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A B S T R A C T   

Purpose: To develop and validate a radiomics machine learning (Rad-ML) model based on preoperative MRI to 
predict extrahepatic metastasis (EHM) in hepatocellular carcinoma (HCC) patients receiving transarterial che-
moembolization (TACE) treatment. 
Methods: A total of 355 HCC patients who received multiple TACE procedures were split at random into a training 
set and a test set at a 7:3 ratio. Radiomic features were calculated from tumor and peritumor in arterial phase and 
portal venous phase, and were identified using intraclass correlation coefficient, maximal relevance and mini-
mum redundancy, and least absolute shrinkage and selection operator techniques. Cox regression analysis was 
employed to determine the clinical model. The best-performing algorithm among eight machine learning 
methods was used to construct the Rad-ML model. A nomogram combining clinical and Rad-ML parameters was 
used to develop a combined model. Model performance was evaluated using C-index, decision curve analysis, 
calibration plot, and survival analysis. 
Results: In clinical model, elevated neutrophil to lymphocyte ratio and alpha-fetoprotein were associated with 
faster EHM. The XGBoost-based Rad-ML model demonstrated the best predictive performance for EHM. When 
compared to the clinical model, both the Rad-ML model and the combination model performed better (C-indexes 
of 0.61, 0.85, and 0.86 in the training set, and 0.62, 0.82, and 0.83 in the test set, respectively). However, the 
combined model’s and the Rad-ML model’s prediction performance did not differ significantly. The most 
influential feature was peritumoral waveletHLL_firstorder_Minimum in AP, which exhibited an inverse rela-
tionship with EHM risk. 
Conclusions: Our study suggests that the preoperative MRI-based Rad-ML model is a valuable tool to predict EHM 
in HCC patients treated with TACE.   

1. Introduction 

Hepatocellular carcinoma (HCC), accounting for approximately 80% 
of all liver cancer cases globally. It is the third highest cause of cancer- 
related mortality worldwide, with over 800,000 deaths annually from 
HCC [1,2]. Transarterial chemoembolization (TACE) is a minimally 
invasive procedure that delivers chemotherapy directly to the liver 
tumor through the hepatic artery while blocking blood flow to the 
tumor, thereby depriving it of oxygen and nutrients necessary for 
growth. TACE is commonly used as a palliative therapeutic regimen for 

HCC patients with intermediate-stage who are not candidates for cura-
tive treatments such as surgery, liver transplantation, radiofrequency or 
microwave ablation, while systemic therapy is the more recommended 
treatment for patients with advanced hepatocellular carcinoma [3–5]. 
However, despite improvements in treatment options, the prognosis 
remains poor due to high rates of recurrence and extrahepatic metastasis 
(EHM) [6,7]. Accurate prediction of EHM before treatment is crucial for 
determining the optimal treatment strategy and improving patient 
outcomes. 

Radiomics is an emerging technique that aims to segment and extract 
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valuable information from routine medical images beyond what can be 
visually detected [8]. By analyzing thousands of quantitative image 
features including shape, intensity distribution and texture, radiomics 
provides a comprehensive characterization of tumors that can assist in 
diagnosing, monitoring and predicting treatment outcomes [9,10]. 
Machine learning algorithms process these features to generate predic-
tive models that contribute to the diagnosis, treatment, and prognosis 
assessment of HCC [11,12]. Prior investigations have demonstrated the 
practical value of radiomic features extracted from MR or CT images for 
predicting HCC recurrence and survival [7,13–15]. However, there has 
been little research on its application in predicting EHM in HCC patients 
treated with TACE. 

The purpose of this study is to develop and validate radiomics 
coupled with machine learning model based on MRI for predicting EHM 
in patients with HCC receiving TACE treatment. The findings of this 
study could lead to more precise risk stratification and personalized 
treatment planning for HCC patients undergoing TACE. 

