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Abstract

Background: Patients with advanced microsatellite unstable colorectal cancers do not show a survival benefit from 5-
fluorouracil (5-FU)-based chemotherapy. We and others have shown that the DNA mismatch repair (MMR) complex hMutSa
binds 5-FU incorporated into DNA. Although hMutSß is known to interact with interstrand crosslinks (ICLs) induced by drugs
such as cisplatin and psoralen, it has not been demonstrated to interact with 5-FU incorporated into DNA. Our aim was to
examine if hMutSß plays a role in 5-FU recognition.

Methods: We compared the normalized growth of 5-FU treated cells containing either or both mismatch repair complexes
using MTT and clonogenic assays. We utilized oligonucleotides containing 5-FU and purified baculovirus-synthesized
hMutSa and hMutSß in electromobility shift assays (EMSA) and further analyzed binding using surface plasmon resonance.

Results: MTT and clonogenic assays after 5-FU treatment demonstrated the most cytotoxicity in cells with both hMutSa and
hMutSß, intermediate cytotoxicity in cells with hMutSa alone, and the least cytotoxicity in cells with hMutSß alone, hMutSß
binds 5-FU-modified DNA, but its relative binding is less than the binding of 5-FU-modified DNA by hMutSa.

Conclusion: Cytotoxicity induced by 5-FU is dependent on intact DNA MMR, with relative cell death correlating directly with
hMutSa and/or hMutSß 5-FU binding ability (hMutSa.hMutSß). The MMR complexes provide a hierarchical
chemosensitivity for 5-FU cell death, and may have implications for treatment of patients with certain MMR-deficient
tumors.
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Introduction

The fluoropyrimidine 5-fluorouracil (5-FU) is the cornerstone

for chemotherapy in patients with advanced stage colorectal

cancer [1]. In addition to stage, the DNA mismatch repair (MMR)

status of a patient’s tumor appears to predict a survival response to

5-FU [2]. Patients with Lynch syndrome (germline mutation in

MMR gene) or patients with sporadic microsatellite unstable (MSI)

cancers (hypermethylation of the MMR gene hMLH1) do not show

a survival advantage with systemic 5-FU therapy [3,4,5,6],

whereas patients with MMR-proficient tumors improve their

survival. These observations correlate with 5-FU treatment of

MMR-deficient cells in that these cells are resistant to 5-FU

[7,8,9], and continue to survive in its presence.

The DNA MMR system plays an important role in maintaining

DNA fidelity after DNA synthesis for cell replication. DNA MMR

has two recognition complexes for DNA alterations. hMutSa, a

heterodimer of the MMR proteins hMSH2 and hMSH6,

recognizes base-base and insertion/deletion (I/D) loops less than

two nucleotides [10], whereas ID loops more than 2 nucleotides

are recognized by hMutSß, an hMSH2-hMSH3 heterodimer

[11,12,13,14,15,16,17,18]. Notably, hMutSa not only recognizes a

nucleotide mispair, but can also recognize altered nucleotides that

are intercalated or formed with chemotherapy, such as the adduct

O6-methylguainine, and intrastrand crosslinking induced by

cisplatin [19]. We and others have further demonstrated that 5-

FU incorporated into DNA is recognized by hMutSa [9,20,21].

Systemic 5-FU therapy leads to incorporation into all forms of

RNA, but by its action upon thymidylate synthetase (TS), 5-FU

after conversion to a deoxyribonucleic acid serves as a substrate for

DNA synthesis with cell depletion of TTPs. It has been estimated

that as much as 10% of cellular 5-FU is incorporated into DNA

where MMR can recognize, bind, and signal cell death [7].

Isolation of 5-FU in DNA specifically triggered a DNA MMR-

dependent cell death [22]. In the absence of DNA MMR, these

events do not occur, and account for the cell resistance and lack of
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survival improvement for patients with MMR-deficient tumors.

Because of some indications in the literature regarding hMSH3, a

component of hMutSß, in participating in the repair of psoralen

and platinum compounds [23,24], we wondered if hMutSß could

recognize 5-FU. Given that 5-FU incorporated into DNA would

best simulate a single mispair, we initially predicted that hMutSß

would not bind or recognize 5-FU, unlike hMutSa. The presence

of hMSH3, the DNA recognition component of hMutSß, is the

likely molecule that prevents the occurrence of elevated microsat-

ellite alterations at selected tetranucleotide repeats (EMAST) in

colorectal cancers, as reduced expression of hMSH3 has been

detected among these tumors [25,26]. EMAST (and hMSH3

deficiency) is associated with CRC progression, advanced staged

tumors, poor prognosis, and African American race [27]. hMutSß

has not been previously assessed for recognition of 5-FU

incorporated into DNA.

