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ABSTRACT

Genome-wide transcriptional profiling provides a
global view of cellular state and how this state
changes under different treatments (e.g. drugs) or
conditions (e.g. healthy and diseased). Here, we
present ProTINA (Protein Target Inference by Net-
work Analysis), a network perturbation analysis
method for inferring protein targets of compounds
from gene transcriptional profiles. ProTINA uses a
dynamic model of the cell-type specific protein–gene
transcriptional regulation to infer network perturba-
tions from steady state and time-series differential
gene expression profiles. A candidate protein tar-
get is scored based on the gene network’s dysreg-
ulation, including enhancement and attenuation of
transcriptional regulatory activity of the protein on
its downstream genes, caused by drug treatments.
For benchmark datasets from three drug treatment
studies, ProTINA was able to provide highly accurate
protein target predictions and to reveal the mecha-
nism of action of compounds with high sensitivity
and specificity. Further, an application of ProTINA to
gene expression profiles of influenza A viral infection
led to new insights of the early events in the infection.

INTRODUCTION

The identification of the molecular targets of pharmaco-
logically relevant compounds is vital for understanding the
mechanism of action (MoA) of drugs, as well as for explor-
ing off-target effects. While the definition of a target can
be quite arbitrary, the term generally refers to a molecule
whose interaction with the compound is connected to the
compound’s effects (1). In this study, transcription factors
(TFs) and their protein interaction partners represent the

target molecules, while differential gene expression profiles
represent the effects. Among existing technologies for pro-
tein target discovery (e.g. biochemical affinity purification,
RNAi knockdown or gene knockout experiments) (2), gene
expression profiling has received much recent attention due
to its relative ease of implementation as well as the availabil-
ity of large-scale public databases and well-established ex-
perimental protocols and data analytical methods. A com-
plication when using gene expression profiling for target dis-
covery is that the data give only indirect indications of the
drug’s action. As illustrated in Figure 1A, the interaction
between a compound and its protein target(s) is expected
to result in the differential expression of downstream genes
that are regulated by the protein target(s). But, the expres-
sion of the protein targets themselves may not––and often
do not––change (3). Consequently, target discovery using
gene expression profiles requires computational methods to
identify the (upstream) targets from the (downstream) ef-
fects.

Existing computational strategies for compound target
identification using gene expression profiles can generally
be classified into two groups: comparative analysis and
network-based analysis (4). Comparative analysis methods
use the gene expression profiles as drug signatures. Here,
the similarity between the differential gene expression of a
drug treatment and those of reference compounds or exper-
iments with known targets, implies a closeness in the molec-
ular targets and the MoA. A notable example of such an ap-
proach is the Connectivity Map (5), which provides gene ex-
pression profiles of human cell lines treated by ∼5000 small
molecule compounds as queryable signatures for evaluating
drug–drug similarities (6). The obvious drawback of com-
parative analysis methods is their dependence on an exten-
sive and accurate target annotation of the reference gene
expression profiles.

In network-based analysis, one adopts a system-oriented
view by using cellular networks, such as gene regulatory net-
work (GRN) and/or protein–protein interaction network
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Figure 1. Protein target prediction by ProTINA. (A) The protein–gene net-
work describes direct and indirect regulations of gene expression by tran-
scription factors (TF) and their protein partners (P), respectively. A drug
interaction with a protein is expected to cause differential expression of the
downstream genes in the PGN. (B) Based on a kinetic model of gene tran-
scriptional process, ProTINA infers the weights of the protein–gene regula-
tory edges, denoted by akj, using gene expression data. The variable akj de-
scribes the regulation of protein j on gene k, where the magnitude and sign
of akj indicate the strength and mode (+akj: activation, –akj: repression) of
the regulatory interaction, respectively. (C) A candidate protein target is
scored based on the deviations in the expression of downstream genes from
the PGN model prediction (Pj: log2FC expression of protein j, Gk: log2FC
expression of gene k). The colored dots in the plots illustrate the log2FC
data of a particular drug treatment, while the lines show the predicted ex-
pression of gene k by the (linear) PGN model. The variable zk denotes the
z-score of the deviation of the expression of gene k from the PGN model
prediction. A drug-induced enhancement of protein–gene regulatory in-
teractions is indicated by a positive (negative) zk in the expression of genes
that are activated (repressed) by the protein (i.e. akjzk > 0). Vice versa, a
drug-induced attenuation is indicated by a negative (positive) zk in the ex-
pression of genes that are activated (repressed) by the protein (i.e. akjzk <

0). (D) The score of a candidate protein target is determined by combin-
ing the z-scores of the set of regulatory edges associated with the protein
in the PGN. A positive (negative) score indicates a drug-induced enhance-
ment (attenuation). The larger the magnitude of the score, the more consis-
tent is the drug induced perturbations (enhancement/attenuation) on the
protein–gene regulatory edges.

(PIN). A number of network-based analytical methods re-
lied on dynamic models of the GRN to infer network per-
turbations caused by drug treatments (7–11). Several no-
table methods include Network Identification by multiple
Regression (NIR) (7), Mode of action by Network Identi-
fication (MNI) (8), Sparse Simultaneous Equation Model
(SSEM) (9) and DeltaNet (10,11). In these methods, the
GRN is inferred from a training dataset of gene expression
profiles using a linear regression derived from a dynamic
mechanistic model of the gene transcriptional process. Sub-
sequently, the inferred GRN is utilized for target identifica-
tion to evaluate deviations in the differential gene expres-
sion caused by drug treatments (7–11) or in disease (12). A
major pitfall of the above methods is that the inference of
GRN from gene transcriptional profiles is highly challeng-
ing (13), as the inference problem often becomes underde-
termined (i.e. the GRN may not be inferable) (14,15). In
addition, as mentioned above, the expressions of the drug
targets are often unaffected by the drug treatment (3).