2. Materials and methods 

2.1. Study population 

The National Cancer Center/Cancer Hospital’s Institutional Review 
Board provided authorization for this observational research, which was 
conducted in accordance with the ethical principles outlined in the 
Declaration of Helsinki. Because of the retrospective nature of this study, 
informed consent was exempted. The study population included 2303 
consecutive patients newly diagnosed with HCC who received their 
initial TACE treatment between January 2013 and December 2020, as 
provided by the clinical data warehouse. Inclusion criteria included: (1) 
HCC diagnosis confirmed by histology or radiography consistent with 
the American Society for the Study of Liver Disorders guidelines [16]; 
(2) Eastern Cooperative Oncology Group performance status ≤ 2; and 
(3) Child-Pugh classification A or B. Patients were excluded if they 
received their initial TACE treatment at another hospital, underwent 
other treatments prior to TACE progression, had significant comorbid-
ities involving other serious diseases or cancers, experienced severe 
adverse events related to TACE, did not undergo dynamic enhanced MRI 
within one month before the initial TACE treatment, were lost to 
follow-up or received only a single TACE treatment, or were classified as 
BCLC stage C. A total of 355 patients were finally included and ran-
domized into training and test cohort in a ratio of 7:3 (Supplementary 
Fig. 1). 

2.2. Conventional TACE (cTACE) procedure 

A 5-Fr arterial catheter (Radiofocus; Terumo) was punctured into the 
femoral artery using the Seldinger technique under the guidance of 
digital subtraction angiography (Allura Xper FD20, Philips). A 5-Fr he-
patic catheter (Radiofocus; Terumo) was then inserted into the hepatic 
artery through the abdominal aorta. The feeding arteries were incre-
mentally injected with an emulsion composed of a chemotherapeutic 
agent (anthracycline or platinum, 10–50 mg/m2) combined with 5–20 
ML of iodized oil (Lipiodol; Guerbet), followed by 350–560 µm gelatin 
sponge particles (Gelfoam; Alicon). The endpoint of TACE treatment was 
achieved when tumor staining diminished and lipiodol filling appeared 
in the minute peritumoral portal vein branches. The dosages of 
chemotherapy agents and iodized oil were determined by the tumor’s 
characteristics and the patient’s liver function. Additional TACE pro-
cedures were performed as needed upon the detection of intrahepatic 
recurrence or metastasis. Treatment was discontinued in cases of TACE 
refractoriness [17], severe complications, or withdrawal of consent. 

2.3. MRI techniques 

The magnetic resonance imaging (MRI) protocol encompassed fat- 

saturated T1- and T2-weighted imaging, and diffusion-weighted imag-
ing. A dynamic contrast enhanced MRI sequence was implemented 
utilizing gadopentetate dimeglu-mine (Magnevist; Bayer Healthcare) at 
a rate of 2.0 ML/s and a dosage of 0.2 ML/kg of body weight. Following 
the administration of the contrast agent, arterial phase (AP), portal 
venous phase (PVP), and delayed phase (DP) scans were conducted at 
35 s, 60 s, and 180 s, respectively. 

2.4. MRI segmentation and feature extraction 

The workflow of this study is shown in Fig. 1. Two experienced ra-
diologists (10-year and 11-year of experience) independently performed 
MRI interpretations and semiautomatic segmentations at AP and PVP 
utilizing 3D Slicer software (version 5.1.0; https://www.slicer.org/). 
They were blinded to clinical baseline data and EHM results. Intra-
tumoral and peritumoral regions of interests (ROIs) were segmented 
separately. The peritumoral ROI encompassed a 5-mm area with an 
inward shrinkage and outward expansion of the tumor margin by 2.5 
mm, respectively. The resampled voxel size was 1 * 1 * 1 mm; LoG kernel 
sizes ranged from 1 to 5; voxel intensities utilized a bin-width of 25; and 
wavelet features were employed. Each three-dimensional ROI consisted 
of 1316 radiomic features, including 18 first-order features, 14 shape 
features, 75 textural features, 465 LoG features, and 744 wavelet fea-
tures. A total of 5264 radiomic features were extracted from the four 
groups of ROIs (tumoral features in AP, peritumoral features in AP, tu-
moral features in PVP, and peritumoral features in PVP) using the Pyr-
adiomics package version 3.10 (https://pyradiomics.readthedocs.io/). 