Here, we purified the hMutSß complex as a heterodimers of

hMSH3 and hMSH2 and examined its binding ability for 5-FU

that is incorporated into DNA. Overall, we herein show that 5-FU

cell toxicity correlates directly with relative hMutSa and/or

hMutSß binding ability.

Results

The level of 5-FU cytotoxicity depends upon the hMutSa
and hMutSß status of the cell

We performed two growth assays to identify if hMutSß had any

contribution towards 5FU cytotoxicity. By clonogenic assay, the

number of colonies in hMutSa/hMutSß double competent cells

was smaller than that in either hMutSa alone competent cells

(P,0.05) or hMutSß alone competent cells (P,0.05) (Fig. 1A).

The results of clonogenic assays were confirmed by MTT assay

(Fig. 1B). In addition, the results utilized by MTT assay showed

that hMutSa/hMutSß double competent cells had the lowest

survival rate (P,0.05), followed by intermediate survival in

hMutSa alone positive cells (P,0.05) and the best survival in

hMutSß alone positive cells (P,0.05) (Fig. 1B). To further clarify

the role of hMutSß for 5FU cytotoxicity, we transfected SW480

(MMR-proficient colorectal cancer cells) with an hMSH3 shRNA

expression plasmid (Fig. 1C). Knock down of hMSH3 reversed

some 5-FU-induced cell death over control cells by clonogenic

assay (Fig. 1D). These results indicate that not only hMutSa
triggers 5-FU cytotoxicity as reported previously [9,20,21], but

hMutSß also contributes to the 5-FU cytotoxicity. The contribu-

tion towards 5-FU cytotoxicity appears greatest when both

hMutSa and hMutSß are present, with both completes contrib-

uting a portion towards cell death.

Purified hMutSß recognizes and binds 5-FU-incorporated
into DNA, and exhibits ATP-induced dissociation

Based on the cell growth data that indicates a contribution of

hMutSß for 5-FU cytotoxicity, we investigated the hMutSß

recognition of 5-FU incorporated into DNA. We successfully

purified a stable recombinant hMutSß complex (Fig. 2A) similar

to our previously described approach for the hMutSa complex

[20]. We co-infected Sf9 cells with hMSH2 and hMSH3

baculoviral constructs, and extracted and purified the proteins as

a heterodimer utilizing two separate FPLC purification columns.

Coomassie blue staining verified hMutSß purification (Fig. 2A),

which we further confirmed was a heterodimer by immunopre-

cipitation of purified hMutSß with hMSH2 and hMSH3

antibodies (not shown). Utilizing the purified hMutSß for EMSA,

we examined hMutSß ability to bind perfect complementary

DNA, an AA insertion/deletion (I/D) loop, as well as 5-FU-

modified DNA. As shown in Fig. 2B, purified hMutSß

demonstrated little binding to complementary DNA, whereas

significantly more binding was observed with the AA I/D loop

(Fig. 2B). Interestingly, EMSA demonstrated that purified

hMutSß bound 5FdU-modified DNA (Fig. 2B, lane 8) but to a

lesser degree than hMutSß binds DNA containing the AA I/D

loop (Fig. 2B, lane 5). Controls without protein did not show the

hMutSß-DNA complex band. The addition of ATP causes

hMutSß to dissociate from DNA. We demonstrate that purified

hMutSß disassociates from DNA containing 5-FU as well as from

DNA containing the AA I/D loop when 4 mM ATP was added to

the hMutSß/DNA mixture (Fig. 2B, lanes 3, 6, and 9). This is

analogous to our observation for ATP-dependent dissociation of

hMutSa from DNA containing 5FdU [20].