Another group of network-based analytical methods uti-
lizes cellular network graphs, either curated from the lit-
erature knowledge or inferred from gene expression data,
to formulate statistical hypothesis tests for ranking drug

targets (3,16–22). Several methods in this category prior-
itize targets based on the enrichment of the downstream
or neighbouring molecules in the network for differentially
expressed genes, following the principle of ‘guilt by asso-
ciation’ (3,16–20). Another set of methods rank targets
by scoring hypotheses that are generated based on causal
relationships in the biological networks (21,22). A recent
method called Detecting Mechanism of Action by Network
Dysregulation (DeMAND), combines the GRN and PIN
to create a molecular interaction network, where the drug
targets are scored based on the statistical significance of
drug-induced alterations in the joint gene expression distri-
bution between two connected genes in the network (23).
The methods in this group make use of only the (static)
topology of cellular networks without much consideration
of the dynamics of the gene transcriptional process, and
thus are unable to fully exploit information contained in
time-series datasets.

In this work, we developed ProTINA (Protein Target In-
ference by Network Analysis), a network perturbation anal-
ysis method for protein target identification using gene tran-
scriptional profiles. The analysis involves two key steps:
(a) the creation of a model of tissue or cell type-specific
protein–gene regulatory network (PGRN) and (b) the cal-
culation of protein target scores based on the enhance-
ment or attenuation of the protein–gene regulations. In de-
veloping ProTINA, we addressed some of the drawbacks
in the existing methods. First, the PGRN in ProTINA is
based on a dynamic model of the gene transcriptional pro-
cess, and is therefore able to take advantage of time-series
gene expression profiles that are commonly generated by
drug treatment studies. In addition, ProTINA leverages on
the availability of comprehensive maps of protein–protein
and protein–DNA interactions for the construction of the
PGRN, which serves as prior information to alleviate net-
work inferability issue. Finally, ProTINA scores candidate
targets based on drug-induced perturbations to the expres-
sion of genes regulated by the targets, rather than the ex-
pression of the targets themselves. We demonstrated the su-
periority of ProTINA over the state-of-the-art method De-
MAND and differential gene expression analysis (DE), in
predicting the protein targets of drugs using human and
mouse datasets from NCI-DREAM drug synergy challenge
(24), genotoxicity study (25) and chromosome drug tar-
geting study (26). Besides protein targets of compounds,
we presented the application of ProTINA to study host-
pathogen interactions, specifically for elucidating the targets
of influenza A viral proteins.

MATERIALS AND METHODS

Gene expression data

We applied ProTINA to three datasets of drug treatments
from NCI-DREAM drug synergy challenge (24), genotox-
icity study (25) and chromosome drug targeting study (26),
and to gene expression data of human lung cancer cell
Calu-3 from influenza A viral infection studies (27–30).
For NCI-DREAM drug synergy challenge, we obtained
the raw Affymetrix Human Genome U219 microarray data
from Gene Expression Omnibus (GEO) database (31) (ac-
cession number: GSE51068). The raw data were first nor-
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malized and transformed into log2-scaled expressions using
justRMA function in the affy package of Bioconductor (32).
Then, the log2 fold change (log2FC) differential expressions
and their statistical significance (Benjamini–Hochberg ad-
justed P-values) were calculated using a linear fit model and
empirical Bayes method in the limma package of Bioncon-
ductor. Three samples from the drug treatment using the
low dose of Aclacinomycin A were dropped because all of
the log2FC expressions were close to 1 and thus not sta-
tistically significant. The probe sets were mapped to gene
symbols using hgu219.db annotation package (Entrez Gene
database as of 27 September 2015). In the case of multi-
ple probe sets mapping to a gene symbol, we assigned the
log2FC from the probe set with the smallest average ad-
justed P-value over the samples.

The raw microarray data from genotoxicity study (25) in
human HepG2 cell line were obtained from GEO (acces-
sion numbers: GSE28878 using Affymetrix GeneChip Hu-
man Genome U133 Plus 2.0 array and GSE58235 using
Affymetrix HT Human Genome U133+ PM array). As with
the drug synergy data, the microarray data were first nor-
malized using justRMA, and the log2FCs and their adjusted
P-values were calculated using limma in Bioconductor. Be-
cause the data came from different microarray platforms,
the gene symbols were matched separately for each platform
using hgu133plus2.db annotation package (Entrez database
of 27 September 2015) and HT HG-U133 Plus PM anno-
tation file in Affymetrix, respectively. Likewise, in the case of
multiple probe sets matching a gene symbol, the probe set
with the smallest average adjusted P-value across all sam-
ples was chosen.

The raw data from the chromosome-targeting study us-
ing mouse pancreatic alpha and beta cells (26) were also ob-
tained from GEO database (accession number: GSE36379).
Again, the raw data were normalized using justRMA, and
the log2FCs and their adjusted P-values were calculated by
limma. The probes were mapped to the corresponding gene
symbols using moe430a.db package (Entrez Gene database
as of 27 September 2015) in Bioconductor. In the case of
multiple probe sets mapping to a gene symbol, we selected
the probe set with the smallest average adjusted P-value
among the samples.

