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Abstract

The heart begins to beat before the brain is formed. Whether conventional hierarchical central commands sent by the brain
to the heart alone explain all the interplay between these two organs should be reconsidered. Here, we demonstrate
correlations between the signal complexity of brain and cardiac activity. Eighty-seven geriatric outpatients with healthy
hearts and varied cognitive abilities each provided a 24-hour electrocardiography (ECG) and a 19-channel eye-closed routine
electroencephalography (EEG). Multiscale entropy (MSE) analysis was applied to three epochs (resting-awake state, photic
stimulation of fast frequencies (fast-PS), and photic stimulation of slow frequencies (slow-PS)) of EEG in the 1–58 Hz
frequency range, and three RR interval (RRI) time series (awake-state, sleep and that concomitant with the EEG) for each
subject. The low-to-high frequency power (LF/HF) ratio of RRI was calculated to represent sympatho-vagal balance. With
statistics after Bonferroni corrections, we found that: (a) the summed MSE value on coarse scales of the awake RRI (scales
11–20, RRI-MSE-coarse) were inversely correlated with the summed MSE value on coarse scales of the resting-awake EEG
(scales 6–20, EEG-MSE-coarse) at Fp2, C4, T6 and T4; (b) the awake RRI-MSE-coarse was inversely correlated with the fast-PS
EEG-MSE-coarse at O1, O2 and C4; (c) the sleep RRI-MSE-coarse was inversely correlated with the slow-PS EEG-MSE-coarse at
Fp2; (d) the RRI-MSE-coarse and LF/HF ratio of the awake RRI were correlated positively to each other; (e) the EEG-MSE-
coarse at F8 was proportional to the cognitive test score; (f) the results conform to the cholinergic hypothesis which states
that cognitive impairment causes reduction in vagal cardiac modulation; (g) fast-PS significantly lowered the EEG-MSE-
coarse globally. Whether these heart-brain correlations could be fully explained by the central autonomic network is
unknown and needs further exploration.
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Introduction

The brain-heart connection remains not fully understood.

Conventionally, the heart and brain are believed to be connected

in a hierarchical way that the heart receives the brain’s commands

through the central autonomic network [1], where the prefrontal

cortex (mainly the right side) plays the leading role. Thayer et al.

proposed a neurovisceral integration model to account for the

linkage between the cognitive-affective processing system and the

autonomic nervous system [2]. A relationship was found between

vagal tone and event-related potentials [3,4]. However, the heart

begins to beat before the brain is formed. A transplanted heart can

immediately satisfy the physiological demands of its new host

without connection to the host’s nervous system. Recent evidence

also showed that the intrinsic cardiac ganglia and intrathoracic

extracardiac ganglia can process information independently of the

brain [5]. We hypothesized that the heart-brain connection

conveys more information than just heart rate alone.

Biological systems are complex at multiple levels of temporal

and spatial scales and consist of interconnected feedback loops.

The Fourier-based spectral analysis averages the signals, so it can

not sufficiently display the nonlinear and non-stationary properties

of complex biological systems. The science of complex systems is

closely related to variability analysis which detects and character-

izes nonlinear dynamics [6]. Heart rate variability (HRV) and

signal variability of resting-state brain activity convey important

information about network dynamics [7]. We found the entropy

measurement techniques, which compute the regularity patterns of

a time series, best suit our data and the entropy values can provide

quantitative connotations to facilitate comparisons and correla-

tions between two systems and between individual subjects.

The entropy methods include the evaluation of either entropy

(Shannon entropy) or entropy rate (approximate entropy (ApEn)

[8], sample entropy (SampEn) [9] and multiscale entropy (MSE)

[10]). SampEn, without counting self-matches, is less dependent

on the signal length and shows more consistency on a broader
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range of parameters than ApEn [9]. MSE, based on SampEn,

takes into account the correlations inherent in biological signals at

multiple time scales. Multifractality is present in HRV [11,12],

blood pressure dynamics [13] and electroencephalography (EEG)

[14,15]. Although the MSE analysis was derived from stationary

processes, only those non-stationarities on scales much larger than

those considered for the MSE analysis may affect the consistency

of the results in practice [16]. Successful applications of MSE were

seen in studies of HRV [17,18], human neuronal spiking patterns

[19], postural sway patterns [16], and in EEGs of brain

maturation [20–22], epilepsy [23], aging [24], dementia [25,26]

and schizophrenia [27]. Here, we examined the MSE results of

both EEG and RR interval (RRI, R-to-R peak interval of ECG,

please see Figure 1) time series together and sought to establish

what, if any, relationships exist between the dynamics of cardiac

and cerebral electrical activity.