Purified hMutSß dynamically binds 5-FU in DNA, but
hMutSa binds to 5-FU to greater extent than hMutSß

As we have already demonstrated the binding ability of hMutSa
[20] we further examined the dynamics of the binding and

dissociation between hMutSß and 5-FU incorporated into DNA to

understand the contribution of each of hMutSa and hMutSß for 5-

FU recognition. Utilizing the IAsys biosensor system [28], there is

essentially no binding of purified hMutSß on IAsys cuvettes

without any substrate. In contrast, hMutSß binds to complemen-

tary DNA to a low extent. The binding ability of purified hMutSß

for 5-FU incorporated into DNA was greater than for perfect

complementary DNA (,1.3-fold increased) but less than for DNA

containing the AA I/D loop, which was ,1.8-fold increased over

perfect complementary DNA (Fig. 3A). The addition of ATP

caused a rapid partial dissociation of hMutSß from all of the DNA

substrates and approached steady-state equilibrium 5 minutes

after ATP was added with dissociation from the G/C substrate

approaching equilibrium faster than dissociation from 5-FU or the

AA I/D loop (Fig. 3A). To assess the relative binding of hMutSa
and hMutSß, we compared affinity levels between hMutSa and

hMutSß upon the 5-FU-modified DNA utilizing IAsysh. MutSa
binds 5-FU at a greater extent than hMutSß (,2-Fold increase)

(Fig. 3B). Our observations demonstrate that hMutSa and

hMutSß have separate but also additive roles for recognition of

5-FU incorporated into DNA, which corresponds to the relative

cell toxicity triggered by 5-FU incorporated into DNA when the

MMR complexes are present.

Discussion

It has been recently demonstrated that hMSH3, the recognition

component of hMutSß, plays an important role in recognizing

DNA damage, particularly interstrand crosslinks [23,24]. Al-

though the importance of this component of hMutSß has been

recognized in furthering CRC progression, there is no data

regarding hMutSß contributions in executing 5-FU toxicity, a key

issue since all major therapy for CRC involves 5-FU. Our study

demonstrates (a) that 5-FU cytotoxicity depends on the hMutSa
and hMutSß status of cells, with the most cytotoxicity observed

when both hMutSa and hMutSß are present, intermediate 5-FU

cytotoxicity when hMutSa is retained but hMutSß is deficient, and

low 5-FU cytotoxicity when cells are hMutSa deficient but

hMutSß proficient, (b) that hMutSß recognizes 5-FU-containing

DNA, (c) and that the binding affinity of hMutSß is lower than

that of hMutSa, which directly correlates with 5-FU cytotoxicity.

This is the first study demonstrating an additive role for 5-FU

cytotoxicity for hMutSa and hMutSß.

Our data indicate that 5-FU cytotoxicity is more severe in cells

that retain both hMutSa and hMutSß than the cells that lack

Mismatch Repair and 5-Fluorouracil
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hMutSa and retain hMutSß, which support our prior data that

hMutSa recognition of 5-FU incorporated into DNA plays an

important role for 5-FU chemosensitivity [20]. It is somewhat

surprising that our EMSA results showed that a single base-pair of

5-FU incorporated into DNA is recognized by hMutSß in spite of

its general role for recognition of I/D loops greater than 2

molecules, and not single mispairs. This could be due to something

unique regarding 5-FU, such as its negative charge, or an atypical

or unrecognized role for hMutSß in recognizing altered nucleo-

tides. Takahashi et al. demonstrated that cells that lack hMSH3, a

component of hMutSß, are more sensitive to cysplatin and

oxaliplatin than hMSH3-proficient cells [24]. Interestingly, they

demonstrated that the difference of chemosensitivity between

hMSH3-deficient and hMSH3-proficient cells occurred indepen-

dently of hMLH1 status. In addition, it has been shown that

hMutSß recognizes ICLs induced by psoralen [23], and is not

Figure 1. Cell survival after 5-FU treatment is influenced by the hMutSa and hMutSß status. (A) Clonogenic assay of hMutSa and/or
hMutSß proficient cells in response to 5-FU. Cells were plated in media containing 0, 2.5, 5 mM 5FU and allowed to form colonies over 10 days. The
plates were then fixed with methanol and stained with 3% Giemsa, and viable colonies were counted. (B) MTT assay of the same cells as above, with
mean values shown with standard deviations. Each cell line was incubated with the 5 mM 5FU for 2.5 and 5 days. (C, D) SW480 were stably
transfected with an hMSH3 shRNA expression plasmid for hMSH3 knockdown, and stable hMSH3-deficient clones were utilized for clonogenic assay
in media containing 0, 2.5, 5 mM 5-FU and allowed to form colonies over 20 days (D). The plates were then fixed with methanol and stained with 3%
Giemsa, and viable colonies were counted. Western blotting with anti-hMSH3 antibody was performed to confirm the hMSH3 knockdown (C). Each
experiment was performed in triplicate, and the experiment replicated three independent times. * = P,0.05.
doi:10.1371/journal.pone.0028117.g001
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dependent on hMutSa or hMLH1. hMutSß was also reported to

interact with nucleotide excision repair (NER) proteins, and

homologous recombination (HR) repair level for ICLs is also

dependent on hMutSß and not on hMutSa, which may suggest

that hMutSß may cooperate with the NER or HR proteins for

ICLs repair perhaps independently of traditional DNA MMR

[29]. It is possible that hMutSß recognition of 5-FU incorporated

into DNA might trigger MMR-independent repair mechanisms on

top of classical DNA MMR [8,9,30].

