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Systemic lupus erythematosus (SLE) is a prototypical systemic autoimmune disease of
unknown etiology. The epigenetic regulation of N6-methyladenosine (m6A) modification in
immunity is emerging. However, few studies have focused on SLE and m6A immune
regulation. In this study, we aimed to explore a potential integrated model of m6A
immunity in SLE. The models were constructed based on RNA-seq data of SLE. A
consensus clustering algorithm was applied to reveal the m6A-immune signature using
principal component analysis (PCA). Univariate and multivariate Cox regression analyses
and Kaplan–Meier analysis were used to evaluate diagnostic differences between groups.
The effects of m6A immune-related characteristics were investigated, including risk
evaluation of m6A immune phenotype-related characteristics, immune cell infiltration
profiles, diagnostic value, and enrichment pathways. CIBERSORT, ESTIMATE, and
single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the relative
immune cell infiltrations (ICIs) of the samples. Conventional bioinformatics methods were
used to identify key m6A regulators, pathways, gene modules, and the coexpression
network of SLE. In summary, our study revealed that IGFBP3 (as a key m6A regulator) and
two pivotal immune genes (CD14 and IDO1) may aid in the diagnosis and treatment of
SLE. The potential integrated models of m6A immunity that we developed could guide
clinical management and may contribute to the development of personalized
immunotherapy strategies.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a complex, multisystem,
and chronic-relapsing immune disorder with diverse clinical
manifestations and significant morbidity and mortality (1).
The pathogenesis of SLE has not been fully elucidated. Thus, it
is necessary to characterize this complex disease by analyzing
high-throughput sequencing data.

Multiple epigenetic processes, including N6-methyladenosine
(m6A) RNA modification, have been shown to play a major role
in the pathogenesis of SLE (2, 3). These processes are associated
with the genetic risk of SLE, and their interaction in T cells is
thought to contribute to SLE development (4, 5). m6A
modification is involved in various biological processes
(mRNA splicing, stability, translation, etc.), which exist in
most RNAs and organisms (6). m6A is regulated by m6A
reader proteins (“readers”), demethylases (“erasers”), and
methyltransferases (“writers”), which are the most abundant
epigenetic modifications of mRNAs (7–9). The dysregulated
immune response plays a significant role in SLE and
immunological pathogenesis, including innate and adaptive
immunity (10). Moreover, several studies have shown that the
dysfunction of multiple immune cells, such as monocytes,
dendritic cells, neutrophils, T cells, and B cells, plays a crucial
role in the pathogenesis of SLE (11–14). However, the function of
m6A in the immune system of a person with SLE
remains unknown.

In this study, we intended to screen promising biomarkers for
the diagnosis and treatment of SLE. We proposed and produced
different subtype classifications of m6A immune profiles from
independent datasets. Multiple algorithms were adopted to
explore the m6A-immune characteristic classification of SLE
and to guide us in improving the diagnosis and efficacy of
immunotherapy. Associations of m6A or ICI score and
diagnosis were analyzed across several different datasets. The
m6A immune patterns were systematically evaluated, and this
evaluation revealed the potential role of the m6A immune
landscape in SLE.
MATERIALS AND METHODS

Data Collection and Processing
Our study extracted data from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
Normalized microarray gene expression data of GSE49454
(whole blood, Supplementary Tables S1, S2), GSE61635
(whole blood, Supplementary Table S3), GSE110169 (whole
blood, Supplementary Tables S4, S5), and GSE72509 (whole
blood, Supplementary Table S6) were used as training sets to
screen key m6A regulators. Out of these four datasets, only
diagnostic data for GSE49454 were available. GSE50772
(peripheral blood mononuclear cells, Supplementary Table
S7), GSE81622 (peripheral blood mononuclear cells,
Supplementary Table S8), GSE122459 (peripheral blood
mononuclear cells, Supplementary Table S9), GSE20864
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(whole blood, Supplementary Table S10), GSE39088 (whole
blood, Supplementary Table S11), and GSE156751 (plasmablast
B cells, naive B cells, and memory B cells, Supplementary Table
S12) were available from the GEO database as verification sets.
The ComBat function of the R software package sva was selected
to eliminate batch differences (15). The basic information of the
datasets selected is shown in Supplementary Table S13.

Identifying M6A Regulators and
Enrichment Analysis
To screen m6A regulators, all samples from 10 datasets were
analyzed using the empirical Bayesian method of the limma
package of R. The criterion for screening m6A regulators was an
adjusted p-value <0.05. The common m6A-mediated genes
overlapped according to a Venn plot. Enrichment analyses of
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were conducted using Metascape
(http://metascape.org/gp/index.html#/main/step1) and FunRich
(functional enrichment analysis tool) (http://www.funrich.org/),
respectively. The coexpression networks of the m6A regulators
were constructed in GENEMANIA software (http://genemania.
org/search/).

Identification of Potential M6A Regulators
Associated With SLE
The comparative toxicogenomics database (CTD, http://ctdbase.
org/) integrates information, including gene–disease
relationships, to explore the underlying pathogenesis of
diseases (16). The association between potential crucial m6A
genes and SLE risk was analyzed using the CTD data.

Transcription Factors and MicroRNAs
Interact With M6A Regulator Analysis
The interaction network of microRNAs (miRNAs) and
transcription factors (TFs) associated with the key m6A
regulators was predicted by Networkanalyst (https://www.
networkanalyst.ca/).

Correlation Analysis
The “corrplot” R (17) package was used to perform the
correlation analysis of m6A regulators or immune cell
infiltration. When the correlation coefficient is >0.5, the
correlation is positive. When the correlation coefficient is <0.5,
the correlation is negative.