2.5. Feature selection 

Firstly, all features were normalized so that their mean was zero and 
their variance was one. Secondly, features with an intraclass correlation 
coefficient for segmentation by two radiologists greater than 0.8 were 
included. Thirdly, a feature selection algorithm based on the maximal 
relevance and minimum redundancy and least absolute shrinkage and 
selection operator (LASSO) regression (Supplementary Fig. 2) was 
employed using ten-fold cross-validation to choose the optimal features. 

2.6. Model construction 

We utilized eight machine learning algorithms, including logistic 
regression (LR), Naive Bayes (NB), support vector machine (SVM), K- 
Nearest Neighbor (KNN), random forest (RF), Light Gradient Boosting 
Machine (LightGBM), Adaptive Boosting (AdaBoost), and eXtreme 
Gradient Boosting (XGBoost), to compare the area under the curve in 
training and test sets and select the optimal algorithm as the radiomics 
machine learning (Rad-ML) model based on the remaining features after 
feature selection. Uni- and multivariable backward stepwise Cox 
regression analyses were conducted to identify independent risk factors 
for EHM, which were designated as clinical model parameters. A com-
bined model was constructed using a nomogram that integrated the 
clinical model and the radiomic score based on the best Rad-ML model. 

2.7. Model evaluation and explanation 

The time-dependent receiver operating characteristic (ROC) curve 
and the area under the curve (AUC) were employed to assess the per-
formance at different time points. The concordance index (C-index) was 
utilized to evaluate the overall discrimination. A calibration curve was 
plotted to estimate the consistency between the observed and predicted 
probabilities. Decision curve analysis and survival curves were used to 
determine the clinical effectiveness. SHapley Additive exPlanations 
(SHAP) method was utilized to elucidate the Rad-ML model’s output. 
The SHAP plot provides an insight into the importance and direction of 
the feature’s contribution to the result. 
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2.8. Outcomes and follow-up 

Extrahepatic metastases are defined as tumor lesions that were bi-
opsy proved or newly discovered on imaging. The outcome of this study 
was the time to EHM. The time from the initial TACE treatment to the 
occurrence of EHM was used to determine the time of EHM. Patients 
who did not develop EHM at the last follow-up were censored. Dynamic 
enhanced MRI scans, liver function, and serum alpha fetoprotein (AFP) 
tumor markers were assessed every 1–2 months following each TACE 
session. The study had a median follow-up time of 33 months (95% CI: 
26, 40). The last follow-up date was June 30, 2023. 

2.9. Statistical analyses 

Statistical analyses were performed by R software version 4.1.1 
(http://www.r-project.org/). A probability value < 0.05 was considered 
significant for hypothesis tests. Chi-square tests were used to detect 
statistical differences between the training and test cohort. The inter-
observer reliability between the two radiologists was determined by the 
intraclass correlation coefficients. The DeLong tests were used to 
compare the C-index of different models. The grouping of survival 
curves was based on the tripartite division of prediction probabilities 
generated by the best Rad-ML model, and the differences between 
groups were compared by use of log-rank test. 

3. Results 

3.1. Baseline characteristics of participants 

The median age was 61 years (interquartile range [IQR], 53–67 
years), with 306 (86.20%) males and 49 (13.80%) females. The majority 
of patients had BCLC stage B, Child-Pugh grade A, HBV infection, serum 
AFP < 400 ng/ML, albumin-bilirubin grade 1, total bilirubin < 20 
umol/L, gamma glutamyl transpeptidase ≥ 50 U/L, alanine amino-
transferase < 40 U/L, aspartate aminotransferase < 40 U/L, albumin 
≥ 35 g/L, platelets ≥ 100 × 109/L, prothrombin time < 13 s, interna-
tional normalized ratio ≥ 1.0, neutrophil to lymphocyte ratio (NLR) < 3, 
and platelet to lymphocyte ratio (PLR) < 125. There were no significant 
differences in all baseline characteristics between the training and test 
sets. (Table 1). 

3.2. Time to extrahepatic metastasis 

During follow-up, 118 (33.24%) of the 355 patients experienced 
EHM, with a median EHM time of 31 months (95% CI: 23–39). Addi-
tionally, 83 patients (33.47%) in the training cohort and 35 patients 
(32.71%) in the test cohort experienced EHM during the follow-up 
period. The median EHM time was 31 months (95% CI: 24–38) in the 
training cohort and 31 months (95% CI: 21–41) in the test cohort 
(p = 0.91). 