For influenza A infection analysis, we obtained the
raw microarray data of four influenza studies (27–30)
from GEO database (accession numbers: GSE40844,
GSE37571, GSE33142 and GSE28166). The raw data were
background-corrected and normalized using normexp and
quantile methods in limma package of Bioconductor. The
log2FCs and their adjusted P-values were again calculated
by limma. The probes were mapped to the corresponding
gene symbols using hgug4112a.db package (Entrez Gene
database as of 27 September 2015). Like before, for genes
with multiple probe sets, we chose the log2FC value corre-
sponding to the probe set with the smallest average adjusted
P-value.

Protein target identification using ProTINA

Protein–gene regulatory network. In ProTINA, the PGRN
is a bipartite graph with weighted, directed edges point-
ing from a protein to a gene (see Figure 1A). The edges

in the PGRN describe the regulation of gene expression by
TFs and their protein partners, the molecular targets of in-
terest in this work. The bipartite PGRN above is able to
capture feedback loops in the gene transcriptional regula-
tion, even though these loops are not drawn explicitly. An
example of such a feedback loop is when a protein regu-
lates the expression of its own transcription factor(s). The
PGRN is constructed by combining two types of networks,
namely the TF–gene network and PIN. For the construc-
tion of human cell type-specific PGRNs, we relied on the
Regulatory Circuit resource that provides 394 cell type and
tissue-specific TF–gene interactions (33). More specifically,
for the analysis of the NCI-DREAM drug synergy, geno-
toxic compound study, and influenza A viral infection study
datasets, we used the TF–gene networks of human lym-
phoma cells, pleomorphic hepatocellular carcinoma cells,
and epithelium lung cancer cells, respectively. We included
only TF–gene interactions with a Regulatory Circuit confi-
dence score greater than 0.1. The confidence score indicates
the normalized promoter activity level in a given cell type
(0: not active, 1: maximally active) (33). For the analysis of
mouse pancreatic cell dataset, we obtained the mouse pan-
creatic TF–gene interactions from CellNet (34). In the con-
struction of the PGRNs, any TF–gene interactions involv-
ing unmeasured genes were excluded. In summary, the TF–
gene network for human lymphoma, hepatocellular carci-
noma cell, and epithelium lung cancer cell lines included 31
392 edges pointing from 515 TFs to 5153 genes, 3868 edges
pointing from 413 TFs to 953 genes, and 42 145 edges point-
ing from 515 TFs to 7125 genes, respectively. The mouse
pancreatic PGRN included 2922 edges, involving 95 TFs
and 588 genes.

For human PIN, we combined the protein–protein in-
teractions from two databases, namely Enrichr (35) and
STRING (36). For mouse pancreatic cells, we obtained
mouse (Mus musculus) PIN from the STRING database
(36). For each TF, we identified its protein partners, defined
as proteins that are within a network distance of 2 from the
TF in the PIN. When using the STRING database, we in-
cluded all direct protein partners of TFs, and proteins with
a network distance of 2 from TFs with a confidence score re-
ported on STRING larger than 0.5. For human lymphoma,
hepatocytes, and lung cancer cells, we identified 11 090 pro-
tein partners for a subset of 499 TFs (out of 515 TFs), 10
834 protein partners for a subset of 403 TFs (out of 413 TFs)
and 6 175 protein partners for a subset of 504 TFs (out of
515 TFs), respectively. For mouse pancreatic cells, we found
6620 protein partners for a subset of 89 TFs (out of 95 TFs).

Finally, in the construction of the PGRNs, we assigned a
directed edge from a TF or from a protein partner of a TF,
to every gene regulated by the TF. In summary, the cell type-
specific PGRN for human lymphoma cells included 21 488,
617 regulatory edges among 11 161 TFs/proteins and 5153
genes. For hepatocellular carcinoma cells, the PGRN com-
prised 3726, 393 edges among 10 893 TFs/proteins and 953
genes. For human lung cancer cells, the PGRN comprised
30 656 861 edges among 11 346 TFs/proteins and 7125
genes. For mouse pancreatic cells, the PGRN consisted of
1 417 972 edges among 6661 TFs/proteins and 588 genes.
While increasing the size of the PGRN, for example by in-
cluding lesser confident TF–gene and protein–protein in-
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teractions or by including proteins with a network distance
from TFs larger than 2, would allow the scoring of a higher
number of proteins, such strategy often lowers the accuracy
of the protein target predictions.

Gene transcription model. The edges in the PGRN have
weights, whose magnitudes represent the strength of the
gene regulation and whose signs indicate the direction or the
mode of the regulation: positive for gene activation and neg-
ative for gene repression. The weights are inferred from the
gene expression dataset by adapting a procedure described
in our previous method DeltaNet (10,11) (see Figure 1B).
The inference of the edge weights is based on an ordinary
differential equation (ODE) model of the mRNA produc-
tion of a gene:

d rk(t)
d t

= uk

n∏
j=1

r j (t)
akj − dk rk(t) (1)

where rk(t) is the mRNA concentration of gene k at time t,
uk and dk denotes the mRNA transcription and degradation
rate constants respectively, and akj denotes the gene regula-
tory influence (or edge weight) of the jth protein on the kth
gene.

While the regulatory edges in the model above usually
describe TF–gene interactions, in ProTINA, we further ac-
counted for the (indirect) regulation of a gene by proteins
that interact with the TFs. For this purpose, we considered
a modified ODE model:

d rk

d t
= uk

⎛
⎝nTF∏
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n P∏
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⎞
⎠ − dk rk (2)

where a positive (negative) bkjq describes the activation (re-
pression) of the kth gene by a protein q through its interac-
tion with the TF protein j. The variables nTF and nP denote
the numbers of TFs and their protein partners, respectively.
The multiplication of two variables rj and rq implies that the
regulation of gene k by protein q requires the TF protein j
(a non-zero rj). The model in Equation (2) can be simplified
into:
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kj
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(3)

where a∗
kj denotes the overall regulatory influence of each

protein j, including TFs and their protein partners, on the
expression of gene k. Note that the model in Equation (3) is
mathematically equivalent to that in Equation (1).

