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Abstract: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases regulate production of
reactive oxygen species (ROS) that cause oxidative damage to cellular components but also regulate
redox signaling in many cell types with essential functions in the cardiovascular system. Research
over the past couple of decades has uncovered mechanisms by which NADPH oxidase (NOX)
enzymes regulate oxidative stress and compartmentalize intracellular signaling in endothelial cells,
smooth muscle cells, macrophages, cardiomyocytes, fibroblasts, and other cell types. NOX2 and
NOX4, for example, regulate distinct redox signaling mechanisms in cardiac myocytes pertinent to
the onset and progression of cardiac hypertrophy and heart failure. Heart failure with preserved
ejection fraction (HFpEF), which accounts for at least half of all heart failure cases and has few
effective treatments to date, is classically associated with ventricular diastolic dysfunction, i.e., defects
in ventricular relaxation and/or filling. However, HFpEF afflicts multiple organ systems and is
associated with systemic pathologies including inflammation, oxidative stress, arterial stiffening,
cardiac fibrosis, and renal, adipose tissue, and skeletal muscle dysfunction. Basic science studies and
clinical data suggest a role for systemic and myocardial oxidative stress in HFpEF, and evidence from
animal models demonstrates the critical functions of NOX enzymes in diastolic function and several
HFpEF-associated comorbidities. Here, we discuss the roles of NOX enzymes in cardiovascular
cells that are pertinent to the development and progression of diastolic dysfunction and HFpEF and
outline potential clinical implications.

Keywords: HFpEF; heart failure; diastolic dysfunction; ROS; oxidative stress; redox signaling;
NADPH oxidases; NOX2; NOX4; Rac1; nitrosative stress; S-nitrosylation; cardiomyopathy; cardiac
hypertrophy; angiotensin; RAAS

1. Introduction
1.1. Heart Failure with Preserved Ejection Fraction (HFpEF)

Heart failure with preserved ejection fraction (HFpEF) is a complex, heterogenous, and
highly prevalent multiorgan syndrome commonly associated with advanced age, obesity,
and/or hypertension [1,2]. There are more than 3 million patients with HFpEF in the
United States alone [3] and the prevalence is increasing dramatically due to associated
cardiovascular and noncardiovascular comorbidities, the advanced age of the population,
and increased recognition and diagnosis [1,4,5]. HFpEF results in classical clinical symp-
toms of congestive heart failure, including fatigue, exercise intolerance, and peripheral
and pulmonary edema (i.e., congestion), but without a reduction in ejection fraction, al-
though more subtle systolic impairment can often be detected [1,6,7]. The prognosis for
HFpEF remains poor, with a 5-year mortality rate in excess of 50%, similar to heart failure
with reduced ejection fraction (HFrEF) [3,4,8]. A number of cardiovascular insults and
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chronic diseases, including hypertension, arrhythmia, chronic kidney disease, and various
metabolic conditions such as obesity and diabetes mellitus are common comorbidities and
predispose patients to HFpEF. Consequently, there has been a dramatic increase in cases
worldwide [1,3].

Diastolic dysfunction, or the inability of the ventricles to effectively relax and fill with
blood, is a key cause of heart failure in patients with HFpEF and results in abnormally high
left ventricular filling pressures, despite the maintenance of adequate left ventricular ejec-
tion fraction [9–14]. Concentric cardiac remodeling and left ventricular hypertrophy are fre-
quently but not always present in HFpEF and can contribute to cardiac maladaptation [1,15].
Cardiac fibrosis, the deposition of excess extracellular matrix components in the cardiac
interstitium, often occurs in HFpEF, reduces the compliance of the myocardium, and is
a major contributor to the deterioration of diastolic function [1,10,12,13,16]. Systemic in-
flammation [1,3,9,10,17,18] and oxidative stress [1,10,17–20] are common components of
the molecular etiology of HFpEF. Although the majority of reactive oxygen species (ROS)
produced results from the inflammation of the endothelium [17,21,22], elevated myocardial
oxidative stress also occurs in animal models [17,23–26] and patients with HFpEF [17,19,25]
(Table 1). Moreover, elevated levels of reactive oxidative metabolites in the circulation cor-
relate with rehospitalization or death due to a heart failure-related event in HFpEF [27,28],
suggesting roles for oxidative stress in HFpEF disease severity and outcomes (Table 1).

Table 1. Reported evidence of oxidative stress and dysregulation of NOX enzymes in patients and
animal models with HFpEF.

Patients with HFpEF Effect

Myocardium
• Trend towards increased NOX2 expression in cardiac macrophages [17]
• Increased myocardial H2O2 levels [17,25]
• Increased myocardial lipid peroxidation [25]

Serum
• Elevated levels of derivatives of reactive oxidative metabolites (DROMs) in patients with HFpEF with
HF-related events [27,28]
• Increased thiobarbituric acid reactive substances (TBARS, biomarker of lipid peroxidation) [19]

Peripheral Blood Monocytes • Increased NOX1 and NOX4 mRNA levels correlate with diastolic dysfunction in patients with HFpEF [29]
Pre-clinical HFpEF Models Effect

HFD †/L-NAME (mice) • Increased myocardial Nox4 protein expression [30]
Unilateral nephrectomy and
aldosterone infusion (mice)

• Increased myocardial oxidative stress
(DHE fluorescence) [23,24]

Obese ZSF1/ZDF rats
• Increased cardiac macrophage Nox2 [17]
• Increased myocardial H2O2 levels [17,25]
• Increased myocardial lipid peroxidation [25]

DOCA/Western diet ††

(Göttingen miniswine)
• Increased 8-isoprostane levels in plasma [20]

Streptozotocin, HFD †††, and
renal artery embolization

(Yorkshire x Landrace swine)
• Increased myocardial NADPH-stimulated superoxide production [26]

DHE, dihydroethidium (ROS sensor); DOCA, 11-deoxycorticosterone acetate (mineralocorticoid/glucocorticoid);
DROMs, derivatives of reactive oxidative metabolites; HFD, high-fat diet; HFpEF, heart failure with preserved
ejection fraction; L-NAME, Nω-nitro-L-arginine (NOS inhibitor); NADPH, nicotinamide adenine dinucleotide
phosphate; TBARS, thiobarbituric acid reactive substances. Diet information: † 60% of calories from lard; †† 1%
cholesterol, 20% fat, 8.9% fructose, 2% salt; ††† 10% sucrose, 15% fructose, 25% saturated fats, 1% cholesterol.