Photic stimulation (PS) is a procedure meant to elicit or

accentuate epileptiform discharges during a routine EEG. Both

cardiac and neuron cells are spontaneous oscillators. Phase-locked

dynamics have been observed in cardiac cells [28] and neurons

[29] when they are stimulated by periodic electrical impulses.

Mechanical stimulation through ventilator can also produce such

phenomenon to neural cells in the respiratory center [30] and

sympathetic neurons [31]. This phase-locking phenomenon may

not be rigidly fixed as the coupling ratio [32] and phase [31] could

be various. The brain is stimulated by periodic lighting impulses

during the PS procedure. Despite the widespread utilization, the

complete understanding of the brain response to PS is still an open

problem. We also checked the signal complexity in the EEGs

under repetitive PS.

Materials and Methods

Subjects
The final study population included 87 geriatric outpatients,

who were free of previously diagnosed cardiovascular (except mild

hypertension) and neurologic diseases, and found to have varied

cognitive abilities (female = 42; age = 79.166.4 years, mean 6

standard deviation (SD), range 65.3 – 93.7 years). Fifty-eight

(female = 29; age = 81.065.7 years) newly diagnosed cases of

dementia presented on the first visit with a chief complaint of

memory or cognitive decline, corroborated by informants, and

had a Chinese version of the mini-mental state examination, the

mini-mental state examination of Taiwan, version 1 (MMSE-T1)

score with illiteracy adjustment less than or equal to 26. After

laboratory tests and brain-imaging referrals, the recruited

demented patients included only two types: probable Alzheimer’s

disease (AD) (n = 22; female = 7, age = 81.966.6 years; MMSE-

T1 = 22.265.8) according to NINCDS-ADRDA [33] and

vascular dementia (VD) (n = 36; female = 22, age = 80.465.2

years; MMSE-T1 = 18.467.2) of subcortical arteriosclerotic

encephalopathy according to NINDS-AIREN [34]. The control

group consisted of Twenty-nine (female = 13; 75.566.2 years;

MMSE-T1 = 28.460.9) ambulatory geriatric patients with only

mild hypertension and/or mild diabetes. The original MMSE-T1

scores were adjusted for illiteracy by multiplying 30/27 (3 points

for reading or writing Chinese characters). Exclusion criteria

included mixed dementia, heart failure, atrial fibrillation, frequent

atrial premature complex or ventricular premature complex,

major systemic diseases, infection, hypothyroidism, vitamin B12 or

folic acid deficiency, psychosis, previous stroke, major head injury,

epilepsy, normal pressure hydrocephalus, subdural effusion or

hemorrhage, and exposure to sympatholytic agents (including beta

Figure 1. Electrocardiography (ECG) and electroencephalography (EEG). One cycle of ECG includes various deflections, P, Q, R, S (QRS
complex) and T. All R peaks of ECG recordings were detected to obtain the RR interval (RRI) time series. Each EEG recording includes brain waves from
19 electrode sites, one ECG recording and one trace of photic stimulation (PS).
doi:10.1371/journal.pone.0087798.g001
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blockers), acetyl cholinesterase inhibitors, tranquilizers or antide-

pressants.

Ethics statement
The ethics committee on human research of Tainan hospital

approved the study (IRB-2008004). All participants or their

surrogates gave written informed consent. The investigation

conformed to the principles of the Declaration of Helsinki.

