and K and C are constants.
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For liquid-crystalline and plastic crystal glass formers, the prevalence of the critical-
like description was shown as [22–26]:

τ(T) = τ0(T − TC)
−ϕ (5)

where T > Tg and TC < Tg; while the power exponent 8.5 < ϕ < 15.
Such basic properties as the dielectric constant, primary relaxation time, or electric

conductivity are precisely determined from broadband dielectric spectroscopy (BDS) scans.
The maturity of the BDS method that is applied for glass-forming systems implies the ques-
tion of its successor. The natural candidate is the Nonlinear Dielectric Spectroscopy (NDS),
which is the strong electric field related to BDS [27–37]. By considering the polarizability as
the function of the intensity of the electric field, one obtains [37]:

P(E) = χ∗E + ∆χ∗E3 + . . . (6)

where χ∗ = ε∗ − 1 is for the complex dielectric susceptibility, and ε∗ is for the
dielectric permittivity.

It is well known that BDS is directly coupled to the 2-point correlation function,
whereas NDS is coupled to the 4-point correlation function. This fact shows that an NDS-
based study can significantly expand insight into the unknown nature of the previtreous
state. The progress made in NDS studies of glass formers has led mainly to developing
the phenomenological description of ‘nonlinear’ spectra in various materials. However, to
date, no previtreous behaviour under the strong electric field has been postulated [29–34].

Studies of pretransitional phenomena have appeared to be key for the grand success of
the Physics of Critical Phenomena [38–40]. However, there are striking differences between
the precritical and the previtreous phenomena, namely: (i) the precritical phenomena are
associated with a well-defined phase transition; (ii) the practical changes are observed for
dynamic, static, and thermodynamic physical properties; and (iii) the universality is associated
not only with the form but also the values of universal parameters (i.e., critical exponents, and
the ratios of critical amplitudes) [38–45]. These basic features seem to be absent, or at least
disputable, for the glass transition and the previtreous effects [12–17,27–37].

This article provides evidence for the long-range previtreous behaviour of the dielectric
constant and its strong electric field-related counterpart, the nonlinear dielectric effect, or
the NDE in supercooled squalene. The dielectric constant follows the ‘Mossotti Catastrophe’
functional pattern, which has so far been considered the ‘forbidden state’ in dipolar liquids.
This result is supplemented by analysing the primary relaxation time evolution under
the weak and strong electric fields. The application of the distortions-sensitive analysis
has revealed features of the previtreous dynamics. This analysis minimises the central
problem of data analysis in the previtreous region, which is due to its location well above
the hypothetical, hidden, and singular temperatures.

2. Results and Discussion

This article is focused on the behaviour under strong and weak electric fields, including
the dynamic and static issues related to dielectric studies. However, before the basic
reference, the BDS-related behaviour in supercooled squalene is presented. Figure 1a
shows selected spectra for the imaginary part of the dielectric permittivity in supercooled
squalene in the vicinity of the glass temperature. The peaks of main loss curves determine
the primary relaxation times τ = 1/ωpeak = 1/2π fpeak [15,27]. In the immediate vicinity of
the glass temperature, estimated via the empirical condition τ

(
Tg
)
≈ 100 s as Tg ≈ 164 K,

the secondary fast relaxation (beta) process emerges. For slightly higher temperatures,
the low-frequency relaxation (LF) process, disappearing on T → Tg , was observed. The
temperature evolutions of basic relaxation processes resulting from the analyses of dielectric
spectra are shown in Figure 1b. The primary relaxation time shows clear SA behaviour
(Equation (1)). Its optimal portrayal is further described in this article. Well below Tg, the
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low-frequency process (LF) also occurs, and in the immediate vicinity of Tg, the secondary
(beta) process emerges and smoothly continues deeper into the solid glass state, for T < Tg.
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Figure 1. (a) The broadband dielectric loss spectra for the supercooled squalene at temperatures of
201–169 K; (b) The distribution of relaxation times: the Arrhenius behaviour for low-frequency and
secondary processes, and the VFT behaviour for the primary relaxation. The activation energies

were calculated with the Arrhenius equation τ(T) = τ0exp
(

Ea
RT

)
. For obtaining the β-process, the

temperature range of 201–151 K was used.

