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state are beginning to explore new and fascinating areas of molecular research. Current findings have developed
a general, but refined, view of the important molecular pathways contributing to stress-survival. However, stud-
ies utilizing newly developed technologies that broadly focus on genomic and proteomic screening are beginning
to identify many new targets for future study. This minireview will provide a contextual overview on the use of

Is(fr};‘:: gijg'logy DNA/RNA sequencing, microRNA annotation and prediction software, protein structure and function prediction
Protein structure tools, as well as methods of high-throughput protein expression analysis. We will also use select examples to
RNA sequencing highlight the existing use of these technologies in stress biology research. Such tools can be used in comparative
Microarray stress biology in the characterization of animal responses to environmental challenges. Although there are many
Multiplex areas of study left to be explored, research in comparative stress biology will always be continuing as new tech-
nologies allow the further analysis of cell function, and new paradigms in gene regulation and regulatory mole-
cules (such as microRNAs) are continuing to be discovered. Building upon the findings of past research, while
utilizing new technologies in the appropriate manner, future studies can be carried out in new and exciting
areas still unexplored. Proper use of rapidly developing technologies will help to create a complete understanding

of the animal stress response and survival mechanisms utilized by many diverse organisms.
© 2014 Biggar and Storey. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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utilize new high-throughput technologies. To date, research has discov-
ered much about the physiological responses of many tolerant animals
to environmental stress [ 1-7], however new studies are broadly focused
on genomic and proteomic screening and have been identifying many
new targets for future study [8-10]. Many of these technologies should
be intriguing to the comparative stress biologist, who now has available
technology to assess the global expression of nearly all genes and pro-
teins that contribute to survival in stress-tolerant animals [11].
Although there are many areas of study left to be explored, research in
comparative and animal stress biology will always be continuing with
the advancement of technologies that allow new insight into cell func-
tion, and new paradigms in gene regulation and regulatory molecules
(such as microRNAs) are continuing to be discovered. Proper knowl-
edge and use of genomic and proteomic-based technology will help to
create a complete understanding of the stress response and survival
mechanisms that are utilized by many diverse organisms.

Within the next few years the entire genome of many organisms, in-
cluding those that display tolerances to extreme environmental condi-
tions, will most likely be sequenced. For example, the genome of the
anoxia/freeze-tolerant Western painted turtle (Chrysemys picta bellii)
was only sequenced in 2013 and the hibernating thirteen-lined ground
squirrel (Ictidomys tridecemlineatus) has been sequenced since 2008
[12]. With the current and future availability of genomic information,
the prepared comparative biologist will be provided with a blue-print
for protein structure, control domains and sites of post-translational
modifications that are either conserved or perhaps unique in those or-
ganisms. The overall goal for global modeling of the cell is to better pre-
dict the behavior of biological systems. This type of research will have
profound implications for the understanding of basic biology and im-
proving future stress-tolerance of human systems.

As previously mentioned, being able to successfully utilize newly de-
veloped technologies and resources, researchers will be able to build
upon previously explored areas of study. The end result will most likely
be a deeper and extensive understanding of the biological processes
that underlie natural mechanisms of animal stress tolerance. It should
also be noted that the ability to analyze the stress response at a global
level is not limited to the availability of a genome [13]. It is one of the
goals of this minireview to provide a contextual overview of technolo-
gies and tools that can provide omic-level analysis, without the absolute
need for an annotated genome. Several technologies have emerged in
the recent years that allow researchers to quantitatively analyze the cel-
lular response in a relatively short period of time and at low cost. These
technologies include (1) the use of microarrays to examine the re-
sponses of mMRNA [14], protein and microRNAs, (2) the use of RNA se-
quencing (RNASeq) to evaluate the state of transcription among all
expressed genes [15], (3) multiplexed assays that have the ability to as-
sess the expression of multiple analytes (mRNA, protein and enzyme ac-
tivity) [16], and (4) the prediction of protein structure and function [17].
Below are brief overviews of each technology and its application to the
field of comparative molecular biology.