Data collection
All subjects underwent electrocardiography (ECG) monitoring

for 24 hours by a standard ambulatory ECG recorder (MyECG

E3-80 Portable Recorder, Microstar, Taiwan) at 250 Hz. Two

epochs of 2-hour ECG recorded during 9–11am (awake) and 1–3

am (sleep) were obtained from each subject. Another 7-minute

ECG recording was extracted from the resting-awake EEG for

each subject (Figure 1). The R-peak detection was performed by

an automated arrhythmia detection algorithm and corrected by

visual inspection. Occasional ectopic beats were identified and

replaced with linearly interpolated RRI data. Those people with a

rate of ectopic beats higher than 1 % were excluded from the final

analysis. Four people having too many ectopic beats only during

sleep were included in the final analysis without the sleep RRI

data. The three RRI time series were linearly resampled at 2 Hz.

Because of insufficient data points for the 7-minute RRI, only the

two 2-hour RRI time series proceeded to the MSE analysis.

All subjects underwent routine EEG recordings with references

at ear electrodes within 3 days after the ECG procedure. The

routine EEG includes two parts: the 30-minute resting-awake

recording and the 2.5-minute recording under intermittent photic

stimulation. The surface EEG was collected by a digital EEG

recorder (Harmonie version 3.1 digital EEG Stellate Systems,

Canada) at 200 Hz from the 19 electrodes of the international

standard 10/20 system (Figure 1). The raw data, contaminated

with artifacts such as eye movements, blinks, muscle activities and

others, were saved in text files for off-line analysis on a personal

computer. We chose three 80-second segments from each file: one

visually-censored (by an experienced neurologist) artifact-free eye-

closed resting-awake recording, one photic-simulated recording at

frequency 1, 3, 6 and 9 Hz (slow-PS, duration 10 seconds and

interval 10 seconds) and one photic-simulated recording at

frequency 12, 15, 18 and 24 Hz (fast-PS, duration 10 seconds

and interval 10 seconds). The segments were firstly processed by a

notch filter at the frequency of current 60 Hz before further

processing.

Multiscale entropy (MSE)
The method of MSE analysis [10,18] inspects signals at different

time scales by performing the coarse-graining procedure. The

process of coarse-graining in MSE is: given a one-dimensional

discrete time series, {X1,…, Xi,…, XN}, construct consecutive

coarse-grained time series, {y(t)}, determined by the scale factor, t,

according to the equation: y
(t)
j ~

1

t

Xjt

i~(j{1)tz1

Xi, 1ƒjƒ
N

t
. For

scale one, the time series {y(1)} is simply the original time series.

The length of each coarse-grained time series is N/t. The sample

entropy (SampEn) for each coarse grained time series is measured

and plotted as a function of the scale factor. To describe SampEn

in short, when m, r and N, referred to as pattern length, normalized

threshold (normalized by the standard deviation of the original

sequence), and signal length respectively, suppose Bm (r) is the

probability that two sequences will match for m points, and Am (r) is

the probability that two sequences will match for m + 1 points. The

match is considered within tolerance and with self-matches

excluded. The parameter, SampEn, is estimated by the statistic

SampEn (m, r, N) = – ln [Am (r)/Bm (r)]. According to previous

studies [10,35], we calculated SampEn with the parameters m = 2,

r = 0.15 in the range 1 ƒ t ƒ 20. Our results were found to be

robust against the choices of m and r. Because the MSE method is

sensitive to very low frequency noises, we eliminated the RRI

frequency components below 0.00056 Hz and extracted the EEG

components in the 1–58 Hz frequency range using the empirical

mode decomposition (EMD) technique [36,37]. Each EEG

segment was down-sampled to 100 Hz for the MSE analysis in

order to be close in time-scales to the RRI time series.

Empirical mode decomposition (EMD)
The decomposition is based on the simple assumption that any

data consists of a finite number of intrinsic modes of oscillations.

For a time series x (t) with at least 2 extremes, the EMD applies a

sifting procedure to extract intrinsic mode functions (IMFs) one by

one from a smallest to the largest time scale.

x tð Þ~c1 tð Þzr1 tð Þ

~c1 tð Þzc2 tð Þzr2 tð Þ

..

.