Our data indicates a direct relationship of MMR complex

affinity for binding and 5-FU cytotoxicity. Using surface plasmon

resonance (IAsys), we measured a 2- fold difference in binding

between hMutSa and hMutSß, with hMutSa having the greater

affinity for 5-FU within DNA. In addition, the results of IAsys and

cell growth assays suggest that hMutSa and hMutSß have additive

roles in triggering 5-FU cytotoxicity. Overall, our functional

observations of hMutSß in addition to hMutSa [20] for 5-FU

cytotoxicity suggest it important to understand a patient’s tumor

character and functional genotype.

A number of studies indicate that patients with advanced

colorectal cancer that DNA MMR-deficient do not derive a

survival benefit with systemic 5-FU chemotherapy. The majority

of these studies contained patients with somatic hypermethylation

of the hMLH1 promoter, rendering the tumor completely MMR-

deficient because for repair to occur after DNA synthesis, both

recognition of mismatch in the DNA by either hMutSa or hMutSß

and signaling for excision of the mismatch by a second

heterodimer, hMutLa (consisting of the MMR proteins hMLH1

and hPMS2), are essential. In contrast, partial MMR function

remains when either hMutSa (normal function of both hMutSß

and hMutLa) or hMutSß (normal function of hMutSa and

hMutLa) is lost. There are at least two scenarios for which

hMutSa and/or hMutSß function might be exploited for a partial

response to 5-FU. The first is Lynch syndrome patients with an

hMSH6 germline mutation (as opposed to hMLH1 or hMSH2

mutations, and there has not been any hMSH3 germline mutations

identified to date). These patients might demonstrate partial

response to 5-FU when compared to Lynch syndrome patients

with hMLH1 or hMSH2 germline mutations. The second is with

patients whose tumors show EMAST. Up to 60% of colon and

30% of rectal cancers have EMAST, and EMAST is associated

with loss of hMSH3 expression. Patients with EMAST tumors

might demonstrate a reduced 5-FU response compared to patients

with MSS tumors, and improved response when compared to

patients with hMLH1 hypermethylation in their tumors.

In conclusion, we demonstrated the hMutSß recognition of 5-

FU incorporated into DNA, and both hMutSa and hMutSß has

additive roles in triggering 5-FU cytotoxicity. Our data indicates

that the MMR complexes provide a hierarchical chemosensitivity

for 5-FU cell death. Our findings may have implication for specific

Lynch syndrome patients as well as specific CRC patients whose

tumors demonstrate EMAST. These groups of patients should be

studied for their response to 5-FU systemic therapy.

Materials and Methods

Cell Lines, Cell Culture and Transfection
The human colon cancer cell lines DLD1, HCT116+ch3,

HT29 and SW480 were obtained from American Type Culture

Collection (Rockville, MD) and maintained in growth medium

containing 10% fetal bovine serum (FBS). Of these cell lines,

DLD1 is defective for hMutSa (hMutSß competent),

HCT116+ch3 is deficient for hMutSß (hMutSa competent), and

SW480 and HT29 cells have been described proficient in and

stable at microsatellites (hMutSa and hMutSß competent). For

isolation of stable hMSH3-deficient clones, SW480 cells were

transfected with a retroviral vector that encodes shRNA to

hMSH3 (kind gift by the C. Richard Boland laboratory [24]) by

using FuGENEH6 (Roche, IN), and selection was done using both

400 mg/ml of G418 and 1 mg/ml of puromycin. After selection,

colonies were pooled and cultured for analysis. Stable cell lines

were confirmed by DNA sequencing.

Reagents
5-FU was obtained from Sigma Chemical Co. (St. Louis, MO)

and dissolved in Iscove’s modified Dulbecco’s medium at a stock

concentration of 1 mmol/L and maintained at 4uC.