Consensus Clustering of the M6A Model
RNA-seq data of 23 m6A regulators, including 8 “writers”
(METTL14, METTL3, WTAP, METTL16, VIRMA, RBM15B,
ZC3H13, and RBM15), 13 “readers” (YTHDF1, HNRNPA2B1,
YTHDF2, YTHDC1, IGF2BP1, RBMX, HNRNPC, LRPPRC,
YTHDC2, IGF2BP2, IGF2BP3, YTHDF3, and FMR1), and 2
“erasers” (ALKBH5 and FTO), were obtained from the datasets.
Least absolute shrinkage and selection operator (LASSO)
regression was used to construct the m6A diagnostic signature
by feature selection and dimension reduction (18). Cross-
validation was used for lambda parameter tuning. The cutoff
February 2022 | Volume 12 | Article 752736
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value was decided by rank statistics. Unsupervised clustering
analysis was used to identify different m6A modification
patterns. The cluster numbers and robustness were evaluated
as described in a previous study (19). The R package
“ConsensusClusterPlus” was used for classification (20). PCA
was used to validate the signature score. The m6A gene
expression and immune cell infiltration abundance scores
among the distinct modification patterns were compared. The
enrichment scores of immune cell abundance and immune
reactivity in healthy and SLE samples were compared by
Wilcoxon assay.

Consensus Clustering of the
ICIscore Model
In this study, the “ConsensusClusterPlus” R (20) package was
used to cluster samples based on gene expression, and 1,000
iterations were performed to ensure the stability of classification.
We used the “CIBERSORT” package R (21) to quantify the levels
of infiltration of different immune cells in different datasets.
Frontiers in Immunology | www.frontiersin.org 3
Different immune cell subtypes were grouped and utilized to
compare the discrepancies of different clusters. Dimension
reduction in ICI gene clusters was based on the Boruta
algorithm and the signature score using PCA. ESTIMATE and
CIBERSORT algorithms were used for the analysis of immune
status, such as immune and stromal scores (21, 22). For the ICI
score, the following method was used (23): ICI score = ∑PCIA
− ∑PCIB.

Univariate and Multivariate Cox Analyses
We downloaded gene expression and clinical characteristic
data to perform univariate and multivariate Cox analyses to
identify whether the expression of m6A regulators or immune
genes was related to the diagnosis of SLE patients. Several
clinicopathological parameters were included. The m6A
regulators or immune genes were identified by univariate
logistic regression (cutoff criterion: p-value <0.05). Multivariate
logistical regression was applied to verify m6A regulators related
to the SLE classifier.
A B

C D

E F

FIGURE 1 | Identification of the key m6A regulators in the four GEO datasets. (A–C) Heatmap showing the expression status of m6A regulators between SLE and
healthy controls in (A) GSE49454, including 4 m6A regulators; (B) GSE61635, including 17 m6A regulators; (C) GSE110169, including 13 m6A regulators; and (D)
GSE72509, including 12 m6A regulators. Green: low expression level; red: high expression level. (E) Principal component analysis for the expression of genes to
distinguish GEO cohorts of SLE (GSE49454, GSE61635, GSE110169, and GSE72509). (F) Venn diagram to identify m6A regulators between SLE and healthy
samples. *p < 0.05, **p < 0.01, ***p < 0.001.
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Construction of the Diagnostic
Gene Signature
Gene signature univariate Cox regression analysis (p < 0.001 was
considered statistically significant) and LASSO‐penalized Cox
regression analysis (24) were used to verify the diagnostic gene
signature. Diagnostic analysis of m6A immune-related genes was
identified using the “survminer” and “survival” R packages (p <
0.05 was statistically significant) (25). In particular, the
“survminer” R package was used to divide patients into high‐
and low‐risk groups according to the optimal cutoff value. The
“survivalROC” (26) R package was used to determine the time‐
dependent diagnostic value of the gene signature (log‐rank p <
0.05 was considered significant).

Immune Gene Analysis and Risk
Model Construction
The list of infiltrating immune cell gene sets was derived from a
previous study (19), and the immune gene sets were obtained
from the ImmPort database (http://www.immport.org) (27).
Univariate Cox regression analysis and LASSO-penalized Cox
Frontiers in Immunology | www.frontiersin.org 4
regression analysis were applied to verify the diagnostic signature
in the training dataset. The risk score was calculated as follows:
risk score = SExpi*bi. Expi represents each gene expression, and
bi represents the coefficient of each gene.

Weighted Gene Coexpression
Network Analysis
Weighted gene coexpression network analysis (WGCNA) was
performed using the WGCNA R package (28) to build a gene
coexpression network, and key genes related to the significant
modules were identified. Gene modules with |correlation
coefficient| >0.5 were considered strongly correlated modules,
and significantly diagnosis-associated hub immune genes were
selected for further analysis (p < 0.05, log-rank test). Strong
diagnosis-correlated gene modules were used as an input in the
LASSO regression analysis.

GO and KEGG Analyses
The GO (29) R package was used to display the results of the GO
and KEGG analyses. All differentially expressed m6A immune
A

B

C

D

FIGURE 2 | GO, KEGG, gene–gene interaction network analyses, and relationship to SLE of m6A regulators. (A) Bar plot showing the GO analysis of the 19
identified m6A regulators based on Metascape online. (B) KEGG analysis of biological pathways (ranked by p-value). (C) The gene–gene interaction network of the
19 identified m6A regulators constructed by GENEMANIA software. (D) Relationship to SLE of the 19 identified m6A regulators based on the CTD database.
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genes were selected for GO and KEGG pathway analyses. GO
analysis covers three domains: biological process (BP), cellular
component (CC), and molecular function (MF). The importance
of the GO and KEGG pathways was identified [false discovery
rate (FDR) <0.05 denotes the significance of the p value].