~c1 tð Þzc2 tð Þz...zcn tð Þ

where ck (t) is the kth IMF and rk tð Þ~x tð Þ{
Xk

i~1

ci(t) is the

residual after extracting the first k IMFs. The steps of sifting

process to extract the kth IMF [38]:

(1) Initialize h0 (t) = hi21 (t) = rk21 (t) (if k = 1, h0 (t) = x (t)), where

i = 1;

(2) Extract local minima and maxima of hi21 (t) (if the total

number of minima and maxima is less than 2, ck (t) = hi21 (t) and

it’s the end of the whole EMD process);

(3) Obtain upper envelope, u (t), and lower envelope, l (t), by the

cubic spline interpolation for local minima and maxima of hi21 (t),

respectively;

(4) Calculate the hi (t) = hi21 (t) - mean of (u (t) + l (t));

(5) Calculate the standard deviation (SD) of the mean of (u (t) + l

(t));

(6) To determine a criterion for the sifting process to stop,

calculate the limiting size of standard deviation to guarantee that

the IMF components retain enough physical sense of both

amplitude and frequency modulations.

SDmax~
XT

t~o

½ hi{1 tð Þ{hi tð Þð Þj j2=h2
i {1 tð Þ� (typically between

0.2 and 0.3) [37]

(7) When SD , SDmax, the kth IMF is assigned as ck (t) = hi (t)

and rk (t) = rk21 (t) 2 ck (t); otherwise repeat steps (2) to (5) for i + 1

until SD , SDmax.
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PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e87798



Statistical analysis
All statistical analyses were performed using R 2.11.0 at a 0.05

alpha level. We used Bonferroni corrections to adjust p-values by

multiplying the number of the EEG channels (19 channels).

Kolmogorov-Smirnov and Levene tests were used to assess the

normality of distribution and homoscedasticity, respectively. We

used Student’s t-tests to evaluate group differences, and age- and

gender-adjusted Pearson’s partial correlation coefficients to

evaluate correlations between any two variables. The correlations

among the three RRIs or three EEGs were calculated using paired

t-tests.

Results

We performed a visual inspection of the obtained MSE curves

which represent the SampEn values of each coarse-grained

sequence versus the scale. Most of the MSE curves had a pattern

of an initial increase (from scale 1 to 5 for EEG and from scale 1 to

10 for RRI) before a plateau or a fall. If the SampEn increases

initially because of decorrelation before it begins to decrease

because of averaging process, the presence of complex long time

correlations is expected [38] (Figure 2). We also analyzed

regression coefficients for the MSE slopes over t of 125, 6210,

11215 and 16220, and found no significant differences between

groups. The MSE profiles of either the RRIs or EEGs showed no

preference to evolve into a plateau or a fall in either the VD, AD

or control subjects. Nevertheless the plateau on the MSE profiles

of the EEGs seemed to be higher in the control than in the two

demented groups.

In all 87 patients, we found significant and very consistent

inverse linear correlations between any of the MSE values of the

awake RRIs on the scale from 11 to 20 (after the initial rising) and

any of the MSE values of the EEGs in many channels on the scale

from 6 to 20 (after the initial rising). Therefore we summed up the

MSE values on 10 scales (11220) for the RRIs and on 15 scales

(6220) for the EEGs to facilitate statistical analyses. Using

Pearson’s partial correlation tests with adjustment for age and

gender, in all 87 patients, we found significant inverse associations

between the summed MSE values on the scales 11220 of the RRI

(RRI-MSE-coarse) during the awake state and the summed MSE

values on the scales 6220 of the EEG (EEG-MSE-coarse) during

the resting-awake state after Bonferroni corrections at electrodes

Fp2 (r = 20.363, p = 0.012), C4 (r = 20.344, p = 0.024), T6 (r = 2

0.332, p = 0.036) and T4 (r = 20.325, p = 0.046) (Figure 3). The

inverse associations were present in all three patient groups

individually, but failed to reach the alpha level after stringent

Bonferroni corrections. The RRI-MSE-coarse of the RRI during

sleep was not correlated with the EEG-MSE-coarse of the awake-

resting EEG at any channel. The EEG-MSE-coarse of the fast-PS

EEG was also inversely correlated to the awake RRI-MSE-coarse

after Bonferroni corrections at electrodes O1 (r = 20.336,

p = 0.011), O2 (r = 20.357, p = 0.015) and C4 (r = 20.327,

p = 0.042) (Figure 4), but not to the sleep RRI-MSE-coarse. In

contrast, the EEG-MSE-coarse of the slow-PS EEG was signifi-

cantly inversely correlated to the sleep RRI-MSE-coarse after

Bonferroni corrections at electrode Fp2 (N = 83, r = 20.332,

p = 0.049), but not to the awake RRI-MSE-coarse.