Figure 2. Purification of hMSH3-hMSH2 heterodimer, and
binding of hMutSß to 5-FU incorporated within DNA. (A) Purity
of baculovirus-synthesized hMutSb on Coomassie blue staining of
electrophoresed protein extracts. Extracts from crude baculovirus-
synthesized proteins (left lane), and FPLC-purified baculovirus-synthe-
sized proteins (right lane) were electrophoresed on a 7.5% PAGE gel,
and stained with 0.1% Coomassie blue. Note the retention of 127 kD
and 105 kD protein bands in FPLC-purified extracts, which by Western
blotting corresponded to hMSH3 and hMSH2 proteins. (B) Electro-
mobility gel shift assays utilizing purified hMutSß and complementary
(lanes 1–3), AA I/D loop (lanes 4–6), and 5-FU-containing oligonucle-
otides (lanes 7–9). Radiolabeled oligonucleotides were incubated with
or without purified hMutSß in the presence or absence of 4 mM ATP.
Note the acquisition of an oligo-hMutSß band with the two adenines ID
loop (lane 5) or 5-FU-containing DNA (lane 8) when incubated with
purified hMutSß, and the dissolution of the complex with the addition
of ATP (lane 6, lane 9). Intensity of the band formed between 5-FU-
modified DNA and hMutSß was weaker than that of the AA I/D loop
formed with hMutSß.
doi:10.1371/journal.pone.0028117.g002
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Figure 3. Dynamics of binding and dissociation between hMutSß and 5-FU. (A) Biosensor analysis (surface plasmon resonance) of the
association (left curves) and ATP-induced dissociation (right curves) between hMutSß and AA I/D loop (curve a), 5-FU-containig DNA (curve b), or
complementary DNA (curve c). A dissociation buffer containing 4 mM ATP was added (arrow) after 5 minutes of association for dissolution
experiments. Note the initial rapid dissociation upon the addition of ATP, followed by a slower dissolution phase lasting more than 5 minutes to
reach steady state for the three DNA substrates. Controls (curves d and e) indicate the specificity of ATP’s effect when hMutSß is bound to a DNA
substrate compared to when the DNA substrate is absent. (B) Binding affinity of hMutSa (curves a) or hMutSß (curves b) to 5-FU-containing DNA.
hMutSa bound 5-FU DNA ,2-fold higher than hMutSß in the consecutive experiments.
doi:10.1371/journal.pone.0028117.g003
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Clonogenic assay
Exponentially growing cells were trypsinized and washed twice

with PBS. Cells were then plated on 60615 mm Tissue Culture

Dish (Becton Dickinson Labware, NJ) in Iscove’s modified

Dulbecco’s medium supplemented with 10% FBS and containing

various concentrations of 5-FU (0, 2.5, and 5 mmol/L), then

incubated at 37uC and 5% CO2. After 10 days of growth, the

culture plates were washed with PBS, fixed with methanol for

15 minutes, and then rewashed with PBS. The colonies were

stained with 3% Giemsa (Sigma, St Louis, MO) for 15 minutes

and rinsed with water. Previously viable clonal colonies of at least

50 cells were counted. The relative surviving fraction for each cell

line was expressed as a ratio of the plating efficiency in treated

cultures to that observed in the controls.

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay

Exponentially growing cells were seeded onto 96-well plates and

grown for 1 day. Cells were treated with or without 5-FU at the

concentration of 5 mM. After 2.5 and 5 days later, 5 mg/ml MTT

(Sigma, St Louis, MO) in PBS was added and incubated for 3 h.

The absorbance was determined at 570 nm with a microplate

reader (Biorad).

Synthesis of 5-FU-containing oligonucleotides
We synthesized 38-mers in an oligonucleotide synthesizer (ABI,

Foster City, CA) at the UCSD Cancer Center Oligonucleotide

Synthesis Core for the experiments. For a negative control (i.e.

perfect complement), we made 59-TTTCTGACTTGGATAC-

CATCTATCTATCTATAAAATAT-39 and for a positive con-

trol, we made 59-TTTCTGACTTGGATACCATCTATC-

TATCTATAA-AA-AATAT-39 which differs from the perfect

complement at the 34th nucleotide (insertion of two adenines). To

synthesize the 5-FU-containing DNA, we utilized the phosphor-

amdite form of 5-fluorodeoxyuracil (5FdU) (Glenn Research,

Sterling, VA) to make 59-TTTCTGACTTGGATACCA-5FdU-
CTATCTATCTATAAAATAT-39. To complete the double-

stranded DNA molecule, the complementary sequence of the

38-mer was synthesized (59-ATATTTTATAGATAGATA-

GATGGTATCCAAGTCAGAAA-39), end-labeled with 32P,

and equal molar ratios of the 38-mer containing the 5-FU, the

AA ID loop, or unaltered strand and the complementary strand

was mixed, heated to 95uC, and allowed to cool slowly.