Stevenson and Wolynes [46] have suggested the universal origins of the beta process
by showing that by adding fluctuations to the existing structure of the random first-order
transition theory, a tail develops on the low free energy side of the activation barrier
distribution, which shares many of the observed features of the secondary relaxations.
Consequently, they have suggested that while primary relaxation takes place through
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activated events involving compact regions, secondary relaxation is governed by more
ramified, string-like, or percolation-like clusters of particles. When considering Figure 1b,
one may conclude that such a mechanism must be valid also in the solid glass states
below Tg, where bonds stabilizing the liquid-like arrangement in the amorphous solid
form develops.

The analysis of the SA temperature evolution for the primary relaxation time most
often involves its portrayal by the selected model dependence (e.g., Equations (3)–(5)) by
the determination of the fragility (Equation (2)) and the search for the dynamical crossover
phenomenon via the so-called Stickel analysis based on the plot [dlnτ(T)/d(1/T)]−1/2 vs.
1/T [15,47]. In this article, we avoid the latter because it is assumed a priori that the VFT
in Equation (3) obeys [48,49]. Prior to fitting experimental data by an arbitrarily selected
model-relation, the optimal model equation was found. Finally, instead of focusing on
the value of the fragility at Tg (Equation (2)), the analysis of the apparent fragility and
the activation energy for the whole previtreous domain was performed. These proce-
dures are implemented below, and the behaviour under both weak and strong electric
fields is discussed.

The survey of the available results concerning the previtreous domain revealed a sur-
prising gap regarding the temperature behaviour of such basic properties as the dielectric
constant [12–17,21–37] and refs. therein. Our results for squalene eliminate this gap (see
Figure 2). The presented value is always related to the midpoint of the static domain and
considers its strong shift towards the lower frequencies on cooling towards Tg. The lack of
DC conductivity has an impact in the case of squalene. The scale applied in Figure 1 reveals
that the temperature behaviour described in the broad temperature range also affects the
obtained results by the relation:

1/ε = a + bT, χ = ε− 1 =
1

a + bT
− 1 =

1
b

T − a
b
− 1 =

A
T − T+

− 1 (7)

and then T+ = a/b and A = 1/b. (8)
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Figure 2. The temperature evolution of the reciprocal of the dielectric constant in supercooling
squalene. Red, solid lines are related to the description via Equation (7). The inset is for the
distortions-sensitive derivative of the results from the central part of the plot. It additionally confirms
the description via Equation (7) by revealing some distortions close to Tg and strong changes near
the hypothetical dynamic crossover temperature TB = 215 K± 5.
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For the high-temperature domain TB(?) < T < Tb, one obtains a = 0.142 and
b = 2.23 × 10−4, and for T < TB(?) a = 0.181, and b = 4.43 × 10−5, where Tb is a
hypothetical secondary cross-over temperature.

The distortions-sensitive plot in the inset to Figure 2 confirms the validity of Equation (7)
by additionally showing temperature TB, for which the coincidence with the dynamic
crossover temperature [15] can be considered.

Particularly important is the correlation of Equation (7) with the dependence known
for the so-called ‘Mossotti Catastrophe’, appearing when applying the Mossotti-Lorentz
(ML) local field for dipolar liquids. Its occurrence is explained as the consequence of
neglecting the intermolecular interactions in the ML model. Its picturesque illustration
is the ‘impossible ferroelectricity’ for the water appearing at T ~ 1100 K. Figure 2 shows
the evidence for such behaviours in the supercooled squalene in the high temperature
(T > TB) and low temperature (T < TB) dynamic domains. Only recently, a similar ‘Mossotti
Catastrophe’ type behaviour was reported in a liquid and orientational disordered crystal
(ODIC) phaser of glass-forming cyclo-octanol.

One of the targets of the presented studies was the behaviour of supercooled squalene
under the strong electric field. Figure 3 focuses on dynamic issues by presenting the shift
of primary loss curves under the strong electric field close to Tg. The obtained behaviour
fairly coincides with one known from reported NDS studies. Notwithstanding, some
features characteristic for the given system are worth stressing. The first is the disap-
pearance of the secondary relaxation process under the strong electric field. This means
that structural relaxation-related differences between the hypothetical multimolecular
species/clusters/strings and their surroundings disappear under the strong electric field.
The second feature is related to the inset, which reveals differences in the distribution of
the primary relaxation times, and recalls the concept from Jonsher [50] via relations:

dlog10ε′′( f )
dlog10 f

= m for f < fpeak and
dlog10ε′′( f )

dlog10 f
= −n for f > fpeak (9)

where m and n denote the coefficients describing the distribution of the relaxation time for
the low- and the high-frequency parts of the loss curve, respectively.
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Figure 3. The dielectric loss spectra for low- and high-voltage applied to the samples. The inset
shows the derivatives of experimental data from the main part of the plot and recalls the Jonsher’s
analysis via Equation (9).
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The distribution of the relaxation times is strongly non-Debye. For the spectrum under
the weak electric field, m ∼ 1/2 (the low-frequency part) and n ∼ 1/2 (the high-frequency
part). The latter was previously indicated by Olsen and Dyre [51], and later also in [52,53]
as a possibly universal value for the T → Tg path. However, under the strong electric field,
the high-frequency part of the primary relaxation loss curve broadens:

n
(
T → Tg

)
∼ 1/3. (10)

The example of the distribution of the relaxation processes related to the increment
induced by the strong electric field is shown in Figure 4. It is noteworthy that its form
is different from the one reported for the supercooled low molecular weight liquid and
resembles the one observed in glass-forming orientationally disordered crystals. This
scan suggests that for the ultraviscous supercooled squalene, the detected processes are
mainly associated with the orientation of a permanent dipole moment. The hindering
of translational molecular motions may be associated with the elongated and complex
molecular structure of squalene.
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Figure 4. Examples of nonlinear dielectric spectra for the imaginary part of the dielectric susceptibility
∆ε′′ ≡ ∆χ′′ = χ′′hi − χ′′lo, where χ = ε− 1, in the supercooled domain near the glass transition for
T < T∗B and T > T∗B . The insert shows the real part ∆ε′ ≡ ∆χ′ = χ′hi − χ′lo.

Figure 5 enables the comparison of the temperature evolution of the primary relaxation
times under the weak and strong electric fields. The inset presents the difference in the
relaxation time under the weak and strong electric fields.

The reliable portrayal of the previtreous changes of the primary relaxation times
remains a non-conclusive challenge despite decades of studies. This competition for scaling
relations has yielded comparably within the limit of the experimental error and a new
fitting quality has been developed. In fact, such experimental evidence creates an essential
problem for any theoretical modelling. In the opinion of the authors, the non-conclusiveness
of studies can be explained by the fact that the analysis is carried out above Tg, i.e., well
beyond a hypothetical singular temperature included in the experimental scaling relation.
The experimental error strengthens the problem. As a possible solution for the problem,
we can offer the distortions-sensitive analysis. We propose to apply to the experimental
data presented in Figure 5 the analysis exploring the apparent activation index, based on
the following transformation [54–56]:

τ(T) ⇒ IDO(T) = −
dlnEa(T)

dlnT
=

dEa(T)/Ea(T)
dT/T

(11)
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with the visible singularity TB = Tmax = 176 K (compare with Figure 2).

The application of Equation (11) requires a priori knowledge of the apparent activation
energy. In [54,55], it was calculated in the previtreous domain using SA Equation (1),
namely Ea(T) = RTln(τ/τ0), assuming the universal and constant value of the pre-factor
τ0 = 10−14s. However, such an analysis can yield strongly biased values. To avoid
this, a new way of determining Ea(T) was proposed in [56–58]. For a given set of τ(T)
experimental data, a numerical solution was used. Based on the differential equation
derived from the SA Equation (1):

Ha(T)
RT

=
dEa(T)
d(1/T)

+ Ea(T) (12)

where Ha(T) = dlnτ(T)/d(1/T) denotes the apparent activation enthalpy.
The analysis is supplemented by the final numerical filtering cleaning. Based on these

results, the activation energy index in the ultraviscous domain has been analysed. It was
empirically found that in each case, the reciprocal of the index follows the simple linear
dependence [56–58]: 1