2. Microarray analysis of gene and protein expression

Microarrays are widely available in the research marketplace, func-
tioning as a solid-support for thousands of different sequences that
are fixed at specific locations [18]. To date, there are a variety of micro-
array types and formats. Essentially, microarrays can be received as an
advancement on end-point RT-PCR or immunoblotting as they have
the ability to measure the expression of a very large number of genes
(cDNA/oligo-based capture) or proteins (antibody-based capture) at
the same time and within a single sample [19]. As a result, they are typ-
ically a chosen technology for experiments that require a large number
of genes to be measured quickly or when sample amount is extremely
limited for study. These arrays are also useful when discovery or initial
characterization of a new model organism is necessary because they
allow either the generation of project “leads” (heterologous screening)

or a quantitative assessment of gene/protein expression when a homol-
ogous array is used (Box. 1) [20,21]. As microarrays can be used to ex-
amine the expression of hundreds (protein) or thousands (gene) of
targets at once, it holds the promise to complete multiple years of RT-
PCR or immunoblotting expression research (target-based) within
days. However it is critical to note that the results obtained by microar-
ray experiment need to be validated through other methods of expres-
sion analysis (ie. Immunoblotting (protein) or qRT-PCR (gene)). One
must also realize that this technology is steadily changing and improv-
ing as new advances are being made to increase both array reproducibil-
ity and specificity. Nevertheless, at its current state this technology
provides an excellent research tool to the comparative biologist to ob-
tain complete expression data or a simple generation of project leads,
using either homologous or heterologous arrays, that can be used to
identify possible areas of future study. Ultimately, microarray-based
studies promise to expand the knowledge of the cellular stress re-
sponse, revealing patterns of coordinated gene expression and perhaps
even uncovering entirely new stress-responsive cellular pathways.
When combined with appropriate bioinformatic tools, microarray tech-
nology also aids in integrating target expression data with function at
the cellular level, revealing hypotheses of how multiple targets may
work together to produce a particular stress response to match a partic-
ular cellular need (such as metabolic adjustments, cytoskeletal reorga-
nization, etc.) [22]. Outlined below is specific information regarding
both DNA and protein microarrays.

2.1. Gene expression

Microarrays can be used to detect mRNA expression patterns com-
paratively within different stresses, organisms, tissues or time-points.
The previous research from the Storey lab, using heterologous cDNA mi-
croarrays, has indicated that there may not be a large variety of genes
involved in regulating the typical animal stress response [20]. This
makes it critical to be able to detect “all-of-the-few” genes that play im-
portant roles, no matter how seemingly obscure. For a comparative bi-
ologist, an expression microarray experiment could be designed
where gene expression data are generated over multiple stress points
in multiple arrays and referenced to control conditions. Unfortunately,
it must be noted that data obtained from cDNA microarray experiments
do not yield sequence information and do not provide an indication of
organism-specific novel genes or organism-specific “oddities” within
the gene (such as mutation of splicing events that alter protein func-
tion). It is also important to note that two main types of DNA microar-
rays exist in today's marketplace, (1) oligomeric microarrays, and
(2) cDNA microarrays. Oligomeric microarrays are spotted with synthe-
sized oligos anywhere between 30 and 60 bp in length. Typically, these
oligos are designed to have complementarity to the 3’ UTR (some com-
panies differ, so you must check with your company of interest) and are
often used because of their high stringency. By contrast, microarrays
spotted with cDNA contain the complete transcript sequence. Classical-
ly, heterologous cDNA microarrays allow the highest degree of hybridi-
zation for use with new/unsequenced animals, because they are
“forgiving” enough that small, poorly conserved regions of sequence
do not dictate overall binding to the array. Overall, it is critical to

Box 1

Heterologous array: Using an array with sample from an animal
that is different from the animal that the array was designed for
(ex. testing for squirrel gene expression using a mouse cDNA
microarray).

Homologous array: Using an array with samples from the same
species that the array was designed for (ex. Using mouse samples
on a mouse cDNA microarray for which it was designed).
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check with each company to see what type of DNA microarray you are
purchasing and to what location the probes are designed.