In order to examine whether these associations between the

complexity of heartbeat and brainwaves come from the autonomic

nervous network, we calculated the high frequency power (HF),

low frequency power (LF), and ratio of low frequency to high

frequency power (LF/HF ratio) for all the three RRI time series.

We found that the LF/HF ratio and RRI-MSE-coarse of the

awake RRI had a positive age- and gender-adjusted Pearson’s

Figure 2. Examples of RR interval (RRI), detrended EEG and the multiscale entropy (MSE) profiles of them. One RRI time series and one
detrended single-channel EEG signal are shown on the left-hand side of the figure. MSE-RRI 1-3 are examples of the MSE profiles showing the MSE
values of RRI from scale 1 to scale 20, while MSE-EEG 1-3 are examples of the MSE profiles showing the MSE values of EEG from scale 1 to scale 20. All
the MSE-profiles show an initial increasing before a plateau or a fall.
doi:10.1371/journal.pone.0087798.g002
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partial correlation coefficient (r = 0.307, p = 0.004) between each

other. Nevertheless, the inverse association between the LF/HF

ratio of the awake RRI and the awake-resting EEG-MSE-coarse at

any channel was not strong enough to exist after Bonferroni

corrections. In contrast, the LF/HF ratio and any of the MSE

value on the fine scales (scales 1-3) of the awake RRI were

inversely correlated to each other (age- and gender-adjusted

Pearson’s partial correlation coefficients r = 20.420 to 20.337, p-

values all , 0.0001). The LF/HF ratio of the sleep RRI was not

correlated to the sleep RRI-MSE-coarse or any of the EEG-MSE-

coarse. Additionally, we found that both the RRI-MSE-coarse and

LF/HF ratio of the awake RRI were negatively correlated to age

using gender-adjusted Pearson’s partial correlation tests (r = 2

0.301, p = 0.005 and r = 20.214, p = 0.047, respectively).

Results of Student’s t-tests with Bonferroni corrections revealed

that the resting-awake EEG-MSE-coarse at electrode F8

(p = 0.036) and the fast-PS EEG-MSE-coarse at electrode Cz

(p = 0.019) were significantly decreased in the VD group compared

to the control group. We also found a significant age- and gender-

adjusted Pearson’s partial correlation between the MMSE-T1

score and the resting-awake EEG-MSE-coarse at electrode F8

(r = 0.332, p = 0.036) after the Bonferroni correction. The resting-

awake EEG-MSE-coarse was not correlated to age or gender,

whereas the MMSE-T1 score was inversely correlated to age

(gender-adjusted Pearson’s partial correlation coefficient r = 2

0.325, p = 0.002). The MMSE-T1 scores were significantly lower

in the VD than in the AD group using Student’s t-tests (p = 0.041).

None of the two sets of RRI-MSE-coarse showed group

differences among the three patient groups using student’s t-tests

after Bonferroni corrections.

The Fourier-based spectra of all three RRI time series were

significantly similar to each other in spectral distribution. For the

LF, HF and LF/HF ratio between the 2-hour sleep and 2-hour

awake RRIs, the p-values for Pearson’s correlation coefficients

were all below 1026. For the LF and HF between the 7-minute

and either of the 2-hour RRIs (awake or sleep), the p-values for

Pearson’s correlation coefficients were all significantly below

0.001. Of the sleep RRI, the LF and LF/HF ratio (N = 83,

p = 0.003 and 0.019 respectively) were significantly lower in the

VD group compared to the control group using Student’s t-tests.

In contrast to previous evidence which showed either lower awake

LF and LF/HF ratio in AD [39] or no HRV change in AD and

VD [40], our patients with VD other than AD had more

prominent autonomic cardiac involvement. Finally, the paired-t

test also showed that the EEG-MSE-coarse of the fast-PS EEG was

much smaller than the EEG-MSE-coarse of either the awake-

resting EEG or slow-PS EEG (p-values , 0.0001 at all electrode

sites).