Gene Set Variation Analysis
The Gene Set Variation Analysis (GSVA) package in R (30) was
used to evaluate the most significantly enriched molecular
pathways. The gene sets of “c2.cp.kegg.v7.0.symbols” and
“h.all.v7.0.symbols’ were downloaded from the Molecular
Signatures Database (MSigDB, version 6.0) database for
running GSVA analysis. Differential analysis of the enrichment
scores of KEGG pathways between SLE patients and healthy
controls was performed using the R package limma (31).
Frontiers in Immunology | www.frontiersin.org 5
Gene Set Enrichment Analysis and
Single-Sample GSEA
The significantly enriched pathways in samples with ICI score-
high or ICI score-low were identified by GSEA according to the
MSigDB. The number of infiltrating immune cells and the
activity of the immune response were estimated by ssGSEA,
and the enrichment fraction represents the absolute enrichment
degree of a gene set in each sample (32).

Statistical Analysis
R software (https://www.r-project.org/, version 4.1) and
corresponding R packages (http://www.bioconductor.org/)
were utilized for statistical analysis. The results are presented
as the mean ± SD (p < 0.05 indicated statistical significance).
Student’s t-test was applied for continuous variable analysis.
A B

C

D

E

FIGURE 3 | Identification of IGFBP3 as a key m6A target and GSVA analysis. (A) Except for GSE50772, the five verification datasets share IGFBP3 overlap. (B) The
significant differential expression of m6A regulators was identified from three subsets of the GSE156751 dataset based on an adjusted p-value <0.05. The three
subsets share IGFBP3 overlapping. (C–E) Heatmap and volcano plots illustrating the enrichment scores of differentially enriched molecular pathways evaluated by
GSVA analysis between SLE patients and healthy controls (red: high enrichment scores; green: low enrichment scores).
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Spearman’s correlation was adopted to analyze correlations.
Kaplan–Meier analysis was performed, and diagnostic values
were compared by the log-rank test.
RESULTS

Identification of m6A Regulators Between
SLE Patients and Healthy Controls
Based on the high-throughput data analysis, four whole-blood
datasets were used as training sets to screen the keym6A regulators
based on the expression levels of m6A genes. The results showed
that 4 m6A regulators were significantly differentially expressed in
the GSE49454 dataset (Figure 1A), 17 m6A regulators were
significantly differentially expressed in the GSE61635 dataset
(Figure 1B), 13 m6A regulators were significantly differentially
expressed in the GSE110169 dataset (Figure 1C), and 12 m6A
regulators were significantly differentially expressed in the
Frontiers in Immunology | www.frontiersin.org 6
GSE72509 dataset (Figure 1D). The principal component
analysis of GSE49454, GSE61635, GSE110169 and GSE72509
datasets were performed by unsupervised clustering based on the
expression of genes (Figure 1E). The Venn diagram showed that
IGFBP3 overlapped in the four datasets (Figure 1F), which
suggests that it plays an important role in SLE patients.

Functional Pathway, Gene Network, and
Relationship to SLE Analysis of m6A
Regulators
GO and KEGG pathway analyses revealed the functions of the 19
m6A regulators. The GO results showed that they were mainly
enriched in the regulation of mRNA metabolic processes, mRNA
processing, and related processes (Figure 2A). The KEGG results
showed that these regulators were mainly enriched in the
regulation of insulin-like growth factor (IGF) activity by the
insulin-like growth factor-binding protein (IGFBP) pathway
(Figure 2B). In addition, the gene–gene interaction network for
A B C D

E

G

F

H

FIGURE 4 | The diagnostic signature can distinguish healthy and SLE samples, and a TF–miRNA network of m6A regulators was constructed in GSE49454.
(A) Univariate logistic regression demonstrated the relationship between m6A regulators and diagnosis. (B) LASSO coefficient profiles of m6A regulators. (C) Tenfold
cross-validation for tuning parameter selection in the LASSO regression. (D) KM plots presenting diagnoses in the high- and low-risk sets. (E) Heatmap for the
connections between clinicopathologic features and risk factors. (F) Multivariate Cox regression model analysis, which included the factors of age, sex, low c3, low
c4, and IGF2BP3 in the GSE49454 dataset. (G) Venn diagram to identify differentially expressed m6A risk genes. (H) TF–miRNA coregulatory network of two m6A
regulators (pink: m6A risk genes; blue: miRNA; and green: TF genes). *p < 0.05;**p < 0.01;****p < 0.001.
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19 m6A regulators was constructed by the GeneMANIA database.
The hub nodes represent genes that were significantly correlated
with 19 m6A regulators (Figure 2C). CTD was employed to
explore the interaction between potential crucial genes and SLE.
Inference scores in CTD reflected the association between disease
and 19 m6A regulators. The interaction results showed that
IGFBP3 has a higher inference score with SLE (Figure 2D).

Identification of IGFBP3 and
GSVA Analysis
To verify whether IGFBP3 could act as a key target in SLE, based on
high-throughput analysis, six datasets were selected as verification
sets to screen significantly differentially expressed m6A regulators
after the ChIP results were normalized. Among the three PBMC
datasets, nine, six, and five m6A regulators were significantly
differentially expressed in the GSE50772 dataset (Supplementary
Figure S1A), the GSE81622 dataset (Supplementary Figure S1B),
and the GSE122459 dataset (Supplementary Figure S1C),
respectively. In addition, the m6A regulators in two whole-blood
microarray datasets were screened. Four and 15 m6A regulators
were significantly differentially expressed in the GSE20864 dataset
(Supplementary Figure S1D) and the GSE39088 dataset
(Supplementary Figure S1E), respectively. Four m6A regulators
Frontiers in Immunology | www.frontiersin.org 7
were significantly differentially expressed in the B-cell dataset of
GSE156751 (Supplementary Figure S1E). The Venn diagram
showed that IGFBP3 overlapped in the six verification datasets
(Figure 3A). Furthermore, IGFBP3 overlapped in the three subsets
[GSE156751 (plasmablast B cells), GSE156751 (memory B cells),
GSE156751 (naive B cells)] of the GSE156751 dataset (Figure 3B).
These results also indicated that IGFBP3 could act as a key target in
B cells to further explore the detailed molecular mechanism of SLE.
Then, GSVA was applied to explore the molecular pathways and
underlying mechanisms in B-cell subsets between SLE patients and
healthy controls. The top differentially enriched molecular
pathways were identified (Figures 3C–E). The results showed
that olfactory transduction and neuroactive ligand receptor
interaction pathways were positively correlated with SLE. DNA
replication, RNA polymerase, neurotrophin signaling, spliceosome,
etc. pathways were negatively correlated with SLE.