As an example of microarray use in comparative stress biology, one
study employed the use of heterologous cDNA microarrays to deter-
mine the genes and mechanisms underlying the stress response associ-
ated with various confinement exposure lengths in gilthead sea bream
(Sparus aurata) [23]. Another study used heterologous mouse cDNA mi-
croarrays to determine hibernation-responsive gene expression pat-
terns in the brown adipose tissue of hibernating arctic ground
squirrels [24]. This study identified 408 genes overexpressed during
hibernation and 217 genes underexpressed during hibernation among
the 11,670 annotated genes probed on the arrays. When mapping
hibernation-responsive gene to GO categories, the TCA cycle, electron
transport, ATP synthesis, fatty acid metabolism, and protein biosynthe-
sis were identified as processes of importance to the hibernation cycle.
Select results from the heterologous cDNA arrays were subsequently
validated by qRT-PCR.

2.2. Protein expression

Antibody microarrays were conceived originally as miniaturized dot
blots or immunoassays and are now rapidly becoming established as a
powerful tool to assess widespread protein expression [25]. These mi-
croarrays make possible the parallel screening of thousands of unmod-
ified or post-translationally modified proteins. In the microarray format,
these experiments can be carried out with minimum use of materials,
while generating large amounts of data from a single sample. When
compared to the conventional use of gel electrophoresis and mass spec-
trometry for proteomic research, antibody microarrays are typically
able to detect the proteins that are of lower abundance [26]. As low
abundant proteins are often those of the greatest diagnostic interest
(e.g. transcription factors), there is a need for highly selective and sensi-
tive throughput technologies for protein detection, quantitation and
differential expression analysis. For this reason, antibody-based micro-
arrays are generating interest at the level of the comparative biologist
[27]. It should be mentioned that although antibody microarrays offer
the advantage of measuring the expression of multiple proteins within
individual samples, there are disadvantages that should be noted. Of
particular importance is that there is no separation of protein by molec-
ular weight. Many antibodies used to detect a particular protein, often
cross-react with other proteins within the same protein family or
other proteins with similar detection epitopes. Studies utilizing anti-
body microarrays should keep this in mind and confirm all data with se-
lective secondary immunoblotting.

3. RNA sequencing-based transcriptomics

RNA sequencing (commonly referred to as RNAseq) is a recently de-
veloped approach to transcriptome profiling that uses deep-sequencing
technologies. RNAseq also provides more precise measurement of tran-
script expression levels (compared to DNA microarrays) and provides
sequence information for the identified mRNA transcripts. Initially,
Sanger sequencing of cDNA or EST libraries was used, but this approach
has a relatively low throughput, is expensive and is generally not quan-
titative [28]. The development to tag-based methods of RNA sequencing
allowed multiple samples to be sequenced in parallel, largely overcom-
ing these issues [28]. However, tag-based sequencing methods are
limited as they are only sequencing a portion of the transcript, ultimate-
ly limiting the use of traditional sequencing in the creation of a
transcriptome.

Recently, the development of high-throughput RNAseq has provided
a means to sequencing whole RNA transcripts, allowing the assembly
and quantification of transcriptomes. The use of high-throughput
RNAseq provides clear advantages over gene microarray studies as
the analysis provides both the ability to sequence RNA and measure
the dynamic expression of mRNA transcripts. Currently, RNAseq uses