By taking the pseudo steady-state assumption (i.e. the
synthesis rate of mRNA balances the degradation rate, lead-
ing to drk/dt = 0 in Equation (3)), the inference of edge
weights (a∗

kj ) of the PGRN can be rewritten as the following

linear regression problem (see derivation in (10)):

cki =
nTF +n P∑

j=1

a∗
kj c ji + pki (4)

where cki denotes the log2FC expression for gene k in sam-
ple i. The variable pki represents the part of log2FC of gene
k expression in sample i that cannot be accounted for by
the log2FC of its protein regulators. In other words, pki in-
dicates the perturbations to the expression of gene k. As
detailed below, ProTINA relies on the magnitude and di-
rections of such network perturbations (dysregulations) to
identify proteins with altered gene regulatory activity.

The dynamical information contained in time-series gene
expression profiles could greatly improve the inference of
the edge weights above. But, the pseudo steady-state as-
sumption hinders the application of the linear regression
in Equation (4) to time-series data. As previously described
in (11), time-series information could be accounted for by
adding the following linear constraint on the linear regres-
sion problem:

ski =
nTF +n P∑

j=1

a∗
kj s j i (5)

where ski is the time derivatives (slope) of the log2FC of gene
k in sample i. In contrast to Equation (4), Equation (5) was
derived without assuming pseudo steady-state, which was
necessary to account for the dynamics of gene expressions.
The slopes of the log2FC at each sampling time point were
computed using a second-order accurate finite difference
approximation (37). In summary, the estimation of edge
weights in ProTINA involved the following linear regres-
sion problem:

Ck=AkCRk+Pk (6)

Sk=AkSRk (7)

where Ck and Sk are the 1 × m vectors of log2FC expres-
sions and time-derivatives of gene k across m samples, the
subscript Rk refers to the set of (nTF,k+nP,k) protein regula-
tors of gene k in the cell type-specific PGRN, CRk and SRk

denote the (nTF+nP,k) × m matrices of log2FCs and their
slopes across m samples, Ak is the 1 × (nTF+nP) vector of
weights for edges in the PGRN pointing to gene k, and Pk
is the 1 × m vector of dysregulation impacts of gene k over
m samples.

In ProTINA, the vectors Ak and Pk for each gene k in
Equations (6) and (7) were estimated by ridge regression.
The ridge regression provides a solution to an underdeter-
mined linear regression problem of the standard form: y =
Xβ + ε, using a penalized least square objective function:

min
β

‖y − Xβ‖2
2 +λ ‖β‖2

2

where λ is a shrinkage parameter for the L2-norm penalty.
Equations (6) and (7) are rewritten into the standard linear
regression problem with y = [Ck Sk]T, X = [[CRkSRk ]T, [Im

0]T], β = [Ak Pk]T. Before applying the ridge regression, we
normalized the vectors of log2FCs and slopes to have a unit
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norm. Self-loops were excluded in the regression, and thus
the diagonal entries of Ak were set to 0. In the applications
of ProTINA, we employed 10-fold cross validations to de-
termine the optimal λ, one that gives the minimum average
prediction error. Here, we used the GLMNET package (38)
for both the MATLAB and R versions of ProTINA.

Protein target scoring. In ProTINA, each candidate pro-
tein target is assigned a score based on the deviation of the
expression of its downstream genes. More specifically, we
computed the residuals of the linear regression problem in
Equation (6) for each gene k, i.e.

rk = Ck − AkCRk (8)

where rk is the 1 × m vector of residuals for m samples.
For each drug treatment, there often exist multiple gene
expression profiles, taken at different time points or differ-
ent doses. Correspondingly, we evaluated the z-score zlk for
each drug treatment l and for each gene k, according to

zlk = r̄lk

σk
/√

nl
(9)

where r̄lk denotes the average residual of gene k among the
drug treatment samples, σ k denotes the sample standard de-
viation of the residuals in all samples besides the drug treat-
ment, and nl denotes the number of samples from the drug
treatment. A positive (negative) z-score indicates that the
expression of gene k in the particular sample was higher
(lower) than expected based on the expression of its regu-
lators. The greater the magnitude of the z-score, the more
significant is the gene dysregulation.

The target score of a TF or protein for a drug is calculated
by combining the z-scores of the target genes in the PGRN,
as follows (39):

s ji =
∑nD

k=1 wkj zki√∑nD
k=1 w2

k

(10)

where zki denotes the z-score of gene k and sji denotes the
score of the TF/protein j in the drug treatment sample i. The
weighting coefficients wkj are set equal to the edge weights
akj divided by the maximum magnitude of akj across all j. In
other words, the weight wkj reflects the fraction of the regu-
lation of gene k expression that could be attributed to pro-
tein j. When wkj (or akj) and zki have the same signs, wkjzki
thus takes a positive value. As illustrated in Figure 1C, a
positive wkjzki implies an enhanced regulatory activity of
protein j on gene k, since the activation (inhibition) of gene
k expression by protein j is stronger in this sample than ex-
pected by the PGRN model. In contrast, a negative wkjzki
indicates an attenuation of the regulatory influence of pro-
tein j on gene k, since the activation (inhibition) of gene k ex-
pression by protein j is weaker than predicted by the PGRN
model. Consequently, a highly positive (negative) score sji is
an overall indicator of strongly enhanced (attenuated) regu-
latory activity of protein j by the drug treatment in sample i
(see Figure 1D). The protein targets in each drug treatment
sample are ranked in decreasing magnitude of the scores sji.