Univariate and Multivariate Cox
Regression Model Analyses of M6A
Risk Genes and Construction of a
TF–miRNA Network
Univariate Cox regression analysis was used to identify
diagnosis-related m6A regulators. Seven genes (HNRNPA2B1,
A B

C D

FIGURE 5 | Unsupervised clustering of cohorts based on the genes and m6A clusters. (A–D) Consensus clustering classified SLE into three gene clusters and three
m6A clusters in the GSE49454 (A, B) and GSE110169 (C, D) datasets. The upper columns consist of age, sex, low c3, low c4, and m6A clusters of SLE.
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IGFBP1, WTAP, YTHDC1, YTHDC2, YTHDF1, and YTHDF3)
were related to increased risk (HRs > 1), including 14 protective
genes with HRs <1 (Figure 4A). LASSO Cox regression analysis
constructed the signature according to the optimum l value
(Figures 4B, C). Receiver operating characteristic (ROC)
analysis was used to evaluate the sensitivity and specificity for
the diagnostic model between the low- and high-risk groups
(Figure 4D). Furthermore, a heatmap of clinical features for the
GSE49454 cohort is shown (Figure 4E), and the diagnostic
status, low c3, low c4, and age of patients were diversely
distributed between the low- and high-risk subgroups (p <
0.05). Meanwhile, we performed multivariate Cox analysis of
IGFBP3 for some variables (age, sex, low c3, and low c4) in
GSE49454. The multivariate Cox analysis indicated that IGFBP3
(HR = 1.51, p = 0.0089, 95% CI = 0.94–2.42) and age (HR = 0.96,
p < 0.001, 95% CI = 0.94–0.97) were more accurate than the
other factors (Figure 4F). Next, we obtained two m6A risk genes
from the intersection of the six m6A risk model genes between
the low- and high-risk subgroups and four m6A regulators in
Frontiers in Immunology | www.frontiersin.org 8
GSE49454 (Figure 4G). For the two common m6A risk genes
(IGFBP2 and IGFBP3), a TF–miRNA gene interaction graph was
built using NetworkAnalyst (Figure 4H). The network contains
a total of 26 TF genes and 27 miRNAs. This interaction might be
the reason for regulating the expression of the m6A risk
model genes.
Consensus Clustering of M6A Subtypes
With Clinical Features
Consensus cluster analysis was used to develop the molecular
classification of SLE patients according to gene expression. All
SLE samples were initially divided into different k (k = 2–9)
groups. The cumulative distribution function (CDF) curves
showed that the optimal number of clusters was k = 3.
Consensus clustering was independently conducted in the
GSE49454 (Figures 5A, B) and GSE110169 (Figures 5C, D)
datasets, as shown in the heatmap, in which SLE patients were
categorized into three m6A and gene clusters. The two-
A B

C D

E GF H

FIGURE 6 | Comparison of the differences in immune cells, m6A regulators, and the m6A score in unsupervised clustering of cohorts. (A–D) Comparison of the
difference of 23 types of immune cells and 21 m6A regulators on the m6A and gene clusters in the GSE49454 and GSE110169 cohorts. (E–H) Comparison of the
differences in m6A score on molecular subtypes (gene clusters and m6A clusters) in GSE49454 and GSE110169 datasets. p-values are shown as *p < 0.05; **p <
0.01; ***p < 0.001. ns, not significant.
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dimensional principal component plot showed that the clusters
of samples were separated from each other (Figures 5A, C).

Characteristics Analysis of M6A and
Gene Clusters
Infiltrating immune cells were detected to understand the
differences in the characteristics of immune infiltration among
m6A clusters. Immunocytes differed in GSE49454 and GSE110169.
Activated.CD8.T.cellna, Activated.dendritic.cellna, macrophagena,
type.1.T.helper.cellna, T.follicular.helper.cellna, mast.cellna,
monocytena, neutrophilna, and type.17.T.helper.cellna were
significantly different in GSE49454 (Figure 6A), while
Activated.CD4.T.cellna, Activated.CD8.T.cellna, Activated.
dendritic.cellna, immature.B.cellna, immature.dendritic.cellna,
CD56bright.natural.killer.cellna, mast.cellna, natural.killer.cellna,
plasmacytoid.dendritic.cellna, type.1.T.helper.cellna, and
type.2.T.helper.cellna were markedly different in GSE110169
(Figure 6B). Furthermore, the expression differences of m6A
Frontiers in Immunology | www.frontiersin.org 9
regulators between three gene clusters in GSE49454 and
GSE110169 were evaluated. Sixteen m6A regulators were
significantly different in GSE49454 (Figure 6C), and 21 m6A
regulators were significantly different in GSE110169 (Figure 6D).
Moreover, there were obvious differences in m6A score in the
molecular subtypes (gene clusters and m6A clusters) of SLE in the
GSE49454 (Figures 6E, F) and GSE110169 (Figures 6G,
H) datasets.