deep-sequencing technologies such as 454, illumina, SOLID and
HelicosBiotechnology (see Table 1 for comparison). In general, a popu-
lation of total RNA is converted into a library of cDNA fragments with
adaptors attached to one or both ends. Each adaptor-ligated transcript
is then sequenced from one end (single-end sequencing) or both ends
(pair-end sequencing), producing reads that are typically 30-400 bp
in length [29]. The commonly used illumina sequencing process is sim-
ilar in principle, but uses a solid phase bridge amplification method to
create clusters of a specific gene before sequencing (Fig. 1). RNAseq
reads are then aligned and mapped to a reference genome for further
analysis, or assembled de novo without the genomic sequence (Fig. 2).
Following the release of its genome sequence, RNAseq analysis has
been used to determined mRNA expression during anoxia exposure in
the Western painted turtle (C. picta bellii) [12]. To explore the
transcriptomic basis of its anoxia tolerance, this study assembled an
mRNA expression profile by sequencing poly A-enriched RNA isolated
from the heart and brain (telencephalon) of normoxic and anoxic tur-
tles. Differential gene expression significantly increased in the brain
(19 genes) and heart (23 genes). Highly differentially expressed genes
(>10-fold; APOLD1, FOS, JUNB, ATF3, PTGS2, BTG1/2, and EGR1) were
found to encode proteins that have been implicated in the control of cel-
lular proliferation, cancers, and tumor suppression [12]. If a complete
genome sequence is not available, a de novo transcriptome assembly
may be constructed and used for mRNA expression analysis. However,
researchers must consider all of the statistical concerns for this type of
experimental design before undertaking this type of study as more
reads are typically needed for a de novo assembly (see Box. 2).

Unlike microarray-based approaches, RNAseq experiments are not
limited to detecting transcripts that correspond to an existing genomic
sequence. For example, the detection of novel freeze-responsive genes
such as FR10 and Li16 in the wood frog (Rana sylvatica), initially discov-
ered by cDNA array, could not be possible using heterologous cDNA mi-
croarrays that have been prepared with cataloged genes from another
organism. This makes RNAseq particularly attractive for non-model or-
ganisms with genomic sequences that are yet to be determined (de novo
assembly). A second advantage of RNAseq is that it does not have an
upper limit for quantification. Consequently, it has a large dynamic
range of expression levels over which transcripts can be detected: a
greater than 9000-fold range (not limited by fluorescence and the
“hook” effect that plagues microarray analysis) [30]. By contrast, DNA
microarrays lack sensitivity for genes expressed either at very low or
very high levels and therefore have a much smaller dynamic range.
RNAseq is also highly accurate for quantifying expression levels, as de-
termined using quantitative RT-PCR [28]. Taking all of these advantages
into account, RNAseq is the first sequencing-based method that allows
the entire transcriptome to be surveyed in a very high-throughput
and quantitative manner. However, it should be noted that bioinformat-
ic analysis of RNAseq data is very intensive and typically must be done
by the company servicing the project at an additional cost (typically
doubling the cost of the experiment). However, it should be noted

Table 1
Overview comparison of next-generation sequencing techniques.
Platform Method Read length  Throughput
(bp)
Roche 454 Pyrosequencing 400 400 Mb/run
Illumina/Solexa HiSeq Reversible terminator 2 x 100 600 Gb/run
chemistry
ABI SOLiD Ligation 2 x 60 15 Gb/day
HelicosBiotechnology Reversible terminator ~ 25-55 28 Gb/run
chemistry
Roche 454 — GS Junior ~ Pyrosequencing 400 50 Mb/run
Illumina/Solexa MiSeq  Reversible terminator 2 x 150 1.0-1.4 Gb/run
chemistry
ABI lontorrent H + ion selective - 320 Mb/run
transistor
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out by adding four labeled reversible terminators, primers, and DNA polymerase. Following laser excitation, the image (fluorophore corresponding to specific-bound nucleotide) is cap-

tured and the identity of the base is recorded.

that open-source software has been recently developed to expedite and
simplify the analysis of RNAseq data and de novo assembly (Trinity;
http://trinityrnaseq.sourceforge.net/).

4. Discovery of microRNA sequence and identification of function
MicroRNAs are short (18-23 nt), non-coding RNAs that are known
to have central roles in regulating the post-transcriptional expression

of mRNA transcripts and have been shown to play an important role
in the stress response [32]. A single microRNA (miRNA) is known to

mRNA transcript

l

directly target hundreds of mRNAs [33,34]. Many human miRNAs
(mature: 2578 & precursors: 1872) are released in the latest release of
miRBase (Release v.20), yet similar numbers are sparse in non-human
species and many still remain to be identified. In the past 10 years
several groups have developed algorithms to identify targets for
miRNA [35-37]. Most of the algorithms are mainly based on the conser-
vation of the seed region and binding energy, but in the recent years
many algorithms have incorporated expression profiles in their scoring
function [38], which predicts the target more accurately. Before high-
throughput identification of miRNA targets, many prediction tools
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Fig. 2. Overview of RNAseq transcriptome mapping for gene expression experiments.
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Box 2
Statistical considerations for large scale transcriptome studies.