1.2. NADPH Oxidase (NOX) Enzymes

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzymes
control the regulated cellular production of ROS and have indispensable functions in
cardiovascular physiology and disease [31–39] (Table 2). ROS are short-lived, diffusible
gaseous molecules that, in addition to oxidatively damaging cellular constituents, can
locally oxidize cysteine or methionine residues on proteins to modify activity, function,
oligomerization, and/or localization that can have profound impacts on intracellular
signaling (i.e., redox signaling), including pathways that are instrumental to the onset and
progression of cardiac hypertrophy and failure [31–33,40–44]. Although substantial ROS
production occurs as a byproduct of oxidative metabolism in mitochondria [45,46] and can
also be generated by monoamine oxidases [47–49], xanthine oxidase [50], or the uncoupling
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of the catalytic cycle of cytochrome P450s [51] and nitric oxide synthases (NOS) [52,53]
(Section 4.1), the dedicated function of NOX enzymes is ROS production [37]. Thus, NOXs
are the primary source of regulated, enzymatic ROS production and are responsible for
a significant portion of ROS generated in the cardiovascular system, inducing oxidative
stress and redox signaling central to the progression of cardiovascular disease [36,37].

Table 2. Cell type distribution of NOX isoforms and functions in cardiac and vascular pathologies.
“+” indicates promotion of the designated cardiovascular disease phenotype, whereas “−” indicates
repression of the disease phenotype. CMs, cardiomyocytes; ECs, endothelial cells; VSMCs, vascular
smooth muscle cells. See Section 2.

Cardiac Vascular
NOX Isoform Cell Types Hypertrophy Fibrosis Inflammation Hypertension Atherosclerosis

NOX1 CMs, ECs, VSMCs,
Macrophages + + + + +

NOX2 CMs, ECs, VSMCs,
Macrophages, Fibroblasts + + + + +

NOX4

CMs, VSMCs,
Macrophages, Fibroblasts + + + +

ECs − − − − −
NOX5 CMs, ECs, VSMCs + + +

There are seven NOX family enzymes (NOX1-5 and DUOX1-2), which are multi-
pass transmembrane proteins that enzymatically generate superoxide via the transfer
of electrons to molecular oxygen [36–38]. NOX1-5 have six transmembrane domains,
whereas DUOX1 and 2 have seven transmembrane domains and are not expressed in
cardiovascular cells [36,37]. NOX5 is expressed in human cardiomyocytes and vascular
cells but not in rodents [36,38,54,55] and is regulated by calcium, similar to DUOX1 and
2 [36–38]. NOX3 expression is largely restricted to embryonic development and the inner
ear [36]. NOX isoforms 1–4 require association with the membrane-embedded p22phox

regulatory subunit for oxidase activity and protein stability [36–38]. NOX1 and NOX2
(also known as gp91phox) require the translocation of additional cytosolic subunits to the
oxidase complex for activation: NOX1 requires association with the p47phox or NOXO1
organizer subunit, p67phox or NOXA1 activator subunit, and the active (GTP-bound) Rho
family small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), whereas NOX2
necessitates the interaction of p47phox, p67phox, p40phox, and active Rac1 or Rac2 with the
NOX2:p22phox complex at the membrane to evoke superoxide production [36–38,56,57].

With regards to the cardiovascular system, NOX1, 2, 4, and 5 are expressed in car-
diomyocytes, endothelial cells, and vascular smooth muscle cells, and NOX2 and NOX4
in fibroblasts (Table 2, Figure 1). NOX2 is also robustly expressed in phagocytes, includ-
ing neutrophils and macrophages [36–39,56,58,59], and NOX1 and NOX4 also function
in monocytes and monocyte-derived macrophages [29,60]. These tissue- and cell type-
specific expression patterns (Table 2, Figure 1), as well as distinct regulatory mechanisms
governing NOX isoform enzyme activity and abundance, contribute to nonoverlapping
redox-sensitive signaling circuitry and cellular functions that are regulated by different
NOX isoforms (Figure 2).
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and cardiomyocytes more specifically. While the generation of ROS by NOX2 is inducible 
by Rac1/2 GTPase activity such as downstream of angiotensin receptor (AT1R) activation 
by angiotensin-II (AngII) [38,57,61], NOX4 exhibits constitutive activity but its levels are 
upregulated in response to pathological stimulation [38,62–65]. NOX4 is found at intra-
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membrane microdomains such as the T-tubule, lateral membrane, and intercalated disc in 
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Figure 1. NOX isoform upregulation and crosstalk between cell types in pathological cardiac re-
modeling. The diseased myocardium is composed of several cell types all expressing NOX enzymes,
including cardiomyocytes, activated myofibroblasts that deposit collagen and extracellular matrix
(ECM) components, macrophages, and endothelial cells (ECs), as well as vascular smooth muscle
cells (VSMCs) that make up the coronary vessels. NOX isoform activity and ROS production in
various cell types of the heart mediate paracrine effects on other cardiac cell types to impact my-
ocardial growth, inflammation, microvascular dysfunction, and fibrosis central to adverse cardiac
remodeling. Magnitude and directionality of alterations in NOX isoform activity and/or expression
in the indicated cardiac cell types are depicted by the font size and arrow, respectively.