DeMAND and differential expression analysis

For DeMAND analysis, we employed the public R sub-
routines available from the website: http://califano.c2b2.
columbia.edu/demand. Following the procedure detailed in
the original publication (23), we computed the RMA (Ro-
bust Multi-array Average) normalized gene expression val-
ues as inputs to the analysis. In DeMAND analysis, we used
the same cell type-specific PGRNs as those in ProTINA.
For each candidate protein target, DeMAND evaluated the
P-value of the deviations in the gene expression relationship
between the protein target and each of the genes connected
to this protein in the PGRN. The drug targets were ranked
in increasing magnitude of the combined P-values.

In differential gene expression (DE) analysis, we calcu-
lated the log2FC differential expression of each protein in
the PGRN, as described in section Gene expression data
above. Here, we used the log2FC values directly as the target
scores. Correspondingly, we ranked the candidate protein
targets in decreasing magnitude of the log2FC gene expres-
sion values.

Performance assessment

For comparing the performance of different methods, we
computed the area under the receiver operating character-
istic curve (AUROC), i.e. the area under the plot of true pos-
itive rate against false positive rate, following the procedure
adopted in DREAM challenges (40,41). For each method
and each drug treatment, we generated a ranked list of pro-
tein targets according to decreasing magnitudes of the pro-
tein scores in ProTINA, increasing P-values of network dys-
regulation from DeMAND, and decreasing magnitudes of
log2FC gene expression from DE analysis.

Gene set enrichment analysis

For influenza A virus study, we performed a gene set en-
richment analysis (GSEA) of the protein target predictions
from ProTINA, DeMAND and DE analysis for the KEGG
biological pathways (42), using the R package GAGE
(Generally Applicable Gene-set/pathway Enrichment anal-
ysis) with Kolmogorov-Smirnov tests (43). In the case of
ProTINA and DeMAND, target proteins with zero score
were excluded from the GSEA.

Reference protein targets

The reference protein targets of compounds in drug treat-
ment studies were compiled from five different public
databases of chemical-protein interactions: DrugBank (44),
Therapeutic Target Database (TTD) (45), MATADOR
(46), Comparative Toxicogenomics Database (CTD) (47),
and STITCH (48). DrugBank and TTD provided infor-
mation on the mechanism of drug actions as well as the
proteins that have physical binding interactions with drugs.
Meanwhile, MATADOR, CTD, and STITCH gave inter-
actions between proteins and chemical compounds, curated
from text mining and experimental evidences. When retriev-
ing the protein targets of drugs from these databases, we col-
lected proteins that directly bind to the queried drugs. The
reference targets for each dataset in this study are provided

http://califano.c2b2.columbia.edu/demand
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in Supplementary material 1. Meanwhile, the reference pro-
tein targets for influenza A virus study were obtained from
(49), where 1292 host proteins that likely physically bind to
viral proteins of influenza type A/WSN/33 in human em-
bryonic kidney cells (HEK293) were identified by whole-
genome co-immunoprecipitation assays.

RESULTS

New protein target prediction strategy

ProTINA takes advantage of the availability of com-
prehensive protein–protein and protein–DNA interaction
databases to construct, when possible, a tissue or cell
type-specific PGRN. The method considers a PGRN with
weighted directed edges (see Figure 1A), describing direct
and indirect gene transcriptional regulation by TFs and
their protein partners. The edge weights are determined by
applying ridge regression using the gene expression data
based on a kinetic model of the gene transcriptional process
(see Figure 1B and Materials and Methods). Here, a positive
weight indicates a gene activation, while a negative weight
implies a gene repression. Because of the underlying kinetic
model, ProTINA is able to incorporate dynamical gene ex-
pression data, a common type of data from drug treatment
studies (5,24–26). The scoring of drug targets is based on
the enhancement or attenuation of protein–gene regulatory
interactions caused by the drug treatment. A drug-induced
gene regulatory enhancement occurs when the expression
of genes that are positively (negatively) regulated by a can-
didate target, becomes higher (lower) in drug treated sam-
ples than what is predicted by the PGRN model (see Figure
1C). A drug-induced attenuation describes the opposite sce-
nario, where the expression of positively (negatively) regu-
lated genes of a target is lower (higher) than expected from
the model. For any given differential gene expression sam-
ple, a candidate protein target is scored based on the overall
enhancement and/or attenuation of its regulatory influence
on the downstream genes (see Figure 1D and Materials and
Methods). Thus, a protein target with a more positive (neg-
ative) score is considered a more likely target of the drug,
in which the drug treatment enhances (attenuates) the gene
regulatory activity.

Prediction of known targets of drugs

We tested ProTINA’s performance in predicting drug tar-
gets using gene expression data from three drug treatment
studies employing human and mouse cell lines. The first
dataset came from the NCI-DREAM drug synergy study
using human diffuse large B cell lymphoma OCI-LY3 (24),
the second from the compound genotoxicity study using
human liver cancer cells HepG2 (25), and the third from
the chromatin-targeting compound study using mouse pan-
creatic cells (26). We compared ProTINA to the state-of-
the-art network-based analytical method DeMAND (23),
and to the traditional DE analysis. For the analysis of
datasets from human cell lines, we constructed cell-type
specific PGRNs by combining human PIN from STRING
(36) and Enrichr database (35) and human cell-type specific
protein–DNA networks from Regulatory Circuit resource
(33). Meanwhile, for the construction of mouse pancreatic

Figure 2. Prediction of known targets of drugs. AUROCs of protein tar-
get predictions from ProTINA, DeMAND and DE methods for the NCI-
DREAM drug synergy (human B-cell lymphoma), the compound geno-
toxicity (human HepG2) and the chromatin targeting study (mouse pan-
creatic cell) datasets (*P-value < 0.01, **P-value < 0.001 by paired t-test).

cell type-specific PGRN, we used mouse (Mus musculus)
PIN from STRING (36) and mouse protein–DNA interac-
tions from CellNet (34) (see details in Materials and Meth-
ods).