Proper assessment of sample sizes for microarray or RNAseq data
is critical before beginning this type of massive parallel gene ex-
pression study. In order to identify the subset of results that is
most likely to be biologically significant, it is necessary to address
the problem of testing a large number of hypotheses (upward of
1.0 x 10°%). This is because, given typical levels of experimental
and biological variation, we expect to find many genes showing
differences in expression levels between samples “just by
chance” or “between individuals” and not due to the environmen-
tal stress being studied. This is why nominal P-value cut-offs that
we typically use in research (P<0.01 or P< 0.05) are not practical
in large scale genomic studies. The P-value depends on the effect
size (i.e. expected fold change), the amount of biological variation
from sample to sample and the sample sizes. To counteract the
problem of testing many hypotheses, appropriate P-value cut-offs
are determined to control for false discovery rates.

Because the P-value calculation depends on the amount of normal
biological variation and sample sizes, it is important to address
statistical analysis issues before beginning the study. As an ex-
treme example, if there is only one control sample and one test
sample (no replicates), it is not possible to determine the amount
of ‘normal’ variation (biological and/or experimental), and there-
fore to calculate P-values. To choose an appropriate number of
samples one needs to strike a suitable balance between the power
to detect changes in expression, the cost of the experiment, and
the amount of variation. For example, if the effects are likely to
be small (low fold change like 1.2 or 2.0-fold compared to control
values), then more samples will be needed to discover significant
changes in expression. For example, let's assume that achieving a
false discovery rate <0.05 requires a nominal P-value < 0.00001.
If a condition changes some trait value by a factor of 3-fold and if
that trait has ~ 20% coefficient of variation (CV) due to biological
variation, then one will have about 10% power to obtain a false
detection rate <0.05 with 5 replicates sampling each biological
condition. With 8 replicates, the power increases to 50% (i.e. half
of differentially regulated genes over 3-fold are expected to be de-
tected). It is important to consider any statistical concerns before
beginning this type of study. It is also important to mention that
although multiple samples are required to reach statistical relevan-
cy, output data from low sample numbers can be used for lead
generation for downstream validation. In particular this latter type
of experimental design will yield both an insight into potential
gene changes, as well as provide species-specific sequence data
that is of importance for organisms without a genomic sequence
available (for review, see [31]).

were used, including TargetScan, miRanda, RNAhybrid, DIANA-microT,
microlnspector, and mirTarget2 [39-45]. The bioinformatics tools are
still highly useful in validating microRNA targets in non-model organ-
isms when gene sequences (including UTRs) are known. For example,
both miR-15a and miR-16-1 are known to target cyclin D1 and regulate
the cell cycle in humans [46]. Interest in the anoxic regulation of the
cell cycle in tolerant turtles, prompted researchers to explore the possi-
bility that miR-15a and miR-16-1 may regulate the turtle-specific cyclin
D1 mRNA [46]. With no genomic information for the turtle at the time of
study, researchers used 3’ rapid amplification of cDNA ends (RACE) to
sequence the 3’ UTR of turtle cyclin D1. The ability of both miR-15a
and miR-16-1 to target turtle cyclin D1 mRNA was then determined
through a combined analysis using TargetScan and RNAhybrid (see
Fig. 3). Unfortunately, if no gene sequence information is available for

your specific miRNA:target interaction analysis must rely on heterolo-
gous analysis from the most closely related species with available geno-
mic information [3,7,47-49].