Consensus Clustering and Characteristics
Analysis of ICI Clusters and Gene Clusters
With Clinical Features
Unsupervised consensus clustering was used to explore the
molecular classification of SLE patients based on the expression
patterns of immune cell infiltration (ICI). According to the relative
change in the area under the CDF curve, the optimal number of
clusters was determined to be three (k = 3). Hence, all SLE patients
were categorized into three groups, which were termed ICI clusters
A B

C D

FIGURE 7 | Construction of gene clusters and ICI clusters and comparison of the differences in immune cells in GSE110169. (A) The optimal cluster number was
k = 3. CDF curves (k = 2–9). Heatmap of the expression patterns of genes (red: high expression; blue: low expression). The upper columns consist of sex, m6A
clusters, and gene clusters of SLE. (B) Boxplot of differential immune cell infiltration between three ICI clusters (blue: ICI cluster A; yellow: ICI cluster B; red: ICI
cluster C). (C) The consensus clustering number was k = 3. CDF curves (k = 2–9). A heatmap of the expression patterns of genes is shown. The upper columns
consist of sex, ICI clusters, and gene clusters of SLE. (D) Fractions of infiltrated immune cells in two gene clusters of the GSE110169 cohort. *p < 0.05; **p < 0.01;
***p < 0.001; ns, not significant.
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1–3. The differences in immune infiltration characteristics among
the three m6A clusters and two gene clusters are shown by
heatmaps and boxplots in GSE110169 (Figures 7A–D). The
results revealed that naive CD4+ T cells, CD8+ T cells, activated
memory CD4+ T cells, monocytes, gamma delta T cells, M2
macrophages, neutrophils, and immune scores were significantly
different in the ICI clusters of GSE110169 (Figures 7A, B).
Gamma delta T cells and monocytes were significantly different
in the gene clusters of GSE110169 (Figures 7C, D). Consistently,
to explore the differences in immune infiltration characteristics
among three ICI clusters and two gene clusters, infiltrating
immunocytes were also evaluated. Many immunocytes differed
between the two patterns in GSE49454 (Figures 8A–D). Memory
B cells, naive CD4+ T cells, CD8+ T cells, activated memory CD4+

T cells, monocytes, M0 macrophages, activated dendritic cells,
neutrophils, stromal scores, and neutrophils were significantly
different in the ICI clusters of GSE49454 (Figures 8A, B).
Memory B cells, CD8+ T cells, activated dendritic cells, stromal
Frontiers in Immunology | www.frontiersin.org 10
scores, and neutrophils were significantly different in the gene
clusters of GSE49454 (Figures 8C, D).

Gene Modules, Univariate Cox Regression,
and Functional Analysis of Immune Genes
A complete immune gene map was constructed. The related gene
modules of different traits were identified byWGCNA. Two gene
modules were identified to match different clinical
characteristics, with the diagnosis closely associated with the
genes in the blue module (Figure 9A). Univariate logistic
regression was applied to identify immune genes associated
with SLE, and five immune regulators (TAP2, DDX58, IDO1,
CD14, and FGFRL1) were related to SLE (Figure 9B). Three key
immune genes (FGFRL1, IDO1, and CD14) were selected by
LASSO regression (Figure 9B). GO and KEGG enrichment
analyses were used to investigate the biological pathways of the
immune genes. The results revealed that they are mainly
involved in neutrophil activation (Figure 9C). The biological
A B

C D

FIGURE 8 | Construction of gene clusters and ICI clusters and comparison of the differences in immune cells in GSE49454. (A) The optimal cluster number was
k = 3, CDF curves (k = 2–9). Heatmap of the expression patterns of genes (red: high expression; blue: low expression). The upper columns consist of age, sex, low
c3, low c4, and ICI clusters of SLE. (B) Fractions of infiltrated immune cells in three ICI clusters in the GSE49454 cohort. (C) The consensus clustering number was
k =2. CDF curves (k = 2–9). A heatmap of the expression patterns of genes is shown. The upper columns consist of age, sex, low c3, low c4, ICI clusters, and gene
clusters of SLE. (D) Fractions of infiltrated immune cells in two gene clusters of the GSE49454 cohort. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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processes involved in immune genes are closely related to T-cell
activation pathways (Figure 9D).

Biological Characteristics of Clustered
Genes and Immune Genes in GSE110169
To screen for key genes, a total of 6,148 common genes were
obtained from the intersection of clustered genes in GSE110169
(Figure 10A), and GO and KEGG enrichment analyses
demonstrated that they mainly participated in the process of
detection of chemical stimuli involved in sensory perception and
olfactory transduction pathways (Figures 10B, C). GO and KEGG
pathway analyses were also used to evaluate the key biological
pathways of immune genes in GSE110169. GO enrichment
analysis showed that they are mainly involved in the processes
of neutrophil degranulation and neutrophil activation during the
immune response (Figure 10D). The biological pathways in which
the immune genes take part were markedly related to CENP-A-
Frontiers in Immunology | www.frontiersin.org 11
containing nucleosome assembly, DNA replication-independent
nucleosome assembly, etc. (Figure 10E).

Univariate Cox Proportional Hazards
Model for Diagnostic Prediction
We used univariate Cox proportional hazards model analysis to
build a risk score model based on the median-risk score, which
divided SLE patients and healthy samples into two groups: high
risk and low risk in the GSE49454 dataset (Figures 11A–C).
By LASSO regression analysis, 13 differentially expressed
immune genes (PDIA3, RAET1L, LCN8, DEFB107B, ISG20,
IDO1, SOCS1, CD14, IL1RN, FGFRL1, GCGR, NGFR, and
CASP3) were screened out. Furthermore, we quantified the
enrichment levels of the 13 genes in the two groups, and the
results are shown in a heatmap (Figures 11A–C) and a boxplot
(Figures 11D–F). The average AUC values for the sensitivity and
specificity of the risk score and clinical factors in the three sets
A B