In assessing the performance of ProTINA and the other
methods, we compared the ranked list of protein target pre-
dictions for each compound with the reference drug targets
compiled from the literature (see Materials and Methods
and Supplementary material 1). Figure 2 (also see Supple-
mentary Tables S1–S3) summarizes the AUROCs of the tar-
get predictions from ProTINA, DeMAND, and DE anal-
ysis, showing ProTINA significantly outperforming De-
MAND and DE analysis for all three datasets. Here, the
drug target predictions from DE analysis had the poor-
est AUROCs with an overall average below 0.66 (AUROC
range: 0.393––0.982). Meanwhile, the target predictions of
DeMAND were slightly better than the DE analysis, aver-
aging at 0.74 (AUROC range: 0.405––0.989) for the three
datasets. Meanwhile, ProTINA gave the highest average
AUROCs among the methods with an average of 0.83 (AU-
ROC range: 0.425––0.991).

Mechanism of action of drugs

Besides high AUROCs, ProTINA also provided accurate
and specific indications on the MoA of the compounds.
In the NCI-DREAM synergy study, roughly half of the
compounds are known to induce DNA damage response,
including DNA topoisomerase inhibitors (camptothecin,
doxorubicin and etoposide), DNA crosslinker (mitomycin
C), oxidative DNA damaging agent (methothrexate), and
histone deacetylase (HDAC) inhibitors (trichostatin A). In
demonstrating ProTINA’s ability to reveal the compound
MoA, we focused on the canonical p53 DNA damage re-
sponse pathway (23), as illustrated in Figure 3. Here, the
activation of p53 in response to DNA damage is expected
to induce the transcription of Cyclin Dependent Kinase
Inhibitor 1A (CDKN1A) and Growth Arrest and DNA
Damage Inducible Alpha (GADD45A) (50,51). In turn,
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Figure 3. Canonical p53 DNA damage response pathway. In response to
DNA damage, GADD45A, CDKN1A, PCNA are activated, while AU-
RKA, CCNB1 and PLK1 proteins are inhibited (23).

Figure 4. Mechanism of action of compounds based on target predictions
by ProTINA. (A) The rank distribution of the canonical p53 DNA damage
response proteins in the drug target predictions of ProTINA, DeMAND
and DE for the NCI-DREAM drug synergy dataset. (B) The rank distri-
bution of proteins involved in the core DNA-damage repair (DDR) and
DDR-associated pathways (56) in the target predictions of ProTINA, De-
MAND and DE for the DNA damaging compounds in the NCI-DREAM
drug synergy study (**P-value < 0.001 by Wilcoxon signed rank tests).

CDKN1A and GADD45A––through their interactions
with Proliferating Cell Nuclear Antigen (PCNA)––regulate
the DNA replication and repair process (52). GADD45A
also inhibits the catalytic activity of Aurora Kinase A (AU-
RKA) (53), leading to a lowered activation of Polo-like Ki-
nase 1 (PLK1) and Cyclin B1 (CCNB1) in a phosphoryla-
tion cascade (54,55). As shown in Figure 4A, except for tri-
chostatin A, the six proteins in the canonical p53 pathway
above were ranked highly by ProTINA among the geno-
toxic compounds in the study (median rank <500), consis-
tent with their known MoA. Note that the same six pro-
teins were ranked much lower among the non-DNA dam-
aging compounds (median rank > 500), signifying a high
specificity of ProTINA predictions (see also Supplemen-
tary Figure S1). Equally important, ProTINA was able to
accurately identify the direction of the drug-induced al-
terations caused by the DNA damaging compounds. The
signs of protein target scores from ProTINA indicated
drug-induced enhancement (positive scores) of CDKN1A,
PCNA and GADD45A, and attenuation (negative scores)
of CCNB1, AURKA and PLK1 (see Supplementary Table
S4), consistent with the expected response of these proteins
to DNA damage in Figure 3.

As illustrated in Figure 4A, DeMAND and DE analy-
sis also performed reasonably well in predicting the com-

pounds’ MoA. But, the directions of the perturbations pre-
dicted by DE analysis were not always consistent with the
expected response to DNA damage (see Supplementary Ta-
ble S5 and S6). Meanwhile, DeMAND did not provide any
information on the directions of the drug perturbations. In
addition, the protein target scores of ProTINA provided
a clearer demarcation between the genotoxic and the non-
genotoxic agents among the compounds in the dataset, than
DeMAND and DE analysis (see Supplementary Figure S1).
Besides the canonical p53 response pathway, we further
looked at the ranking of proteins involved in the overall
DNA damage repair (DDR) and its associated pathways
(56) (see Supplementary material 2). As depicted in Figure
4B, ProTINA ranked these proteins much higher than De-
MAND and DE analysis, with DE performing the poorest
among the methods considered.