Fig. 1. The workflow in this study. Abbreviation: AP, arterial phase; PVP, portal venous phase; ICC, intraclass correlation coefficient; MRMR, maximum relevance 
minimum redundancy; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; SVM, support vector machine; NB, Naive Bayes; KNN, K- 
Nearest Neighbor; LightGBM, Light Gradient Boosting Machine; RF, random forest; AdaBoost, Adaptive Boosting; XGBoost, eXtreme Gradient Boosting; ROC, receiver 
operator characteristic; Rad-ML, radiomics machine learning; TACE, transarterial chemoembolization; SHAP, SHapley Additive exPlanations. 
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3.3. Univariable and multivariable Cox regression analyses 

Univariable Cox regression analysis showed that serum AFP 
≥ 400 ng/ML, NLR ≥ 3, and PLR ≥ 125 were associated with faster 
EHM (hazard ratio [HR] and 95% CI: 1.60 [1.11–2.32], 1.84 
[1.21–2.80], 1.70 [1.14–2.55], respectively; Table 2). In backward 
stepwise multivariable Cox regression analysis, serum AFP ≥ 400 ng/ 
ML and NLR ≥ 3 were also identified as independent risk factors for 
EHM (HR and 95% CI: 1.54 [1.06–2.23], 1.78 [1.17–2.72], respectively, 
Table 2). Therefore, AFP and NLR were used as clinical model param-
eters for predicting EHM. 

3.4. Performance of Rad-ML model 

In the training cohort, the results of the 10-fold cross-validation 
showed that the XGBoost algorithm achieved the highest AUC of 
0.869 (95% CI, 0.824–0.914), with an accuracy of 0.828, and F1 score 
0.733 (Fig. 2A, Table 3). In the test cohort, the XGBoost algorithm also 
showed the highest AUC of 0.762 (95% CI, 0.664–0.859), with an ac-
curacy of 0.734, and F1 score 0.624 (Fig. 2B, Table 3). Therefore, 
XGBoost algorithm was used as the Rad-ML model for predicting EHM. 

3.5. Establishment of combined model and evaluation of all 
models 

A combined model, which incorporated clinical parameters and the 
Rad-score, was constructed to predict 12-month, 24-month, and 36- 
month EHM based on a nomogram (Fig. 3). The C-index values for the 
clinical model, Rad-model, and combined model were 0.61, 0.85, and 
0.86 in the training set, respectively, and 0.62, 0.82, and 0.83 in the test 
set, respectively (Table 4). In both the training and test sets, the C-index 
values for the Rad-ML model and the combined model were superior to 
the clinical model (p < 0.01), but there was no significant difference of 
predictive performance between the Rad-ML model and the combined 
model (p = 0.731 in the training set and p = 0.143 in the test set, 
Table 4). The Rad-ML model and the combined model demonstrated 
comparable and superior performance compared to the clinical model in 
time-dependent ROC curves, decision curve analyses and calibration 
curves for predicting 1-year, 2-year, and 3-year EHM in training and test 
sets (Figs. 4, 5, and 6). Survival curves indicated satisfactory perfor-
mance in both the training and test groups based on the trisection of the 
predicted probability values derived from the Rad-ML model (all log 
rank p < 0.001, Fig. 7A and B). 

3.6. Rad-ML model explanation 

Fig. 8A displays the 13 remaining features of the Rad-ML model 

Table 1 
Baseline participant characteristics in the training cohort and test cohort.  