C D

FIGURE 9 | Gene modules, univariate Cox regression, and functional analysis of immune genes. (A) Gene modules identified by WGCNA. Correlation between gene
modules and clinical features. Strongly correlated modules (|Cor> 0.5, p < 0.05) are marked with red frames. (B) Univariate Cox regression analysis of immune genes
in the GSE49454 dataset. Partial likelihood deviance of different numbers of variables and LASSO coefficient profiles of immune genes in the GSE49454 dataset are
shown. Venn diagram to identify key immune genes between WGCNA-LASSO and LASSO analysis. (C) Bar plot graph of GO enrichment based on the immune
genes in the GSE49454 cohort (a longer bar means the more genes enriched, and an increasing depth of red means the differences were more obvious). (D) Bubble
graph for KEGG pathway enrichment based on the immune genes in the GSE49454 cohort. (a larger bubble means that more genes were enriched, and an
increasing depth of red means that the differences were more obvious).
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reached 0.733, 0.725, and 0.741. (Figures 11D–F). Kaplan–Meier
curve analyses (Figures 11G–I) showed the diagnostic
probability between high- and low-risk patients in the
GSE49454 cohort (p < 0.001).
Immune Cell Interactions and
Characteristics of Immune Cells Between
High- and Low-Risk Patients
The correlation coefficient heatmap provides an intuitive
understanding of the state of immune cell interaction of
GSE110169 (Figure 12A). CIBERSORT was used to calculate
the immune cell expression of SLE subtypes in the GSE49454
dataset. The Wilcoxon test was used to compare the distribution
of immune cells between high- and low-risk patients. We found
that the differences in most immune cells were insignificant in
the high-risk group compared with the low-risk group
(Figures 12B–D). Only naive CD4+ T cells (p = 0.039) and
M0 macrophages (p = 0.006) were higher in the low-risk group.
In contrast, resting dendritic cells (p < 0.001) and resting
Frontiers in Immunology | www.frontiersin.org 12
memory CD4+ T cells (p = 0.025) were higher in the high-risk
group (Figure 12D).
Portfolio Analysis of the M6A Score and
the ICI Score of the GSE49454 Dataset
The samples were unsupervised clustered using R packages. The
graphs of unsupervised clustering of GSE49454 are shown in
Figures 5, 8. Significant differences in dependent clusters on
diagnosis were revealed (log-rank test, p < 0.001) (Figures 13A–
C). To examine the effectiveness of the m6A score in predicting
clinical features, subjects were divided into high or low m6A
score groups. The results showed that the number of SLE patients
with high m6A scores was higher than that of patients with low
m6A scores (Figure 13D). The comparison showed that the
m6A scores of the SLE patients were higher than those of the
healthy samples (Figure 13E). The Wilcoxon test showed that
IGFBP3 was significantly overexpressed in the high ICI group
(Figure 13F). The correlation coefficient heatmap revealed the
immune cell interaction (Figure 13G). By GSEA, the remarkable
A B C

D E

FIGURE 10 | Functional analysis was performed on the common genes identified by gene clusters and the immune genes in the GSE110169 cohort. (A) Venn
diagram of the common genes from three gene clusters between SLE and normal samples. (B, C) The GO and KEGG enrichment results were used to analyze the
molecular functions, cellular components, and biological processes of the common genes of gene clusters, identified by bar plots. (D, E) Bubble graphs for GO and
KEGG enrichment analysis of the immune genes in the GSE110169 cohort.
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enrichment of KEGG pathways delineated biological pathways
or processes correlated with the ICI score in the GSE49454
cohort. Five representative KEGG pathways with high and low
ICI scores were identified. The results are as follows: glycine
serine and threonine metabolism, renin–angiotensin system,
tight junction, non-small cell lung cancer, and melanoma
signaling pathways were associated with a high ICI score, while
enrichment plots demonstrated that basal transcription factors,
lipid metabolism, proteasome, RNA polymerase, and ribosome
pathway were associated with a low ICI score (Figure 13H). The
relationships of gene cluster, ICI score, diagnosis, and the
relationship of m6A cluster, gene cluster, m6A score, and
diagnosis were also shown (Figures 13I, J).
Protein Structure Prediction Comparison
and Prediction of Drug Targets of Key
Genes
The AlphaFold Protein Structure Database (https://alphafold.ebi.
ac.uk/) was used to predict the protein structures of IGFBP3,
Frontiers in Immunology | www.frontiersin.org 13
FGFRL1, CD14, and IDO1 (Figures 14A–D). We also compared
the representative CD14 and IDO1 structures in the Protein Data
Bank (PDB) database, which contains experimental structural data.
IGFBP3 and FGFFRL1 were not included in PDB.We screened the
drug-target complex from DrugBank (https://go.drugbank.com/)
according to each target’s directly interacting ligands.
DISCUSSION

SLE is a multifactorial and complex autoimmune disease that is
characterized by the deposition of immune complexes and the
production of autoantibodies; it also features various cellular and
molecular aberrations and predominantly affects female
individuals (33). Genetic, hormonal, environmental, and other
factors trigger SLE, causing multivisceral dysfunction. To date,
the pathogenesis of SLE remains unclear (34). Epigenetic factors,
especially m6A modification, play a key role in the process of
SLE. However, only sporadic studies have evaluated m6A
modifications. For example, the findings of Luo et al. suggested
A B C

D E F
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FIGURE 11 | Diagnostic and time-dependent risk score analysis for the immune gene signature in SLE. (A–C) The signature risk score distribution, status of samples in
the high- and low-risk groups, and heatmaps of the expression profiles of members in the 13 immune–gene signature in three sets [all (A), test (B), training (C)] of the
GSE49454 dataset. (D–F) Boxplot of 13 diagnostic molecules between high- and low-risk patients and the ROC curve for diagnostic predictions in the three sets. (G-I)
Kaplan–Meier curve between high- and low-risk patients. The validation sets using the test set and the entire set. *P < 0.05; **P < 0.01; ***p < 0.001.
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that decreased YTHDF2 was related to the disease activity of
SLE, and ALKBH5 may be involved in the pathogenesis of SLE
(35, 36). Li et al. (37) summarized the mechanisms of m6A
modification in gene expression regulation and immune
response (such as modulating pre-mRNA splicing, RNA
structure, mRNA stability, pri-miRNA, and translation). The
authors speculated that m6A modification may take part in the
initiation and progression of SLE. Therefore, it is necessary to
further explore the potential research value of this aspect.