Figure 3. Inverse association between the multiscale entropy (MSE) values of the awake RRI and resting-awake EEG. (a) Regions with
significant inverse correlation between the summed MSE values on the scales 11220 of the awake RRI and the summed MSE values on the scales 62
20 of the resting-awake EEG after Bonferroni corrections (corrected p-values = original p-values � 19, alpha = 0.05). r and p denote the Pearson’s
partial correlation coefficient and corrected significance level, respectively. (b) The brain map illustrates regions with significant association. The
relative brightness is according to the sequential p-values from the smallest one (Fp2, C4, T6 and T4).
doi:10.1371/journal.pone.0087798.g003
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Discussion

Our results display inverse correlations between the signal

complexity of cardiac and cerebral activities. The central

autonomic pathways could not fully explain these correlations.

The resting-awake EEG was associated to the awake RRI time

series in the right frontopolar, central and temporal area, the fast-

PS EEG was also associated to the awake RRI time series in the

bilateral occipital and right central area, whereas the slow-PS EEG

was associated to the sleep RRI time series in the right frontopolar

region. These results may imply a strong correlation between the

dynamics of heartbeat and brainwaves; and the correlation could

be manipulated by photic stimulation, and affected by the sleep-

wake cycle.

A study of EEG under PS found no significant difference

between the power spectra of the EEG under PS of frequencies 11

and 20 Hz [41]. We found different signal complexity between the

EEGs under different PS frequencies. Compared to the resting-

awake EEG, an increase of regularity only occurred with the EEG

under PS of frequencies equal and above 12 Hz (fast-PS). The fast-

PS procedure made the EEG dynamics much more regular

globally and it also shifted the heart-brain associations topograph-

ically into the occipital lobes, the visual cortex. The slow-PS

procedure, although not causing any obvious change in the signal

complexity of EEG, shifted the presence of heart-brain associa-

tions from awake-state into sleep. We assume that the stimulation

of fast-PS is very strong that highlights the connection between the

heart and brain in the visual cortex, whereas the stimulation of

slow-PS is weak and only blocks the background activity in the

visual cortex just like what happens during sleep, being eye-closed.

Sleep is a state of arousable ‘‘loss of consciousness’’ with slowed

heartbeats and brainwaves, and the mechanism of sleep remains

unknown.

Living organisms are generally believed to behave in a manner

of high complexity in order to respond to a broad range of stimuli

[42]. With the deterioration of health conditions, the change in

dynamic patterns of biological signals is characterized by loss of

complexity and development of stereotypy such as Cheyne-Stokes

respiration, Parkinsonian gait, cardiac rhythms in heart failure

[43] and dementia [44]. Nevertheless, an increase of entropy

(ApEn) was noted in the hormone release patterns in Cushing’s

disease [45] and acromegaly [46]. This discrepancy may be caused

by limitations of the analytic methods or simply imply distinct

mechanisms of varied stages or characteristics of the diseases.

Vaillancourt and Newell made a point that no one direction fits all

Figure 4. Inverse association between the multiscale entropy (MSE) values of the awake RRI and fast-PS EEG. (a) Regions with
significant inverse correlation between the summed MSE values on the scales 11220 of the awake RRI and the summed MSE values on the scales 62

20 of the photic-simulated EEG at frequency 12, 15, 18 and 24 Hz (fast-PS, duration 10 seconds and interval 10 seconds) after Bonferroni corrections
(corrected p-values = original p-values � 19, alpha = 0.05). r and p denote the Pearson’s partial correlation coefficient and corrected significance
level, respectively. (b) The brain map illustrates regions with significant association. The relative brightness is according to the sequential p-values
from the smallest one (O1, O2 and C4).
doi:10.1371/journal.pone.0087798.g004
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results [47]. Any physiological phenomenon plays only one part in

the complex networks of a human body. While exploring the

dynamics of highly complex physiological signals with a very

limited set of signals as state variables, one actually observes a low-

dimensional projection of a trajectory embedded in the much

higher dimension of state space [18]. Our results, the correlations

between the LF/HF ratio and MSE values of the awake RRI

being positive on the coarse scales and negative on the fine scales

of MSE, advocate the importance of a multiscale approach to

biological signals. Riley et al. also revealed that more variability

does not mean more randomness, and more controllability does

not mean more deterministic characteristics [48]. Therefore the

direction of complexity change does not guarantee a better or

worse physiological condition. But a consistent inverse correlation

most likely indicates a certain physiological connection between

the two systems.