NOX2 and NOX4 are the best-studied NOX enzymes in the cardiovascular system
and cardiomyocytes more specifically. While the generation of ROS by NOX2 is inducible
by Rac1/2 GTPase activity such as downstream of angiotensin receptor (AT1R) activa-
tion by angiotensin-II (AngII) [38,57,61], NOX4 exhibits constitutive activity but its levels
are upregulated in response to pathological stimulation [38,62–65]. NOX4 is found at
intracellular membrane organelles such as the endoplasmic reticulum [66,67], nuclear en-
velope [62], and mitochondria [35,63,65,67,68], whereas NOX2 is predominantly found at
plasma membrane microdomains such as the T-tubule, lateral membrane, and intercalated
disc in cardiomyocytes [69,70]. This results in the regulated compartmentalization of ROS
production through the oxidase activity of distinct NOX isoforms. Cell type-specific ex-
pression patterns (Figure 1), the intracellular localization of NOX enzymes at distinct cell
and organellar membranes (Figure 2), and unique regulatory mechanisms controlling NOX
activity and expression enable the intricate spatiotemporal regulation of redox signaling
through the dynamic modulation of NOX activity. Perhaps not surprisingly, NOXs have es-
tablished roles in cardiac aging [32,35,68], cardiac hypertrophy [61,70,71], hypertension [72],
atherosclerosis [34,38], diabetic cardiomyopathy [73], and myocardial infarction [40,58,74]
(Table 2), so a significant role in HFpEF seems probable.
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2. NADPH Oxidases in Cardiovascular Disease
2.1. NOX Isoforms in Cardiac Hypertrophy, Fibrosis, and Diastolic Dysfunction

Given the paucity of animal models that faithfully recapitulate the multi-organ
pathophysiology of HFpEF [1,3] and the lack of highly selective isoform-specific NOX
inhibitors [37], there is limited knowledge on specific NOX enzymes in HFpEF. However,
several studies have uncovered roles for NOX enzymes in diastolic dysfunction and the
promotion of cardiac fibrosis in models of cardiac hypertrophy, injury, and failure (Table 2).
NOX enzyme expression levels and/or oxidase activity are induced in cardiovascular cells
in response to neurohumoral stimulation such as the activation of the renin-angiotensin-
aldosterone system (RAAS) [36,39] that occurs in both HFrEF, as well as HFpEF [10,75–78],
and thus, NOX-mediated oxidative stress and redox signaling in the heart and vasculature
are likely to occur in HFpEF. Elevated levels of aldosterone or AngII in the circulation
correlate with left ventricular hypertrophy and an increased risk of rehospitalization and
mortality in patients with HFpEF [78–81], suggesting RAAS activation as a key pathomech-
anism in HFpEF. Notably, the pharmacological inhibition of NOX enzymes with apocynin
reduces myocardial ROS production and diastolic dysfunction in rodent models of diabetes
mellitus [82,83] and AngII infusion [84], as well as attenuating cardiac hypertrophy, fibrotic
remodeling, and oxidative stress in response to AngII or aldosterone [84,85] and myocardial
infarction injury [86], underscoring the centrality of NOXs to diastolic impairment and
the deterioration of cardiac function in response to bolstered RAAS activity and comorbid
cardiovascular disease.

Basic science studies implicate NOX2, NOX4, and NOX5 in the deterioration of dias-
tolic function and adverse cardiac remodeling in response to pathological stimuli (Table 2).
A global loss of Nox2 limits myocardial ROS production and preserves diastolic function
in response to diet-induced obesity [87], doxorubicin treatment [88], and myocardial in-
farction [89], and mitigates cardiac fibrosis in response to AngII, aldosterone, or pressure
overload [41,90–92], whereas Nox2 overexpression in endothelial cells promotes cardiac
fibrosis, inflammation, and diastolic dysfunction in response to AngII [93]. Inducible NOX2
activity in the heart in response to AngII appears to be particularly important for adverse
cardiac remodeling and oxidative stress, as the loss of Nox2 protects from AngII-induced
myocardial oxidative stress, hypertrophy, and fibrosis without altering AngII-induced
hypertension [41]. Similarly, the cardiomyocyte-specific loss of Rac1, which is required
for the induction of NOX2 oxidase activity, rescues diastolic dysfunction in response to
pressure overload [94] and suppresses cardiac hypertrophy, fibrosis, and oxidative stress in
response to AngII [61] and streptozotocin-induced diabetes [83]. Moreover, statin treatment,
which represses small GTPase signaling by inhibiting the biosynthesis of lipid precursors
needed for protein prenylation [95], impairs myocardial Rac1 activation and oxidative
stress in rats in response to AngII or pressure overload [96] and in human heart failure [97].
Statin treatment is also associated with reduced cardiomyocyte hypertrophy and resting
tension in myocardium from patients with HFpEF [22], suggesting that an effective in vivo
strategy to target NOX2 could alleviate cardiac maladaptation in HFpEF.

Many studies have also revealed indispensable functions of NOX4 in cardiac biology
and disease. The transgenic overexpression of Nox4 at modest levels in cardiomyocytes
elicits elevated myocardial ROS production, fibrosis, and cardiomyocyte hypertrophy and
apoptosis with advanced age [63]. The cardiomyocyte-specific overexpression of human
NOX4, at higher levels that recapitulate upregulation in response to AngII, was sufficient
to induce myocardial ROS and fibrosis comparable to AngII treatment, but in the absence
of cardiac hypertrophy [98]. Moreover, NOX4 overexpression further promoted cardiac
hypertrophy, fibrosis, and oxidative stress in response to AngII [98]. The role of NOX4 in
cardiac pressure overload is somewhat unclear, with one study reporting protection by the
cardiomyocyte-specific deletion of Nox4, while another study found that the deletion of
Nox4 in cardiomyocytes or endothelial cells exacerbated pressure overload-induced cardiac
hypertrophy, dysfunction, and fibrosis [99,100]. Consistent with a role for cardiomyocyte
NOX4 in the maladaptation of the heart to RAAS hyperactivation, the treatment of mice
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with a mitochondrial-targeted antioxidant peptide prevented the upregulation of Nox4 and
mitochondrial oxidative stress, as well as ameliorated cardiac hypertrophy, fibrosis, and
diastolic dysfunction in response to AngII [64].

NOX4 also has critical roles in the inflammatory and wound healing response of
the heart to ischemic injury. Although the transgenic overexpression of Nox4 in cardiac
myocytes was sufficient to promote macrophage recruitment to the heart and polarization
towards the M2 phenotype that was associated with a modest reduction in cardiac hypertro-
phy, fibrosis, and mortality following myocardial infarction [101], endogenous Nox4 plays
an indispensable role in cardiac inflammation and tissue damage in the infarcted heart, as
mice with a global loss of Nox4 exhibited less myocardial infarction-induced macrophage
infiltration, ischemic injury, cardiomyocyte hypertrophy, and oxidative stress [74]. More-
over, the overexpression of a dominant-negative Nox4 mutant resulted in reductive stress
and increased mitochondrial ROS, infarction size, and myocardial energetic deficits in
response to ischemia-reperfusion injury [102], suggesting that NOX4 also has adaptive
functions in modulating inflammation and injury resolution in the ischemic myocardium.
Since advanced age is a major risk factor for the development of HFpEF [2,103] and oxida-
tive stress is a major contributor to the aging of the heart and other organs [32,68,104], it is
notable that Nox4 protein levels increased with age in the heart [63] and treatment with
a pharmacological NOX1/NOX4 inhibitor preserved cardiac function in aged mice [68].
More importantly perhaps, cardiac Nox4 protein levels were upregulated in a mouse model
of HFpEF [30]. It is also noteworthy that NOX2 and NOX4 contribute to atrial oxidative
stress and susceptibility to atrial fibrillation [54,105–112], a comorbidity that is present in
roughly one third of patients with HFpEF that can result in chronic arrhythmogenicity that
precipitates the progression of cardiac failure [113–117].