In this study, compared with the healthy control group, by
analyzing four datasets, we identified 19 key m6A regulators (p <
0.05). We then investigated the biological functions of these m6A
modulators by GO and KEGG analysis, and the results revealed
that these regulators are significantly associated with changes in
the regulation of mRNA metabolic processes, mRNA processing,
etc. KEGG pathway analyses indicated that these genes were
mainly enriched in the regulation of insulin-like growth factor
(IGF) activity by the insulin-like growth factor binding protein
(IGFBP) pathway. Moreover, the gene–gene network of m6A
Frontiers in Immunology | www.frontiersin.org 14
regulators and the TF–miRNA network of key m6A risk
regulators were constructed. These regulators could contribute
to promoting SLE therapy. Furthermore, immune genes associated
with SLE were identified using WGCNA in this study. Immune
genes in the high diagnostic significance module were selected as
central genes. We also obtained key m6A-immune genes
associated with the diagnosis of SLE patients by univariate and
multivariate Cox regression analyses and the Kaplan–Meier
method. By GO and KEGG analysis, we further analyzed the
functions of the common differentially expressed genes identified
by gene clusters and the immune genes between the high- and
low-risk groups. ROC analyses were applied to explore the
sensitivity and specificity of clinical factors and risk score and
IGFBP3 in different datasets for SLE diagnosis. In addition,
another six independent datasets (GSE50772, GSE81622,
GSE122459, GSE20864, GSE39088, and GSE156751) were used
for external validation to identify the stable differential expression
of IGFBP3 between SLE and healthy samples. Ultimately, three
key immune genes (FGFRL1, IDO1, and CD14) and one m6A
A B

C D

FIGURE 12 | Correlation analysis of immune cells and difference in immune infiltration between high- and low-risk patients. (A) A correlation coefficient heatmap was
generated to visualize the immune cell interaction (the color from red to blue represents positive and negative correlations, and the size of the pie graph represents
the absolute correlation coefficient). (B) Relative proportions of immune infiltration in the high- and low-risk groups. (C) The heatmap illustrates immune infiltration in
the high- and low-risk groups. (D) Violin plot of immune infiltration in the high- and low-risk groups.
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regulator (IGFBP3) were screened. The results demonstrated that
these genes screened in the present study could act as promising
biomarkers for the diagnosis and treatment of SLE.

CD14 (CD14 molecule) is preferentially expressed on
monocytes and macrophages and mediates the innate immune
response to viruses. It has been identified as a candidate target for
treating severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)-infected patients by reducing or suppressing severe
inflammatory responses (38, 39). It is mainly involved in the
Toll comparison pathway and the innate immune system. The
CD14 (C-159T) polymorphism was related to increased
susceptibility to SLE and could be a promising biomarker for
the diagnosis of lupus nephritis (40). Moreover, a study
demonstrated that urinary CD14 mononuclear cells could serve
as a biomarker for lupus nephritis (LN) (41). The enzyme
indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme that
regulates immune responses to arrest inflammation (42). IDO1
Frontiers in Immunology | www.frontiersin.org 15
maintains homeostasis by preventing autoimmune or
immunopathology from participating in peripheral immune
tolerance (43). Furthermore, regulatory abnormalities of IDO1
have been demonstrated in patients with SLE (44). Low IDO1
expression in human induced pluripotent stem cells (hiPSCs) of
SLE can cause abnormal activation of the immune response (45).
IDO has been suggested to play a key role in a variety of
autoimmune diseases, including MRL/lpr mouse models of
lupus-like diseases, and in another study, IDO1 protein and
IDO total enzyme activity were significantly increased in lupus-
prone B6.Nba2 mice compared to B6 controls (46). Fibroblast
growth factor receptor-like 1 (FGFRL1) belongs to one of the
fibroblast growth factor receptor (FGFR) families and has a
negative effect on cell proliferation. FGFRL1 has been reported
in cancer but not in SLE (47, 48).

Insulin-like growth factor binding protein 3 (IGFBP3) is a
protein that regulates the growth and proliferation of somatic
A B C
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FIGURE 13 | Portfolio analysis of the m6A and ICI scores of the GSE49454 dataset. (A–C) Kaplan–Meier curves for diagnosing the probability of m6A score, ICI
score, and gene cluster groups (log-rank test: p < 0.001). (D, E) The proportion of m6A scores and diagnosis differences in m6A scores between the SLE (red) and
HC (blue) groups in GSE49454. (F) Gene expression differences of four m6A regulators between high- and low-ICI score groups. (G) A correlation coefficient
heatmap was generated to visualize the immune cell interaction. (H) GSEA plots showing the processes of glycine serine and threonine metabolism, renin–
angiotensin system, tight junction, non-small cell lung cancer, and melanoma signaling pathways in the high ICI score group and the pathways of basal transcription
factors, lipid metabolism, proteasome, RNA polymerase, and ribosome in the low ICI score group. (I, J) Alluvial diagram showing the relationship of gene cluster, ICI
core, and diagnosis and the relationship of m6A cluster, gene cluster, m6A core, and diagnosis. *p < 0.05; ns, not significant.
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cells. Insulin-like growth factors (IGFs) are important growth-
promoting factors. IGFBP-3 plays a key role in the secretion and
action of growth hormone (49). Most IGF molecules interact
with members of the IGF-binding protein (IGFBP) family in
blood flow and local tissues (50). Free insulin-like growth factor-
1 (IGF1) has a positive metabolic effect in SLE, and the level of
IGF1 decreases appropriately with increasing age. It may
indirectly inhibit the immune response by downregulating T-
and B-cell activity (51). Overexpression of IGF-I and IGFBP2 in
glomeruli may play important roles in renal function and
morphological changes in MRL/LPR mice (52). IGFBP2 has
been identified as a biomarker of SLE and lupus nephritis (53–
55). IGFBP3 has also been shown to play a major role in
maintaining a healthy immune system, supporting the
maintenance and development of naive CD8+ T cells (56).
Most studies have shown that IGFBPs have great potential as
biomarkers in autoimmune diseases (57).