IDO(T) = aT + b. It is worth stressing that such behaviour agrees with
the indexes derived for the basic model equation, namely [56]: (i) 1/IDO = (1/T0)T − 1
for the VFT Equation (2); (ii) 1/IDO = (1/C)T for the WM (MYEGA) Equation (3); and
(iii) 1/IDO = (1/ϕ)T − (TC/ϕ) for the critical-like Equation (4). It was empirically proved
that for systems studied in [56], the coefficient n = −1/b is located between 0.2 and 1.6. The
highest value is for glass formers showing the uniaxial symmetry, such as liquid crystalline,
where the critical-like behaviour is preferred (Equation (5)). Values n ~ 0.2 were noted for
orientationally disordered crystals. Values n ≈ 1 can be linked to the VFT Equation (2):
in [56] it was called the ‘no-symmetry case’. Figure 6 shows the behaviour of the apparent
activation index (A) determined for the ultraviscous supercooled squalene, as well as the
configurational entropy SC (B), given by:

SC(T) = S0

(
1−

(
b
a

)
1
T

)−1/b
= S0

(
1− TN

T

)n
(13)
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where TN = |b/a| is the singular temperature denoted the Kauzmann temperature
TN = TK, and n = −1/b describes the power exponent. Notably, for the VFT relation, n = 1,
TN = TK = T0.
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Figure 6. (A) The changes in the reciprocal of the apparent activation index IDO (Equation (10)) for supercooled squalene,
based on experimental data given in Figure 5. (B) Configurational entropy SC for squalene under the weak (blue) and strong
(green) electric fields calculated from Equation (13). Parameters with n = 1.17, TN = 139.51 K, and n = 0.25; TN = 78.96 K for
weak and strong electric fields, respectively, were obtained using Equation (11).

There is an explicit straight-line behaviour of 1/IDO(T) to the crossover
1/IwEF

DO > 1/IsEF
DO → 1/IwEF

DO < 1/IsEF
DO on cooling towards the glass temperature. The

values of the coefficient n show that the dynamics of the squalene can be described by the
critical-like Equation (4). The application of the strong electric field shifts dynamics to the
VFT Equation (3) patterns.

Worth noting is the link between the activation index and the apparent fragility
m(T) = C(1 + IDO(T)), where C = 2− log10τ0 [56–58]. This suggests similar tempera-
ture dependences for IDO(T) and m(T). The hypothetically universal linear changes of
1/m(T) were first shown in [48] for a variety of glass formers. Notably, the same tem-
perature dependence can be expected for 1/m(T), 1/Ha(T), and 1/(dlnτ(T)/d(1/T)) vs.
T plots [48].

Such behaviour is shown in Figure 7. Two linear dependences intersecting at Tmax
can be seen. It is worth noting that for T > Tmax, the fragility index of the ultraviscous
squalene is higher under the weak electric field than for the same system when the strong
electric field is applied. For T < Tmax, the same situation occurs.

Nonlinear dielectric studies originate from nonlinear dielectric effect investigations
exhibiting changes of dielectric constant under the strong electric field. A century ago,

Herweg [59] performed the first NDE test of diethyl ether, obtaining ∆χE

E2 ∼ 10−18m2V−2.
Debye explained this phenomenon as the consequence of the orientation of the almost
non-interacting permanent dipole moments incorporating and developing the dielectric
Langevin series [60]. Two decades later, Piekara discovered a strong, positive NDE in
nitrobenzene due to the dipole-dipole coupling [61]. Next, he found an anomalous positive
increase in the NDE on approaching the critical consolute point in the binary mixtures
of limited miscibility [62]. Not until 1999 was the latter phenomenon, as well as the
similar effect in the isotropic liquid phase of rod-like liquid crystals (LC), explained as
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the consequence of the interactions within the pretransitional fluctuations by using the
model-relation [63,64]:

∆χE

E2 =
∆εE

E2 ∝ 〈∆M2〉VχT (14)

where 〈∆M2〉V is for the local fluctuations of the mean square of the order parameter and
χT denotes the order parameter related susceptibility (compressibility).
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Figure 7. The linear temperature changes of the reciprocal of the apparent activation enthalpy in
supercooled squalene under weak and strong electric fields when approaching the glass temperature.
Note the relation to the apparent fragility: 1/Ha(T) ∝ 1/m(T).

For the isotropic phase of LC materials 〈∆M2〉V = const and χT(T) = χ0/(T − T∗),
where T* denotes the extrapolated temperature of a hypothetical continuous phase transi-
tion. Consequently, for rod-like LC materials, ∆εE/E2 ∝ 1/(T − T∗) [55–67].