Although not expressed in rodents, gain-of-function studies in mice suggest a role for
the calcium-sensitive NOX5 enzyme in the adverse remodeling of the heart in response to
RAAS activation or mechanical stress. Indeed, the cardiomyocyte-specific overexpression
of human NOX5 in mice exacerbated cardiac hypertrophy, fibrosis, and oxidative stress
in response to AngII infusion and cardiac pressure overload [55]. Thus, NOX enzymes
have well-established physiologic functions in various cell types of the cardiovascular
system [31,36,37], many of which are likely important in the context of HFpEF. Here, we
discuss evidence for regulated ROS production by NOX enzymes in diastolic dysfunction
and HFpEF and the NOX-regulated intracellular hypertrophic signaling mechanisms in
cardiomyocytes controlled by NOX2 and NOX4.

2.2. NADPH Oxidases in Non-Myocyte Cardiac Cell Types

NOX enzymes are expressed in all cell types of the vasculature including the coronary
vessels supplying blood to the heart [36–38]. Vascular NOX-generated ROS play essential
roles in cardiovascular oxidative stress, aging, atherosclerosis, angiogenesis, inflammation,
and blood pressure homeostasis [36,37,118–121]. Crosstalk between NOX enzymes and
redox signaling pathways in the coronary vasculature, fibroblasts, and immune cells of
the heart are likely involved in coronary microvascular dysfunction, inflammation, and
myocardial relaxation defects in HFpEF (Figure 1).

2.2.1. NOX Enzymes in the Vasculature

NOX4 is the most abundant NOX isoform in endothelial cells and a major source
of ROS production in the vasculature and heart [37,122]. In contrast to the maladaptive
roles of most ROS generated by NOX enzymes in the cardiovascular system, endothelial
NOX4 is protective (Table 2). The overexpression of Nox4 in endothelial cells reduces hy-
pertension, myocardial inflammation, and fibrosis in response to AngII [118,123], whereas
the endothelial cell-specific loss of Nox4 exacerbates cardiac hypertrophy, dysfunction,
and fibrosis in response to pressure overload [100]. Similarly, the endothelial-specific
overexpression of Nox4 attenuates atherosclerotic remodeling and vascular inflammation
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in ApoE−/− mice [124], while the loss of Nox4 promotes the formation of atherosclerotic
lesions and vascular inflammation [125].

Conversely, endothelial NOX1, NOX2, and NOX5 contribute to impaired vascular func-
tion, endothelial nitric oxide synthase (eNOS) uncoupling (Figure 3), and adverse vascular
remodeling and hypertension [38,126]. Indeed, endothelial cell Nox1 is required for hyper-
tension in response to AngII [127], while NOX2 overexpression in endothelial cells further
promotes blood pressure elevation in response to AngII [128] and stimulates macrophage
recruitment and the initiation of atherosclerotic plaque formation in ApoE−/− mice [129].
Most notable with regards to HFpEF pathophysiology, endothelial cell NOX2 is instru-
mental to inflammatory cell recruitment, myocardial fibrosis, and diastolic dysfunction in
response to AngII [93]. The expression of NOX5 is increased in the coronary arteries of
atherosclerosis patients [130], and the endothelial cell-specific expression of human NOX5
in mice results in hypertension with advanced age via the uncoupling of eNOS (Figure 3)
and the repression of cyclic GMP (cGMP) signaling [131], indicating maladaptive roles for
endothelial NOX5 in cardiovascular disease.

NOX1, NOX4, and NOX5, and to a lesser extent NOX2, are expressed in vascular
smooth muscle cells [39,126,132]. Nox1 overexpression in vascular smooth muscle cells
increases vascular ROS production, blood pressure, aortic medial thickness, and the uncou-
pling of eNOS in response to AngII [133,134] while a deficiency of NOX1 limits neointima
formation in response to wire injury [135] and vascular smooth muscle cell migration in
response to AngII or platelet-derived growth factor (PDGF) [135,136]. Moreover, Noxa1, the
activator subunit for Nox1, in vascular smooth muscle cells is indispensable for fulminant
atherosclerotic remodeling and oxidative stress in multiple models of dyslipidemia [34].

NOX4 in vascular smooth muscle cells plays critical roles in vascular aging, inflamma-
tion, and atherogenesis. NOX4 expression is upregulated in the atherosclerotic lesions of
mouse models and humans [137,138] and is required for ROS generation and the induction
of an inflammatory gene expression program in vascular smooth muscle cells in response to
transforming growth factor-β (TGF-β) [137]. NOX4 in the mitochondria of vascular smooth
muscle cells is particularly important in cardiovascular disease. The overexpression of
mitochondrial-targeted Nox4 elicited a vascular aging phenotype including aortic stiffen-
ing, fibrosis, elevated mitochondrial ROS production, and the impairment of aortic smooth
muscle cell contractility and mitochondrial respiration [35]. In contrast, the knockdown of
Nox4 in aortic smooth muscle cells from aged mice reduced mitochondrial ROS generation
and improved mitochondrial function [68].

The calcium-dependent NOX5 enzyme is upregulated in the vascular smooth muscle
cells of hypertensive patients and is required for AngII- and PDGF-induced ROS produc-
tion [139,140]. NOX5 promotes vascular contractility, as the transgenic expression of human
NOX5 in mouse vascular smooth muscle cells inhibits endothelium-dependent relaxation
and increases vasoconstriction in isolated mesenteric arteries [139,141]. NOX5 also incites
vascular calcification in response to calcium through its oxidase activity in vascular smooth
muscle cells [142]. NOX enzymes in the coronary and peripheral vasculature contribute to
systemic oxidative stress, inflammation, and vascular remodeling, all of which facilitate
the development of HFpEF. It is plausible that the well-established functions of NOX-
generated ROS in vascular oxidative stress, remodeling, and redox signaling also contribute
to myocardial intercellular communication and microvascular inflammation in HFpEF.