Previous evidence showing decreased EEG complexity in

dementia only used statistics for group comparison [25,49,50],

but we found a proportional relationship between the brain signal

variability and cognitive test score at electrode F8. Our results

correspond with the cholinergic hypothesis which states that

cognitive decline (a lower EEG-MSE-coarse) is related to central

cholinergic neuronal dysfunction and a consequent decrease in

vagal cardiac modulation (a higher LF/HF and a higher RRI-

MSE-coarse) [51]. In addition, because of the similarity between

all three RRI data, HRV is stable and therefore characteristic of

an individual [52]. Finally, conforming to previous evidence, both

the MMSE-T1 score and HRV in our study decreased linearly

with age.

Although we adopted a stringent statistical criterion by using

Bonferroni adjustments to enlarge the p-values by 19 times based

on the interdependence between the EEGs of 19 electrode sites,

we understand that the likelihood of type II error is also increased,

so that truly important differences are deemed non-significant

[53]. Before Bonferroni corrections, the significant sites showing

the heart-brain connection distributed widely over the whole head,

whereas after Bonferroni corrections, the heart-brain connection

only appeared in the right frontopolar, central and temporal area

during the awake state. Whether these correlations between the

heart and brain exist globally and favor the right brain, and

whether they could be fully explained by the central autonomic

pathways are unknown. These correlations seemed to exist in all

three aging groups, but whether they exist in younger populations

as well is also questionable. According to previous neuroanatom-

ical and pharmacophysiological findings, the prefrontal cortex

plays the leading role in the central autonomic network. On the

other hand, based on the hypothesis that vagal afferents have

diffuse projections into the central nervous system, vagus nerve

stimulation can work for refractory epilepsy [54]. The connections

between the heart and brain, whether all could be attributed to the

autonomic network, are worth further exploration.

There are numerous limitations in this study. A visually clean

continuous EEG could only be acquired in a very limited period

because of copious artifacts from eye movements, muscles or

environments. In this study, we selected visually artifact-free

segments from long raw data by an experienced neurologist and

excluded the cases who didn’t supply sufficient clean data. The

segments were detrended by a deterministic nonlinear method,

EMD, based on previous studies [55]. Independent component

analysis (ICA), a stochastic approach, can also effectively remove

EEG artifacts [56], especially eye-related artifacts [57]. Therefore

ICA could have been helpful to treat those excluded cases, of

which eye-related artifacts were inevitable. Safieddine et al.

compared different methods to remove muscle artifact from

EEG data and showed that EMD outperformed ICA for the

denoising of data highly contaminated by muscular activity [58].

Finally, the electromagnetic activity of the brain works at an

extremely fast speed, and the quasi-stationary epochs of EEG are,

in general, short lasting, in the order of tens of seconds [59].

Therefore the simultaneous EEG and ECG data were not long

enough for MSE, which warrants long series for better probability

estimation.

Conclusions

The present study demonstrates potential links between the

signal complexity of cerebral and cardiac electrical activity for the

first time. Life processes demand organ systems to work

cooperatively. The source of EEG is still under study ever since

the thalamus was emphasized in results of early experiments [60],

and so is the origin of heart beat variability. Furthermore, the

rapid processing of neural information and the highly efficient

changes of cardiac output remain somehow mysterious. A future

collection of EEG-ECG pairs from subjects of different age and

physical conditions may hopefully provide more information

towards a better understanding of the heart-brain connection.

Supporting Information

Data S1 This data set includes two 2-hour RRIs of ECG
for the VD (case 1-36) and control (case 59-87) groups.
Because the file for the EEG is too big, if someone is interested in

obtaining it or the RRIs for the AD group he can contact us via

this email address: pflin@hotmail.com.
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Physiologie des Menschen und der Tiere 258: 22237.

Correlations between Cerebral and Cardiac Activity

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e87798