The pretransitional effect has been discovered for the isotropic liquid–plastic crystal
phase transition in cyclo-octanol. Its form can be portrayed by the following
relation [41–45,63,64]:

∆χE

E2 (T) = e∗ + aE(T − T∗) + AE(T − T∗)φ=0.5 (15)

It was indicated that the above relation could also result from Equation (14) on
assuming that for ODIC-forming materials, hardly compressible semi-solid fluctuations
in the liquid phase occur. Hence, χT ≈ const. However, the dielectric constant of pre-
ODIC fluctuations differs strongly from the dielectric constant of the isotropic liquid
surroundings, particularly under the strong electric field resulting from the free orientation
of the permanent dipole moments. Consequently, the temperature dependence of the order
parameter plays the key role in Equation (12): 〈∆M2〉V ∝ (T − T∗)2β, where β is the order
parameter exponent. Assuming for the latter the classical tricritical value β = 1/4 [39],
and the linear temperature dependence for the non-critical background, one can obtain
Equation (16).

Figure 8 shows the temperature changes of the NDE, exhibiting changes that can be por-
trayed well by Equation (15). It is worth noting that the characteristic maximum of the relation
∆χE/E2(T) occurs for the same temperature as results in Figures 5 and 6. From Equation (15),
the region Tg < T < Tmax is dominated by pretransitional previtreous fluctuations.
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3. Experimental

This study used the broadband dielectric spectrometer (BDS by Novocontrol, Montabaur,
Germany), supported by the strong electric field facility, to enable the nonlinear dielectric
spectroscopy studies and the Quattro temperature control unit with a temperature stabil-
ity better than ∆T = 0.02 K [42]. The samples were placed in a flat-parallel gold-coated
measurement capacitor with plates made from Invar: a diameter of 2r = 20 mm and a
gap of d = 0.15 mm. A quartz ring was used as the spacer. Scans of the dielectric prop-
erties were carried out in the frequency range of 0.1 Hz < f < 10 MHz under the weak
measuring voltage of Uweak = 3 V, corresponding to the electric field Eweak = 0.2 kV/cm.
The scan of the dielectric properties under the strong electric field was carried out for
Ustrong ∼ 1000 V., i.e., for Estrong = 60− 70 kV/cm, and for f < 10 kHz, using the High
Voltage facility [42,43].

To the authors’ knowledge, the nonlinear dielectric studies in glass-forming systems
have mainly focused on dynamics issues and have not led to conclusive temperature de-
pendences of the tested properties or in the functional description. This article concentrates
on the static part of the NDS, the nonlinear dielectric effect (NDE) [43–45], which has, to
date, rarely been tested for glass-forming systems: ε(E) = ε(E→ 0) + ∆εE2 + . . ., where
ε(E→ 0) = ε represents the dielectric constant, and then:

NDE :=
∆ε

E2 =
ε(E)− ε

E2 =
∆χ

E2 (16)

where χ denotes the dielectric susceptibility: χ = ε− 1.
The notable features for the measurement under the strong electric field are the bulk

gap of the measurement capacitor and the degassing of samples immediately prior to
the experiment. These essentially reduce the risk of gas bubbles in the sample, which
can qualitatively distort measurement results under the strong electric field. Notable was
the extremely low electric conductivity, which caused no heating of the sample during
measurements under the strong electric field, as was a well-evidenced basing factor in
related studies. Finally, the occurrence of the condition NDE ∝ E2 has been carefully tested.
The key targets of the dielectric studies under the strong electric field were to locate the
temperature changes of the tested properties, which are possible for functional evaluations.
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4. Conclusions

This article presents evidence for the long-range pretransitional/previtreous be-
haviours of two static properties: the dielectric constant and its strong electric field-related
counterpart, the nonlinear dielectric effect. The possibility of their functional characterisa-
tions by Equation (7), with the ‘Mossotti Catastrophe’ form, and Equation (13) resembling
the formula developed for critical liquids is notable. The analysis of the dynamic proper-
ties based on the activation energy index excluded the VFT relation (associated with the
coefficient n = 1) as a validated tool for portraying the evolution of the primary relaxation
time in squalene, both under weak and strong electric fields. These results question the
commonly applied ‘Stickel operator’ routine, used as the tool for determining the dynamic
crossover between the high- and low-temperatures dynamic domains in the supercooled
state. The strong electric field radically affects the distribution of relaxation times, the form
of the evolution of the primary relaxation time, and the fragility metric.
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