2.2.2. NOX Enzymes in Fibroblasts

Cardiac fibrosis is a major driver of cardiac pathology and diastolic dysfunction in HF-
pEF [10,12]. Resident cardiac fibroblasts in the injured heart transform into myofibroblasts
that synthesize and secrete extracellular matrix proteins such as collagens, thereby promot-
ing wound healing but impinging upon myocardial elasticity [3,10,143]. Unfortunately,
studies of NOX enzymes specifically in cardiac fibroblasts remain limited. NOX enzymes
in vascular adventitial fibroblasts play vital roles in vascular inflammation and signaling to
other vascular cell types [144]. Fibroblast Nox2 is required for AngII-induced hypertension
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and vascular remodeling and mediates paracrine signaling through the secretion of growth
differentiation factor 6 (GDF6), which promotes vascular smooth muscle cell growth [59].

NOX4 is the best-studied NOX isoform in cardiac fibroblasts and has important
roles in the fibrotic remodeling of the heart. NOX4 is upregulated in cardiac fibroblasts
in response to TGF-β and in heart failure and is required for TGF-β-induced superox-
ide production, Smad2/3 phosphorylation, myofibroblast transformation, and collagen
production [145,146]. Future studies using Cre lines to temporally control the deletion of
NOX isoforms in cardiac fibroblast lineages will help to delineate the functions of NOX
enzymes in cardiac fibroblasts, fibrotic remodeling, and the stiffening of the ventricu-
lar myocardium.

2.2.3. NOX Enzymes in Immune Cells

NADPH-dependent oxidase activity was originally discovered in neutrophils and was
later found to be mediated by NOX2 [56,147–149]. Indeed, NOX2 is robustly expressed in
phagocytes, including not only neutrophils, but also macrophages [150] that infiltrate the
stressed heart to promote wound healing and injury resolution, particularly in response
to myocardial infarction [151,152]. The recruitment of monocyte-derived macrophages in
nonischemic heart failure is also a critical component of disease progression, fibrotic re-
modeling, and decompensation [153,154]. NOX2 levels are increased in cardiac macrophages
and peripheral monocytes in human patients with HFpEF and the obese ZSF1 rat model
of HFpEF [17,29]. Nonetheless, a direct role for NOX2 in resident cardiac macrophages or
monocyte-derived macrophages recruited to the injured heart has not been directly examined.

NOX4 generates ROS in peripheral monocytes and macrophages where it is upregu-
lated in response to oxidized low-density lipoprotein to promote macrophage cytotoxic-
ity [60], suggesting roles for monocyte NOX4 in atherosclerosis; yet similarly, no studies
have interrogated NOX4 in cardiac macrophages to date. It is noteworthy, however, that
NOX4 in cardiomyocytes has crucial roles in the recruitment of macrophages to the heart
in response to ischemic injury [101]. Perhaps most germane to the molecular etiology of
HFpEF, the global loss of Nox1 mitigates cardiac hypertrophy, coronary endothelial cell ac-
tivation, and macrophage recruitment in a mouse model of metabolic cardiomyopathy [29].
Intriguingly, the expression levels of NOX1 in peripheral monocytes correlate with the
degree of diastolic dysfunction in patients with HFpEF [29], indicating roles for monocyte
NOX1 in inflammation and defective myocardial relaxation in HFpEF.

NOX-dependent superoxide production by peripheral blood mononuclear cells is in-
creased in patients with hypertension compared to normotensive controls and even further
enhanced among patients with hypertension and left ventricular hypertrophy [155], sug-
gesting critical roles for NOX enzymes in lymphocytes and monocytes in hypertension and
cardiac hypertrophy. Recent studies elucidated required functions for NOX2 in regulatory
T cells (Tregs) that suppress inflammatory responses in cardiac and vascular remodeling.
The Treg-specific deletion of Nox2 or the adoptive transfer of Tregs lacking Nox2 reduced
blood pressure, cardiac hypertrophy, and cardiac fibrosis in response to AngII through a
mechanism that involved increasing the number of cardiac resident Tregs and promoting
their immune suppressive activity [156]. Thus, NOXs in immune cells likely contribute
directly to both systemic and local inflammatory responses in the heart in HFpEF and
other forms of heart disease. Analyses of NOX activity in peripheral blood cells in human
patients with HFpEF coupled with studies using HFpEF animal models and the genetic
manipulation of NOX expression will help to reveal the cell type-specific functions of NOX
isoforms in diastolic dysfunction and cardiac failure.

3. NOX-Regulated Pathogenic Redox Signaling in Cardiomyocytes

NOX2 and NOX4 have emerged as central regulators of the intracellular redox signal-
ing landscape in cardiomyocytes (Figure 2). NOX2 is activated by pathological stimuli such
as AngII, aldosterone, and pressure overload [37,57,71], enabling the rapid inducibility of
superoxide production [37,57,71,91]. In contrast, NOX4 has constitutive basal oxidase activ-



Antioxidants 2022, 11, 1822 9 of 23

ity but its expression levels are upregulated in the heart by cardiovascular stress, such as in
response to AngII, adrenergic stimulation, pressure overload [38,62–65], or the high-fat diet
and Nω-nitro-L-arginine (HFD/L-NAME) model of HFpEF [30]. NOX4 is predominantly
localized at intracellular organelle membranes, including at mitochondria, the endoplasmic
reticulum, and nuclear envelope [62,63,67,157]. Thus, the positioning and activity of NOX2
at sarcolemmal membrane domains and NOX4 at intracellular membranes dictate the
topography of redox signaling that can have instrumental roles in cardiac hypertrophy and
diastolic dysfunction (Figure 2).
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3.1. Redox Regulation of Hypertrophic and Maladaptive Gene Expression Programs

Notably, both NOX2 and NOX4 activity promote the activation of hypertrophic
gene expression in cardiomyocytes through distinct mechanisms that provoke oxidation-
dependent nuclear export of histone deacetylase 4 (HDAC4), thereby derepressing the
transcriptional activity of the hypertrophic transcription factors, myocyte enhancer fac-
tor 2 (MEF2) and nuclear factor of activated T cells (NFAT) [40,42,44,62]. The NOX2-
dependent oxidation of calcium/calmodulin-dependent protein kinase II (CaMKII) in
response to AngII or aldosterone results in the noncanonical activation of CaMKII and the
consequent phosphorylation and nuclear export of HDAC4 that induces MEF2-dependent
transcription and cardiomyocyte hypertrophy [40,44] (Figure 2). In contrast, NOX4 at the
nuclear envelope induces the direct oxidation of HDAC4 in response to phenylephrine
that similarly promotes the nuclear-to-cytoplasmic shuttling of HDAC4, thereby activating
pro-hypertrophic NFAT-dependent transcription [42,62] (Figure 2).