In comparison to DeMAND and DE analysis, ProTINA
was further able to detect a specific MoA of mitomycin
C, whose DNA crosslinking activity is expected to prompt
a particular DNA repair process called the fanconi ane-
mia pathway (57). The fanconi anemia pathway relies on
a specific protein complex to ubiquitinate Fanconi Ane-
mia Group D2 Protein (FANCD2) and Fanconi Anemia
Group I Protein (FANCI), as well as two homologous re-
combination (HR) repair proteins, namely Breast Cancer
Type 1 Susceptibility Protein (BRCA1) and RAD51 Re-
combinase (RAD51) (58). In ProTINA analysis, the aver-
age rank of FANCD2, FANCI, BRCA1, and RAD51 was
within top 100 for mitomycin C, while the average rank of
those proteins was much >100 for the other DNA dam-
aging agents (see Supplementary Table S7). However, the
specific activation of the fanconi anemia pathway by mit-
omycin C was not detected by DeMAND or DE analysis.
Thus, ProTINA provided more sensitive and specific indica-
tions for the mechanism of action of compounds than De-
MAND and DE.

Application of ProTINA for predicting pathogen-host inter-
actions

We applied ProTINA to time-course gene expression pro-
files of human lung cancer cells (Calu-3) under influenza
A virus infection, with the goal of identifying host fac-
tors that interact with the viral proteins. The gene expres-
sion data came from four studies of influenza A viruses, in-
cluding A/Netherlands/602/2009 (H1N1), A/CA/04/2009
(H1N1), and A/Vietnam/1203/2004 (H5N1) (27–30). We
employed ProTINA to compute the overall protein target
scores using the gene expression data of Calu-3 from the
four studies above, by averaging the scores from the early
phase of the influenza infection between 0 and 12 h. We
checked the target predictions of ProTINA against the find-
ings from a genome-wide co-immunoprecipitation analy-
sis of host and viral protein interactions (49). More specif-
ically, the aforementioned study reported 1292 host pro-
teins that co-immunoprecipitated with viral proteins of in-
fluenza A/WSN/33 using human embryonic kidney cells
(HEK293). Despite the discrepancy in the cell types and
influenza viral strains between the co-immunoprecipitation
analysis and the gene expression profiling, influenza A
viruses share similar features and common protein interac-
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Figure 5. Prediction of targets of influenza A virus. The receiver operative
characteristic curves give the true positive rate versus the false positive rate
relationship of the protein target predictions from ProTINA, DeMAND
and DE against proteins that co-immunoprecipitate with influenza A vi-
ral proteins. The AUROCs for ProTINA, DeMAND and DE analysis are
0.77, 0.69 and 0.65, respectively.

tions (59,60). Besides ProTINA, we also evaluated the ac-
curacy of viral target predictions from DeMAND and DE
for the same dataset.

Figure 5 gives the receiver operating characteristic (ROC)
curves of the target predictions from ProTINA, DeMAND
and DE analysis. ProTINA outperformed the two other
methods, providing the highest AUROC (ProTINA: 0.76
versus demand: 0.69 and DE: 0.65). We further performed a
gene set enrichment analysis (GSEA) for the target predic-
tions from each of the methods (see Materials and Methods)
to elucidate the key pathways involved in the viral infec-
tion and the accompanying host response. The results of the
GSEA are summarized in Figure 6. Both DeMAND and
DE target predictions were enriched for only a few pathways
(q-value < 0.01), while ProTINA prediction had a much
higher number of overrepresented pathways.

The common enriched pathways among ProTINA, De-
MAND and DE (top of Figure 6) included known mech-
anisms related to viral entry, replication and assembly, in-
cluding endocytosis (61), protein processing in endoplas-
mic reticulum (62), ubiquitin mediated proteolysis (63,64)
and RIG-I-like receptor signaling pathway (65,66). Both
ProTINA and DE analysis indicated the modulation of host
cell cycle (67), mRNA surveillance (68) and DNA damage
response (69). Only ProTINA prediction was significantly
enriched for focal adhesion and actin cytoskeleton, which
have been shown to regulate influenza virus entry at the
early stage of infection (70). In addition, ProTINA target
predictions were also enriched for a broad set of host re-
sponse pathways to viral infection, including host defense
mechanism (e.g. T- and B-cell receptor pathways, phagocy-
tosis, leukocyte migration, chemokine signaling pathways),
DNA damage repair (e.g. nucleotide excision repair, p53
signaling pathway, homologous recombination) and apop-

Figure 6. Gene set enrichment analysis for KEGG pathways for the in-
fluenza A protein target predictions from ProTINA, DeMAND and DE.
The size of the circles corresponds to –log10 scale of the q-values. Only
pathways with q-value < 0.01 are shown.

tosis. As several influenza proteins are known to interfere
with interferon production (which in turn regulates sev-
eral cytokines) (65,66), these findings suggest that, overall,
ProTINA provided a broader picture of the early events in
the influenza A viral infection, than DeMAND and DE
analysis.