4.1. Identification from available genomic sequence

The prediction of novel miRNA from non-annotated genomic
sequence has received considerable attention in the recent years. Howev-
er, the vast majority of studies have focused on the human genome. The
previous studies have shown that the specificity (the ability to correctly
reject non-miRNA sequences) drops dramatically once human-trained
methods are applied to other species [36]. Considering the expected
ratio of true miRNA sequences to pseudo-miRNA hairpins is on the
order of 1:1000, the use of cross-species prediction models with low
specificity becomes useless for validation, as the number of false positives
overwhelms the number of true positives. However, several newly devel-
oped methods and tools can be used to circumvent the issue of prediction
specificity. Recognizing the problem of specificity, the HeteroMirPred
was created for the identification of unannotated microRNA from ge-
nome sequences of non-human species [36,50]. This program attempts
to address the non-human issue by using training data pooled from
multiple species. As this software has been designed to operate across
all eukaryotes, it suffers from its generalist prediction approach as it can
commonly overlook known microRNAs. Currently, the most high
throughout approach to microRNA sequence annotation involves the
use of small RNA sequencing to target predictions back to the genome,
greatly reducing the number of false positives that initially enter the pre-
diction pipeline. MiRDeep2 was developed to discover active known or
novel miRNA from deep sequencing data [51]. Using small RNAseq,
MiRDeep2 map sequencing reads back to their location in the animal's
genome. The program then extracts the surrounding nucleotides from
the genome sequence to perform miRNA prediction. This method has
been successfully used to identify the developmental response of 212
miRNA from soft-shell turtle embryos [52]. The combination of MiRDeep
and RNAseq has also been successfully used for microRNA discovery in
response to hibernation in the Arctic ground squirrel (Spermophilus
parryii) [53]. Remarkably, this study found 200 ground squirrel miRNAs,
including 18 novel miRNAs specific to the ground squirrel.

4.2. Complementary analysis of function

Hibernation research has now begun to highlight various adaptation-
al roles for miRNAs. In particular, studies are beginning to move away
from candidate-based miRNA analysis (i.e. whether a particular
microRNA is able to regulate a specific target), and are beginning to ad-
dress the ability of microRNA to collectively target and regulate cellular
processes [3,4]. Typically, the gene and the miRNA expression data
need to be co-related with the targets identified. This correlation could
mostly be achieved by using pathway analysis tools, such as DIANA-
micropath, Cytoscape and Pathway central [54-57]. For example, one
of our own studies found that in response to torpor in little brown bats
(Myotis lucifugus), differentially expressed microRNA in brain tissue con-
verged on the common regulation on pathways of focal adhesion and
axon guidance [3]. Interestingly, these same processes were also inde-
pendently shown to be regulated during hibernation in the brain of the
greater horseshoe bats (Rhinolophus ferrumequinum) [58].

5. Multiplex analysis

A multiplex assay is a type of laboratory procedure that simulta-
neously measures multiple analytes (up to 500) in a single assay. As
this technology is under constant growth and change, this minireview
will only outline on the principles of multiplex assays and highlight
key technologies currently available at the time of publication.

Multiplex assays are widely used in functional genomics experi-
ments that assay the state of a type of target (e.g. microRNA, mRNA,
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Fig. 3. Binding of miR-16-1 and miR-15a to a conserved region of the turtle cyclin D1 mRNA. (A) Predicted binding structures from RNAhybrid. (B) Conservation analysis and seed-pairing

identification by TargetScan. Figure modified from [46].