Nuclear factor kappa B (NFκB) transcriptional activity regulates inflammatory gene
expression programs and is enhanced in a NOX2-dependent manner in response to
AngII [61,158]. Indeed, Rac1 in cardiomyocytes is required for oxidative stress and NFκB
activation in response to AngII [61], while Nox4 overexpression in cardiomyocytes is also
sufficient to induce NFκB activation [98], suggesting roles for NOX2 and NOX4 in the
regulation of NFκB signaling and inflammatory gene expression that may contribute to
myocardial remodeling in HFpEF (Figure 2). Thus, NOX2 and NOX4 control unique redox-
sensitive hypertrophic signal transduction circuitry that can integrate multiple inputs and
converge on the regulation of maladaptive gene expression programs.
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3.2. Sarcoplasmic Reticulum Calcium Handling and Myocardial Contractility

NOX2 activity in cardiomyocytes promotes sarcoplasmic reticulum calcium cycling
and contractility in response to AngII in part through the hyperphosphorylation of phos-
pholamban [70], while mechanical stretch evokes the NOX2-dependent sensitization of
ryanodine receptors and arrhythmogenic calcium sparks [69], both of which could also be
enhanced by the NOX2-mediated oxidation of CaMKII.

3.3. Mitochondrial ROS and Cardiomyocyte Death

NOX4-generated ROS at cardiac mitochondria can influence redox signaling and
promote mitochondrial oxidative damage and cardiomyocyte death [63,64] (Figure 2).
Nox4 overexpression is sufficient to induce mitochondrial dysfunction and cardiomy-
ocyte apoptosis with aging [63] and Nox4 in cardiomyocytes is required for the pressure
overload-induced production of mitochondrial ROS and cardiomyocyte apoptosis [99].
Moreover, AngII infusion in mice promotes Nox4 expression in conjunction with mito-
chondrial oxidative damage, diastolic dysfunction, fibrosis, and apoptosis, all of which
are normalized by the administration of a mitochondrial-targeted antioxidant peptide [64].
Thus, the targeted inhibition of mitochondrial NOX4 could potentially exert therapeutic
benefits in patients with diastolic dysfunction and/or HFpEF by limiting excessive mito-
chondrial ROS production (Figure 2). Notably, however, the broad inhibition of NOX4
could repress its adaptive functions in response to cardiomyocyte stress, including at
mitochondria-associated membranes and the endoplasmic reticulum, where it inhibits
mitochondrial calcium overload [67] and induces autophagy in response to nutrient depri-
vation [66], respectively.

4. NADPH Oxidases and Nitric Oxide (NO) Signaling
4.1. Nitric Oxide Synthase (NOS) Uncoupling and cGMP/Protein Kinase G (PKG) Signaling

Nitric oxide (NO), which is predominantly generated in the endothelium by eNOS, has
potent vasodilatory activity in the coronary and peripheral vasculature via the activation
of soluble guanylate cyclase (sGC) in vascular smooth muscle cells [159,160] (Figure 3).
NOX-generated ROS interfere with the catalytic cycle of NOS enzymes, resulting in the
production of superoxide rather than NO that reduces NO bioavailability, impairing cGMP-
dependent vascular smooth muscle relaxation, protein kinase G (PKG) signaling, and
further contributing to oxidative stress [21,36,161]. Additionally, the uncoupling of NOS
enzymes impairs myofilament relaxation and diastolic function by dampening the PKG-
mediated phosphorylation of titin [21,36,162,163]. Peroxynitrite is also generated from NO
and superoxide by uncoupled NOS enzymes, further reducing NO bioavailability and
resulting in protein nitration by the reaction of peroxynitrite with tyrosine residues [164]
(Figure 3). Indeed, myocardial cGMP levels and PKG activity are substantially reduced
in the myocardium of patients with HFpEF [165], as are the serum levels of NO-derived
metabolites [166,167], whereas myocardial nitrotyrosine levels are elevated [165], suggest-
ing that NOS uncoupling and oxidative stress contribute markedly to HFpEF pathophys-
iology. Thus, NOX-generated ROS can facilitate NOS uncoupling that both attenuates
the cardiovascular protection afforded by NO and further promotes the generation of
damaging ROS and reactive nitrogen species [21,36].
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Figure 3. Crosstalk between NADPH oxidases and nitric oxide synthases. Schematic depiction of
redox-nitroso crosstalk between coronary vasculature and cardiac myocytes in HFpEF. Endothelial
NOS (eNOS) promotes vasodilation that is impaired when oxidative stress uncouples eNOS, diminish-
ing NO bioavailability, cGMP levels, and protein kinase G (PKG) activity. Decreased myocardial PKG
activity facilitates diastolic dysfunction by reducing titin phosphorylation. Uncoupled NOS enzymes
generate damaging superoxide and peroxynitrite that further promote oxidative stress. Nitrosative
stress in the HFpEF myocardium, on the other hand, is provoked by the upregulation of inducible
NOS (iNOS) and neuronal NOS (nNOS) in cardiac myocytes. nNOS-dependent S-nitrosylation
of histone deacetylase 2 (HDAC2) and defective XBP1 splicing (XBP1s) due to iNOS-dependent
S-nitrosylation of IRE1α promote diastolic dysfunction and heart failure in HFpEF animal models.
iNOS also mediates Akt S-nitrosylation. NOS uncoupling and nitrosative stress-responsive signal-
ing contribute to oxidative stress, coronary microvascular endothelial dysfunction, and impaired
myocardial relaxation in HFpEF.