Production and purification of the recombinant hMutSa
and hMutSß Protein

Spodoptera frugiperda 9 (Sf9) cells (typically 1.26108) were co-

infected with a mixture of hMSH2 and hMSH3 recombinant

baculoviruses constructs (gift of Josef Jiricny, Ph.D. and Giancarlo

Marra, Ph.D.) at a multiplicity of infection of 10. After 72 h, the

cells were collected and total protein extracts were prepared. The

extracts were sedimented at 20,000 g, and the supernatant was

then diluted with buffer A (25 mM HEPES/NaOH, pH 7.6,

1 mM EDTA, 2 mM ß-mercaptoethanol), and loaded onto a 5-ml

Hi-Trap Heparin-Sepharose fast protein liquid chromatography

(FPLC) column (Amersham Pharmacia Biotech, Arlington

Heights, IL). The protein complex was eluted with a 45 ml linear

gradient from 25 to 100% of buffer B (25 mM HEPES/NaOH,

pH 7.6, 1 M NaCl, 1 mM EDTA, 2 mM ß-mercaptoethanol).

The fractions containing the hMutSß heterodimer were deter-

mined by Western blot and pooled, diluted with buffer A to a

conductivity corresponding to 15% salt, and loaded onto a 5-ml

HiTrap Q FPLC column (Amersham Pharmacia Biotech,

Arlington Heights, IL). The fractions containing the pure hMutSß

complex (eluting at around 550 mM NaCl) were pooled and

stored in aliquots at 280uC. We assessed purity of the

recombinant proteins through Coomassie staining (0.1%) of

7.5% PAGE gels electrophoresed with the eluted proteins.

hMutSa was produced and purified as the same manner as

previously reported [20].

Electromobility gel shift assays (EMSA)
EMSAs were performed as described previously [10,20].

Complementary DNA was labeled at their 59 ends by using T4

polynucleotide kinase and [c-32P] ATP, and this single DNA

strand was annealed to the three synthesized 38-mer strands.

Binding reactions contained the purified hMutSß (100 nM), and

16106 cpm of 32P-labeled double-stranded DNA substrates in a

final volume of 10 ml of binding buffer (20 mM HEPES pH 7.6,

1 mM EDTA, 1 mM DTT, and 10% glycerol (v/v), 100 mg of

poly (dI-dC)). DNA protein complexes were separated under non-

denaturing conditions on a 6% polyacrylamide gel using 16TBE

(89 mM Tris borate, 89 mM boric acid, 2 mM EDTA) as a

running buffer. The gels were then dried, and protein-DNA

complexes were visualized using a phosphorimager (Molecular

Dynamics, Sunnyvale, CA). To determine specificity of binding of

hMutSß to the DNA, 4 mM ATP was added to release the DNA-

protein complexes.

DNA binding analysis (IAsys)
The binding and dissociation characteristics between the MMR

complex and DNA substrates was performed as described

previously [20,28]. We utilized the IAsys biosensor system (Affinity

Sensors, Cambridge, UK) to characterize the hMutSß-DNA

interaction. The IAsys system utilizes surface plasmon resonance

to detect total internal reflectance measurements. We synthesized

a 59-biotinylated DNA complementary oligomer (see sequence

above) and annealed this to each of the three 38-mers to make

double-strand DNA to bind the IAsys streptavidin-coated SA

sensor chip (IAsys Auto Plus microcuvettes, Affinity Sensors). The

protein heterodimer hMutSß was diluted to 100 nM in running

buffer (0.02 M NaCl, 25 mM Tris-Cl, pH 7.8, 1 mM DTT,

2%glycerol, 0.05% IGEPAL 20 and 10 mM MgCl2) and added to

the chip for monitoring and recording the interaction for

5 minutes. Dissociation studies were performed by adding

dissociation buffer (containing 4 mM ATP) for 5 minutes. Two

washes of 50 ml 3 M NaCl were used to regenerate the binding

surface of the microcuvette after each injection of hMutSß. All

experiments were performed at 25uC. Data were collected and

analyzed using the IAsys evaluation software (IAsys plot version

3.0).
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