Molecular analysis of SLE demonstrated that many molecular
components are significantly related to the immune response or
diagnosis of SLE. Changes in these molecules in SLE may
interfere with the communication between immune cells,
affecting the balance of immune tolerance and immune
activity. We also performed a detailed characterization of m6A
or ICI profiles, and the m6A-immune patterns offer a glimmer of
Frontiers in Immunology | www.frontiersin.org 16
hope for patient-specific individualized therapy. Therefore, we
also established models to evaluate the impacts of m6A
immunity on SLE. Some studies have demonstrated that
epigenetic and immune disorders are involved in SLE
progression (37, 58–61). M6A regulators could serve as
biomarkers of diseases, and the dysfunction of immune cells
might protect against disease by therapeutic intervention.
Herein, we mainly focused on the characterization of m6A
immunity in SLE, which plays a major role in mediating the
immune system. Our study analyzed a number of samples from
different datasets and categorized the samples into m6A
immune-related subgroups. Thus, according to the m6A and
ICI gene clusters, we first obtained the m6A-immune subgroups
related to the clinical characteristics. These results indicated that
the m6A and ICI scores are a useful biological diagnostic method
for evaluating the potential of immunotherapy. Considering the
robustness of the above model, we combined the samples to
generate a global prediction model containing multiple variables.
We found differences in immune infiltration characteristics
among m6A, ICI clusters, and gene clusters. Many
immunocytes differ among these patterns. Based on the
findings of our study, the involvement of m6A or ICI gene
clusters in the immune response was associated with diagnosis
and might trigger systemic immune responses and resistance to
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FIGURE 14 | Protein structure prediction comparison and drug targets of IGFBP3, FGFRL1, CD14, and IDO1. AlphaFold protein structure predictions of (A)
IGFBP3, (B) FGFRL1, (C) CD14, and (D) IDO1. AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. Some regions below 50 pLDDT
may be unstructured in isolation. The shade of green indicates the expected distance error in Ångströms. The dark green module corresponds to the highlighted
region. Dark green indicates good error, and light green indicates bad error. (C) Representative CD14 structure in the PDB database, which contains experimental
structural data. In addition, the drug-target complex N-acetylglucosamine (NAG) bound to its directly interacting ligands. (D) PDB structure chain showing IDO1 and
the drug-target complex: N-cyclohexyltaurine (NHE) bound to its directly interacting ligands. We thank all members of the laboratory for useful discussions.
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immunotherapy. Thus, we speculated that the m6A-immune
phenotypes could help predict the reaction to immune therapy.

Genomic studies have also shown that SLE is an autoimmune
disease with a high degree of immune cell infiltration (62, 63). For
example, kidney-infiltrating T cells (KITs), as activated effector
cells, may cause organ failure and tissue damage (64).
CD4+Foxp3+IL-17A+ cell infiltration was found in renal biopsy
specimens of active lupus nephritis (65). Moreover, urinary
CD11c+ macrophages expressed proinflammatory cytokines (IL-
6 and IL-1) and resembled infiltrated monocytes (66). Yoshikawa
et al. revealed that CXCR5− and CXCR3+ B cells were elevated and
involved in B-cell infiltration into tissues and the inflammatory
pathogenesis in SLE (67). In this study, we also used GSVA to
explore the molecular pathways and underlying mechanisms in B-
cell subsets between SLE patients and healthy controls. The results
showed that neuroactive ligand receptor interactions, olfactory
transduction, etc. pathways were positively correlated with SLE.
DNA replication, RNA polymerase, neurotrophin signaling,
spliceosome, etc. pathways were negatively correlated with SLE.
Furthermore, immune cell infiltration has also been detected in
lupus-prone mice. For example, IL-22 in renal epithelial cells of
MRL/lpr mice has been found to bind to IL-22R to activate the
STAT3 signaling pathway, enhance chemokine secretion, and
promote macrophage infiltration into the kidney, exacerbating
lupus nephritis (68). Type I interferon (IFN) signatures and
increased immune cell infiltration were consistent with the
severity of lupus in the kidneys of Aim2−/− mice (69). Immune
cell infiltration in SLE is a complex and variable process that is
actively involved in the regulation of inflammatory responses to
promote or suppress the disease process. In the m6A and ICI gene
clusters, there appears to be an association between immune cell
infiltration and response, which is a favorable diagnosis. Therefore,
we hypothesized that m6A-immune therapy might be beneficial to
patients with SLE, which suggests that the different characteristics
of m6A and ICI gene clusters obtained in our study may help in the
development of more accurate immune therapy.

In the current study, we attempted to identify m6A targets for
SLE and to explore the role of m6A-immune interaction models
in SLE. The results in our study were obtained from the
bioinformatic analysis only. Hence, more studies are needed to
confirm the roles of m6A immunity in different pathways.
CONCLUSIONS

Overall, we conducted a comprehensive analysis of the m6A and
ICI profiles of SLE. Our study provides clear information on the
regulation of the m6A immune response in SLE. We discovered
the links between different patterns of m6A immunity,
heterogeneity of m6A immunity, and potential treatment
targets. IGFBP3 and immune genes (CD14 and IDO1)
screened in the present study could serve as promising targets
for the treatment of SLE. This study has significant clinical
significance for the comprehensive evaluation of m6A immune
patterns, which may provide a new direction for the
Frontiers in Immunology | www.frontiersin.org 17
understanding of SLE. It would also help in the selection of
optimal strategies for personalized immunotherapy.
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