4.2. Nitrosative Stress and Protein S-Nitrosylation

Despite the elevation of ROS and the dampening of signaling downstream of NO
(i.e., cGMP levels, PKG activity) in HFpEF, paradoxically, NO and nitrosative stress seem to
be nodal drivers of cardiac disease in HFpEF (Figure 3). NO can be covalently attached
to protein cysteines, termed S-nitrosylation, which serves as a post-translational mecha-
nism that can modulate protein activity and function [159,168]. Indeed, multiple studies
have uncovered pathogenic roles for NO in HFpEF, mediated at least in part through
protein S-nitrosylation that is upregulated in the myocardium of mouse models and hu-
man patients with HFpEF [7,169]. Most notably, inducible NOS (iNOS) is upregulated in
cardiomyocytes and is required for cardiac hypertrophy, fibrosis, diastolic dysfunction,
edema, mitochondrial abnormalities, and exercise intolerance in the HFD/L-NAME mouse
model of HFpEF [7,30]. S-nitrosylation of the endoplasmic reticulum stress transducing
protein, inositol-requiring enzyme 1α (IRE1α), is induced in HFpEF and prevents the IRE1α
-mediated mRNA splicing of its effector, X-box-binding protein 1 (Xbp1), that is required
for the ER stress response and cardiac adaptation [7,170]. Importantly, the loss of iNOS
or cardiomyocyte-specific overexpression of spliced Xbp1 rescues cardiac and systemic
HFpEF phenotypes in the HFD/L-NAME model [7], suggesting essential roles for the
iNOS-dependent S-nitrosylation of IRE1α in HFpEF. Akt S-nitrosylation at Cys-224 is also
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induced by iNOS in response to HFD/L-NAME, resulting in the inhibition of cardiopro-
tective Akt signaling by reducing Ser-473 phosphorylation [30]. Thus, the upregulation of
iNOS in HFpEF cardiomyocytes initiates pathologic S-nitrosylation-regulated signaling.

S-nitrosylation of histone deacetylase 2 (HDAC2) by neuronal NOS (nNOS) also plays
a key role in HFpEF pathophysiology [169]. nNOS expression and HDAC2 S-nitrosylation
are elevated in the hearts of patients with HFpEF and mice subjected to the salty drinking
water/unilateral nephrectomy/aldosterone (SAUNA) model of HFpEF [169]. The genetic
ablation of nNOS or knock-in mutation of the HDAC2 S-nitrosylation sites (Cys262/274)
mitigates SAUNA-induced HDAC2 S-nitrosylation, diastolic dysfunction, and exercise
exhaustion [169]. Thus, the upregulation of iNOS and nNOS in HFpEF facilitates the activa-
tion of nitrosative stress-responsive signaling pathways that are critical for the development
of cardiac and systemic pathologies in HFpEF animal models and are a distinguishing
feature of HFpEF versus HFrEF (Figure 3).

The interplay between oxidative stress and NO production is complex but basic science
studies and clinical data suggest that both NOX and NOS enzymes and oxidative and
nitrosative stress play important roles in HFpEF. The NOX-mediated uncoupling of NOS
enzymes in the vasculature could limit NO production and further promote the generation
of ROS and reactive nitrogen species, oxidative tissue damage, and pathogenic redox
signaling [21,36,161]. However, enhanced nitrosative stress is emerging as a hallmark
and defining feature of HFpEF myocardium that occurs largely as a consequence of the
induction of iNOS and nNOS levels and activity in cardiac myocytes [1,7,169]. There is also
evidence that nitrosative stress can promote NOX activity and redox signaling in HFpEF, as
iNOS was required for the upregulation of cardiac Nox4 levels and mitochondrial oxidative
stress in response to HFD/L-NAME [30]. Further investigation of NOX and NOS isoforms
in diastolic dysfunction will shed light on nitroso-redox crosstalk and redox/nitrosative
signaling mechanisms that participate in the onset and progression of HFpEF.

5. Clinical Implications and Future Perspectives
5.1. Renin-Angiotensin-Aldosterone System (RAAS) Antagonists

There is interest in targeting oxidative stress, and NOX isoforms in particular, as
therapeutic avenues to delay adverse outcomes in HFpEF. As discussed above, NOXs play
essential roles in cardiovascular oxidative stress and redox signaling in response to RAAS
activation. NOX2- and NOX4-dependent ROS generation are specifically induced in the
heart in response to elevated AngII, aldosterone, and catecholamines in the circulation in
cardiovascular disease and can contribute to the deterioration of diastolic function. Unfor-
tunately, for the most part, pharmacological strategies used to treat HFrEF have not been
effective at reducing mortality or cardiovascular events in patients with HFpEF [1,2,171].
Although serum aldosterone levels correlate with the risk of rehospitalization and death in
HFpEF [79], mineralocorticoid receptor antagonist (MRA) treatment did not reduce the risk
of death or heart failure rehospitalization in HFpEF [172]. These data suggest that the inhi-
bition of NOX2 activity downstream of the mineralocorticoid receptor with MRA therapy
is insufficient to substantially alter outcomes in patients with HFpEF. Similarly, angiotensin
receptor blocker (ARB) [173], angiotensin converting enzyme (ACE) inhibitor [174,175],
or ARB/neprilysin inhibitor (sacubitril) [176] therapy have had insufficient efficacy in
the treatment of HFpEF, indicating that antagonism of the RAAS system alone, at least
with existing pharmacologic agents and the timing of therapeutic intervention, does not
significantly impede HFpEF disease progression. It is possible that some NOX activation
mechanisms in HFpEF (e.g., the upregulation of NOX4 expression levels [30,62,63]) could
evade RAAS inhibition, or that NOX-regulated oxidative damage and/or activation of
pathogenic redox signaling prior to treatment cause enduring adverse effects on cardiac
remodeling, such as through the activation of prohypertrophic transcriptional pathways
(Figure 2, Section 3.1). Further exploration of strategies targeting RAAS activity, their
antioxidant properties, and efficacy in combination therapies in HFpEF is warranted.
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5.2. Nitric Oxide Donors and cGMP/Protein Kinase G Signaling

Similar to commonly prescribed heart failure therapies targeting the RAAS pathway,
nitric oxide donor therapies have failed to improve HFpEF outcomes [177,178]. Neither
isosorbide mononitrate [177] nor inorganic nitrite [178] had an impact on diastolic function,
exercise capacity, or the risk of adverse cardiovascular events in patients with HFpEF.
Nitrates may circumvent some pathogenic consequences of reduced NO bioavailability in
HfpEF, but the induction of pathogenic NOX-regulated redox signaling mechanisms may
not be perturbed. Nitrates could promote the elevation of myocardial cGMP levels and
PKG activity that are reduced in HFpEF [17,165], but signaling activated by NOX enzymes
in the heart (Figure 2) in response to increased circulating aldosterone, AngII, and enhanced
sympathetic activity in HFpEF may remain unchanged. Targeting cGMP/PKG signaling
with a soluble guanylate cyclase activator (vericiguat) [179], phosphodiesterase-5 inhibitor
(sildenafil) [180], or neprilysin inhibitor (sacubitril) [176] was similarly not effective in
HFpEF clinical trials.