protein) within a single biological sample. Multiplexing assays work by
performing multiple parallel reactions for different targets, greatly re-
ducing the time needed to complete the analysis. Various companies
are currently developing and refining multiplex technologies. Luminex
XMAP technology is built on a flow cytometry platform that utilizes
fluorescently tagged microspheres to detect the target analyte. Each
color-coded tiny microsphere can be coated with a reagent specific to
a particular bioassay, allowing the capture and detection of specific
analytes from a sample. Within the analyzer, lasers excite the internal
dyes that identify each microsphere particle, and also any reporter dye
captured during the assay (Fig. 4). Currently, xXMAP technology allows
multiplexing of up to 500 unique assays within a single sample. The
use of Luminex XMAP technology was recently used to determine the
differential expression profiles of microRNA transcripts in response to
dehydration stress in the tissues of Xenopus laevis [16]. Different from
Luminex-based analysis, Mesoscale Discovery utilizes small antibody
arrays, spotted onto the bottom of a microplate (available in 24-, 96-,
and 384-well formats). In essence, the technology is at the cross section
of Luminex and antibody microarrays, with the capability to analyze up
to 100 spots per well. Like Luminex arrays, this technology also requires
the use of specialized equipment. To date, several comparative studies
have used Luminex technology to protein expression during hiberna-
tion [59,60]. For example, Luminex has recently been used to determine
the activation of insulin signaling pathways pre-, post- and during hi-
bernation in grizzly bears [59]. The technology has also been used to de-
termine the activation response of immunological-response to white-
nose syndrome, finding that bats showing visible signs of infection
had significantly higher IL-4 expression when compared to bats without
visible infection [60].

6. Mass spectrometry

Mass spectrometry (MS) is an important and emerging technology
for the characterization and sequencing of proteins. The technology
works by ionizing compounds to generate charged peptide fragments
and measuring their mass-to-charge ratios to identify amino acids

sequences (for review see, [61]). For identification, proteins are enzy-
matically digested into smaller peptides using proteases (commonly
trypsin, cutting sequences at lysine residues), after electrophoretic sep-
aration. The collection of peptide products is then introduced to the
mass analyzer. When the characteristic pattern of peptides is used for
the identification of the protein, the method is called peptide mass fin-
gerprinting. If the identification is performed using the sequence data
determined in MS analysis it is called de novo sequencing [62]. The use
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Fig. 4. Luminex XMAP system. Luminex is based on microsphere bead technology that re-
lies on flow cytometry and target-capture ligand binding.
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of MS/MS to identify unknown proteins may be of great interest to the
comparative biologist. Apart from identifying the protein sequence of
unknown proteins, mass spectrometry is also able to detect relative
post-translation modifications such as phosphorylation, methylation
and acetylation, among others [63]. Identification of modified amino
acids that are both utilized and unique to a stress-tolerant animal may
be of functional significance to the stress. One must keep in mind that
this technique works best with highly abundant proteins (typically
not proteins such as transcription factors) that are easily purified
(such as many metabolic enzymes and structural proteins).

One growing field in mass spectrometry is the identification and
dynamic changes of the phospho-proteome. Phosphorylated proteins are
typically pre-fractionated and enriched prior to MS/MS, increasing the
coverage of identification. Pre-fractionation is typically accomplished
through the use of one of the two types of ion-exchange chromatography;
(1) strong anionic ion-exchange (SAX), and (2) strong cationic ion-
exchange (SCX). Following pre-fractionation, phosphorylated protein or
peptides can be enriched by a variety of methods including (but not limited
to); (1) immunoprecipitation by pan-specific antibodies, (2) pull-down by
phospho-binding domains, (3) immobilized metal affinity chromatography
(IMAC), (4) metal-oxide affinity chromatography (MOAC), and (5) Phos-
Tag chromatography. A few examples of studies exploring phospho-
proteomics in non-model organisms include phospho-proteome of chicken
(Gallus gallus) embryo fibroblasts and of the mitochondria of hibernating
thirteen-lined ground squirrels (I. tridecemlineatus) [64,65]. Recently, stud-
ies are beginning to explore the methyl-proteome by the enrichment of
methylated protein through pan-methyl-arginine antibodies or methyl-
lysine binding domains [66]. These types of enrichment methods, with
wide-cross reactivity profiles, not only allow the ability to identify proteins
ina whole cell complex, but also remain specificity in many non-human an-
imals as amino acid sequence has little role in binding.