DISCUSSION

ProTINA is a novel and highly effective network-based an-
alytical method for inferring the protein targets of com-
pounds from gene expression profiling data. ProTINA com-
bines the information of TF–gene and protein–protein in-
teractions and data of differential gene expressions to cre-
ate a tissue or cell type-specific PGRN model. Similar to
network-based analysis methods such as NIR (7), MNI (8),
SSEM (9) and DeltaNet (10), ProTINA uses a dynamic
mechanistic model of the gene transcriptional process to
compute deviations in the differential gene expression pro-
files that are induced by drug treatments. However, as men-
tioned earlier, the expression of the targets of a drug is often
unaffected by the drug treatment (3). For this reason and as
illustrated in Figure 1C and D, ProTINA further transforms
the deviations in the differential gene expression into alter-
ations in the protein–gene regulatory edges in the PGRN
model. Finally, the target scoring is based on edgetic per-
turbations of the PGRN, specifically enhancement or atten-
uation of gene regulatory interactions, caused by the com-
pound.
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Like ProTINA, the state-of-the-art method DeMAND
also relies on gene transcriptional dysregulations to score
drug targets. But, DeMAND does not consider the mode
nor the dynamics of the gene regulations, and is unable
to predict the direction of the drug-induced dysregula-
tions. DeMAND calculates protein dysregulation scores
(P-values) for a given gene regulatory network, by sta-
tistical comparison between samples from drug treatment
and from control experiments. Consequently, DeMAND
requires only few samples to generate its prediction (pro-
vided that the network can be defined a priori). On the other
hand, ProTINA makes use of the available differential gene
expression profiles from a study or a cell line (i.e. not only
from the specific drug treatment), to assign the edge weights
of the PGRN by ridge regression. Importantly, in the regres-
sion analysis, the PGRN model used in ProTINA accounts
for the network perturbations. The ability of ProTINA to
incorporate data from other drug treatments or conditions
in the scoring of protein targets makes this method par-
ticularly suited to take advantage of the extensive and still
growing number of gene transcriptional profiles from on-
line databases, such as GEO. As demonstrated in the ap-
plications to three benchmark drug treatment datasets us-
ing human and mouse cell lines, ProTINA significantly out-
performed DeMAND and the standard DE analysis. The
target predictions of ProTINA also provide indications for
the MoA of compounds, including the directions of the net-
work perturbations, with high sensitivity and specificity.

Besides its intended use to predict targets of compounds,
we also demonstrated that the analysis of network perturba-
tions using ProTINA could provide insights into the mech-
anism of diseases. In the application to gene expression
profiles of Calu-3 cells from influenza A infection studies,
ProTINA again outperformed DeMAND and DE analy-
sis in identifying host factors that bind with viral proteins.
Furthermore, the GSEA of ProTINA target predictions re-
vealed the spectrum of cellular processes involved in the
early phase of influenza A infection, including pathways in-
volved in viral entry, replication and assembly, and those
related to cellular response to viral infection. Among the
pathways with the highest significance (lowest q-value) was
focal adhesion, which has been shown to regulate influenza
viral entry as well as viral replication (70). Meanwhile, the
target predictions of DeMAND and DE analysis had fewer
enriched pathways, and thus were less informative than the
target analysis by ProTINA.

The PGRN model (see Equation (1)) belongs to a class
of modeling framework called Biochemical Systems The-
ory, specifically the S-systems model (71). In addition to
gene regulatory networks, S-system modeling have also
been used to describe other cellular networks, including sig-
nal transduction pathways and metabolic reaction networks
(72). Therefore, the principle used in ProTINA could be
readily adapted to infer perturbations in cellular signalling
or metabolic networks, for example from proteomic and
metabolomics profiles, respectively. Besides PGRNs and
gene transcriptional profiles, we have not applied ProTINA
to analyze other types of cellular networks and data, as such
an application was beyond the scope of our work.

ProTINA requires a cell type- or tissue-specific PGRN
as an input, which may hinder its application to analyze

data from lesser studied organisms. In the case studies,
we leveraged on the extensive online databases of protein–
protein interactions and TF–gene networks to manually cu-
rate PGRNs for human and mouse cells (33,34,36). Alterna-
tively, provided that a large dataset of gene expression pro-
files are available for the cell of interest, the PGRN could be
inferred using existing network inference methods (73,74).
Another potential limitation in applying ProTINA is the re-
quirement for differential gene expression data for inferring
the edge weights of the PGRN. While the minimum number
for implementing ridge regression with a 3-fold cross vali-
dation (lowest fold in GLMNET) is three, the accuracy of
the weights and thus the target predictions from ProTINA
would generally deteriorate with lower sample sizes. Never-
theless, ProTINA was still able to provide reasonably accu-
rate predictions using a total of 18 samples in the influenza
A virus case study above.

The performance of ProTINA, like any other network-
based analytical methods, depends on the fidelity of the net-
work used in the analysis. Uncertainty in the PGRN model,
both in the structure and the edge weights, is expected to
negatively affect the accuracy of the target prediction. Here,
structural uncertainty is associated with the reliability of
the information used to construct the PGRN, which in our
study, comes from online databases of PIN and TF–gene
networks. On the other hand, the uncertainty in the edge
weights is associated with multiple factors, including the in-
formation content of the gene transcriptional profiles and
the mathematical formulation used for the weight inference.
The information content of the gene expression data is in
turn related to measurement uncertainty and richness in
the experimental perturbations. Keeping the same number
of treatments, datasets with more replicates and less cor-
related gene expression profiles (i.e. the treatments induce
more distinct perturbations to the network), would have a
higher degree of information. Meanwhile, we have previ-
ously shown that the validity of the model assumption (e.g.
pseudo steady-state condition) has an effect on the accu-
racy of the inferred weights and thus the target prediction
accuracy (10). While we have circumvented the issue arising
from the violation of the pseudo steady-state assumption
in ProTINA (see Equation (7)), (in)validating all model as-
sumptions may be difficult, if not impossible, in practice.
A common strategy, as implemented in this study, is to test
the performance of the method against benchmark datasets
(13). The results of applying ProTINA to drug treatment
and influenza A viral infection datasets give confidence to
the suitability of the mathematical formulation used in this
work.
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MATLAB and R versions of ProTINA can be downloaded
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