Another important caveat to NO donor therapy is that it could even promote pathogenic
nitrosative stress in the heart and the upregulation of S-nitrosylation-dependent signal-
ing mechanisms in cardiomyocytes that are central to HFpEF disease progression [7,169]
(Figure 3, Section 4.2). Indeed, IRE1α and HDAC2 S-nitrosylation are required for diastolic
dysfunction in pre-clinical models of HFpEF [7,169], and these pathways may be further
activated by nitrates.

5.3. Sodium-Glucose Cotransporter 2 Inhibitors

Excitingly, recent clinical trials have demonstrated that sodium-glucose cotransporter
2 (SGLT2) inhibitors, which lower blood glucose by repressing glucose resorption in the
proximal tubule of the kidney [181,182], reduce the risk of death or hospitalization and
improve exercise capacity and heart failure symptoms in patients with HFpEF [183,184].
The success of SGLT2 inhibitors in the treatment of HFpEF is a breakthrough in heart
failure therapeutics that underscores the systemic and cardiometabolic nature of HFpEF.
Although originally designed for the treatment of diabetes, SGLT2 inhibitors have proven
effective in treating HFrEF [185,186] and HFpEF [183,184] in patients both with and without
diabetes. SGLT2 inhibitors have obvious benefits on blood glucose homeostasis and cardiac
bioenergetics [181,182], but their marked success independent of diabetes as a comorbid-
ity has pointed to additional mechanisms of cardioprotection, including antioxidant and
anti-inflammatory effects on the heart [25,187]. Most notably, empagliflozin attenuates
myocardial oxidative stress in human HFpEF [188], the ZDF obese rat HFpEF model [25],
and multiple mouse models of diabetic cardiomyopathy [189,190]. The amelioration of
myocardial redox status in response to empagliflozin is associated with the restoration of
NOS coupling, PKG-mediated titin phosphorylation, and diastolic function [25]. Intrigu-
ingly, cardiac Nox4 protein levels are elevated in the diabetic rodent heart, an effect that is
normalized by empagliflozin treatment along with myocardial oxidative stress, fibrosis,
and cGMP levels [189,190]. Canagliflozin similarly blunted the upregulation of Nox4, as
well as the induction of iNOS protein levels in the mouse heart in response to β-adrenergic
stimulation [191], collectively suggesting that a reduction in NOX4-generated ROS and ni-
trosative stress may contribute to the efficacy of SGLT2 inhibitors in the treatment of HFpEF.
Canagliflozin also reduced Rac1 activation, membrane translocation, NOX activity, and
ROS levels in cultured ex vivo atrial myocardium [192], suggesting that SGLT2 inhibitors
may also disrupt NOX2-dependent oxidative stress and/or redox signaling. Thus, impacts
on NOX2, NOX4, and myocardial nitroso-redox status may be indirect beneficial effects of
SGLT2 inhibitor therapy in HFpEF.

5.4. Future Perspectives

Future studies interrogating the regulation of NOX-mediated oxidative stress and
redox signaling by distinct NOX isoforms in various cell types of the heart using pre-clinical
models of HFpEF and diastolic dysfunction will facilitate the identification of novel targets
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to repress oxidant stress and pathogenic redox signaling. An examination of the phenotypic
response, myocardial redox status, and redox signaling landscape of NOX isoform-specific
conditional deletion mice in models of HFpEF (e.g., HFD/L-NAME, SAUNA) will help
to uncover the mechanistic contribution of NOXs to HFpEF. Evidence from humans and
animal models suggests that NOX-regulated oxidative stress and redox signaling mecha-
nisms likely participate in HFpEF pathogenesis. Further investigation could suggest the
development of isoform-specific NOX inhibitors, the targeting of regulators of NOX oxidase
activity (e.g., Rac1), or strategies to intervene with specific NOX-regulated redox signaling
effectors as therapeutic targets for the treatment of diastolic dysfunction and HFpEF.
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ACE angiotensin converting enzyme
AngII angiotensin II
ARB angiotensin receptor blocker
AT1R angiotensin receptor type 1
CaMKII calcium/calmodulin-dependent protein kinase II
cGMP cyclic GMP
eNOS endothelial nitric oxide synthase
GDF6 growth differentiation factor 6
HDAC2, 4 histone deacetylase 2, 4
HFD high-fat diet
HFpEF heart failure with preserved ejection fraction
HFrEF heart failure with reduced ejection fraction
iNOS inducible nitric oxide synthase
IRE1α inositol-requiring enzyme 1α

L-NAME Nω-nitro-L-arginine
MEF2 myocyte enhancer factor 2
MRA mineralocorticoid receptor antagonist
NADPH nicotinamide adenine dinucleotide phosphate
NFAT nuclear factor of activated T cells
NFκB nuclear factor kappa B
nNOS neuronal nitric oxide synthase
NOS nitric oxide synthase
NOX NADPH oxidase
PDGF platelet-derived growth factor
PKG protein kinase G
RAAS renin-angiotensin-aldosterone system
Rac1 Ras-related C3 botulinum toxin substrate 1
ROS reactive oxygen species
SAUNA salty drinking water/unilateral nephrectomy/aldosterone
sGC soluble guanylate cyclase
SGLT2 sodium-glucose cotransporter 2
TGF-β transforming growth factor-beta
Treg regulatory T cell
VSMC vascular smooth muscle cell
Xbp1(s) (spliced) X-box-binding protein 1
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