7. Analysis of protein structure and function

Several of the methods described in this minireview detail analysis
that are used to identify new proteins or post-translational

modifications. Importantly, when new or novel proteins are identified
it is critical to determine, or predict, their functional role. While knock-
down and overexpression analysis remains to be the ‘gold-standard’ in
determining protein function, animals that do not have cell-lines or
the genetic tools available, must resort to bioinformatics analysis to sup-
plement and guide any molecular data (cellular localization, binding
partners, etc.). Multiple tools exist to assist in these types of analysis.
Once an amino acid sequence is obtained, the protein can initially be
scanned for conserved domains with the NCBI Conserved Domain
search resource (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.
cgi). This analysis identifies any possible functional domains that exist
in the protein (such as SH2 or ATP-binding domains), giving informa-
tion of functional interactions and may guide further analysis. Too
many resources currently exist for this Review to comprehensively pro-
vide an overview, however OpenPredictProtein (http://ppopen.
informatik.tu-muenchen.de/) has curated a collection of valuable pre-
diction tools that can be used on primary amino acid sequences [67].
Such tools include those for structural annotation (Solvent accessibility,
transmembrane helices, protein disorder and flexibility, as well as disul-
fide bridges) and functional annotation (Gene ontology terms, subcellu-
lar localization and binding sites).

Occasionally, obtaining protein structure is necessary to determine
more specific function information regarding the protein under study.
As such, protein structure can be determined through several methods.
If the protein is highly homologous to the existing body of protein crys-
tal structures, SWISS-MODEL can be used to determine 3-dimensional
(3D) protein structure [68]. Importantly, SWISS-MODEL is currently
one of the most commonly used resources and provides information
on the quality of prediction. For example, a study on the structural adap-
tations of aldolase enzyme that helps to drive glycolysis in anoxic turtles
(Trachemys scripta elegans) used SWISS-MODEL to generate the struc-
tures of aldolase enzymes (ALDOA and ALDOB). These structures were
then used to determine the mechanisms involved in substrate interac-
tions compared to rabbit aldolase proteins, stating that differences in
substrate binding and heterotetramer formation contribute to the
higher activity of turtle aldolase (Fig. 5) [5]. When completely novel
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Fig. 5. [dentification and characterization of predicted turtle aldolase enzyme. (A) Overlaid tertiary structure of ALDOB from both rabbit (light) (1fdjA) and the turtle (dark) ALDOB protein
predicted by SWISS-MODEL. (B) Predicted docking of fructose-1,6-bisphosphate on the active sites of both rabbit and turtle ALDOB enzyme. Ligand docking was performed with MOE
Dock, employing Triangle Matcher as the placement and function London dG as the first scoring function. Figure modified from [5].
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Fig. 6. De novo protein modeling and prediction of function. (A) Predicted de novo protein structure of the novel freeze-responsive proteins, FR10 and Li16 from the freeze-tolerant wood
frog (Rana sylvatica). Structures were predicted by the QUARK server and optimized by MOE software. (B) Membrane interactions of FR10 and Li16 based on PPM server prediction.

Figure modified from [17].

proteins are discovered, structures cannot be determined from
homology-based methods and be predicted de novo. Several programs
currently exist to facilitate de novo predictions, the most commonly
used being I-TASSER (for proteins <1500 amino acids) and QUARK
(<200 amino acids) [69]. To highlight the use of de novo structure pre-
diction for completely novel proteins, a recent study used QUARK to de-
termine the structure of two freeze-response proteins, FR10 and Li16,
from the wood frog (Rana sylvatica) (Fig. 6) [17]. The ability to obtain
structures for these novel proteins allowed researchers to model mem-
brane interaction (PPM server; http://opm.phar.umich.edu/server.php)
[70], leading to the hypothesis that FR10 was an excreted protein and
Li16 may have functional roles in membrane-adaptation roles in re-
sponse to freezing stress.

8. Summary and outlook

The development of tools capable de novo assembly and predic-
tions, introduces many new possibilities for comparative biologists
to take part in “omic” studies and introduces the potential to discov-
er novel proteins or genes with biologically-relevant function. Given
the rich assortment of techniques and bioinformatic tools (many
being open-source with GUIs) that are currently available and that
have been refined for use non-human species, proper introduction
and use of these tools in future research will help to discover and
characterize the animal stress responses that are utilized by many di-
verse organisms.
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