Variables Total (n = 355) Training cohort 
(n = 248) 

Test corhort 
(n = 107) 

p 
value 

Age < 60 /≥ 60 
(years) 

157 (44.23%)/ 
198 (55.77%) 

110 (44.35%)/ 
138 (55.65%) 

47 (43.93%)/ 
60 (56.07%)  

0.940 

Gender 
(Female/ 
Male) 

49 (13.80%)/ 
306 (86.20%) 

35 (14.11%)/ 
213 (85.89%) 

14 (13.08%)/ 
93 (86.92%)  

0.797 

HBV infection 
(No/Yes) 

94 (26.48%)/ 
261 (73.52%) 

68 (27.42%)/ 
180 (72.58%) 

26 (24.30%)/ 
81 (75.70%)  

0.541 

BCLC stage (A/ 
B) 

73 (20.56%)/ 
282 (79.44%) 

57 (22.98%)/ 
191 (77.02%) 

16 (14.95%)/ 
91 (85.05%)  

0.086 

Child-Pugh 
grade (A/B) 

323 (90.99%)/ 
32 (9.01%) 

222 (89.52%)/ 
26 (10.48%) 

101 (94.39%)/ 
6 (5.61%)  

0.141 

Serum AFP 
< 400 /≥ 400 
(ng/ML) 

249 (70.14%)/ 
106 (29.86%) 

171 (68.95%)/ 
77 (31.05%) 

78 (72.90%)/ 
29 (27.10%)  

0.456 

ALBI grade (1/2 
and 3)a 

227 (63.94%)/ 
128 (36.06%) 

155 (62.50%)/ 
93 (37.50%) 

72 (67.29%)/ 
35 (32.71%)  

0.388 

TBIL < 20 /≥ 20 
(umol/L) 

256 (72.11%)/ 
99 (27.89%) 

179 (72.18%)/ 
69 (27.82%) 

77 (71.96%)/ 
30 (28.04%)  

0.967 

AST < 40 /≥ 40 
(U/L) 

187 (52.68%)/ 
168 (47.32%) 

130 (52.42%)/ 
118 (47.58%) 

57 (53.27%)/ 
50 (46.73%)  

0.883 

ALT < 40 /≥ 40 
(U/L) 

223 (62.82%)/ 
132 (37.18%) 

153 (61.69%)/ 
95 (38.31%) 

70 (65.42%)/ 
37 (34.58%)  

0.505 

GGT < 50 /≥ 50 
(U/L) 

100 (28.17%)/ 
255 (71.83%) 

72 (29.03%)/ 
176 (70.97%) 

28 (26.17%)/ 
79 (73.83%)  

0.582 

ALB < 35 /≥ 35 
(g/L) 

30 (8.45%)/ 
325 (91.55%) 

24 (9.68%)/ 
224 (90.32%) 

6 (5.61%)/101 
(94.39%)  

0.206 

PLT < 100 
/≥ 100 
(×109/L) 

84 (23.66%)/ 
271 (76.34%) 

57 (22.98%)/ 
191 (77.02%) 

27 (25.23%)/ 
80 (74.77%)  

0.647 

PT < 13 /≥ 13 
(s) 

275 (77.46%)/ 
80 (22.54%) 

191 (77.02%)/ 
57 (22.98%) 

84 (78.50%)/ 
23 (21.50%)  

0.758 

INR < 1.0 
/≥ 1.0 

73 (20.56%)/ 
282 (79.44%) 

46 (18.55%)/ 
202 (81.45%) 

27 (25.23%)/ 
80 (74.77%)  

0.153 

NLR < 3 /≥ 3 277 (78.03%)/ 
78 (21.97%) 

190 (76.61%)/ 
58 (23.39%) 

87 (81.31%)/ 
20 (18.69%)  

0.327 

PLR < 125 
/≥ 125 

264 (74.37%)/ 
91 (25.63%) 

184 (74.19%)/ 
64 (25.81%) 

80 (74.77%)/ 
27 (25.23%)  

0.910 

Note: Values are presented as number (percentage). aALBI score = 0.66 × log10 
[total bilirubin (μmol/L)] - 0.0852 × [albumin (g/L)]; ALBI: grade 1 ≤ − 2.60; 
− 2.60 < grade 2 ≤ − 1.39; and grade 3 > − 1.39. 
Abbreviation: HBV, hepatitis B virus; BCLC, Barcelona Clinic Liver Cancer; AFP, 
alpha fetoprotein; ALBI, albumin-bilirubin; TBIL, total bilirubin; AST, aspartate 
aminotransferase; ALT, alanine aminotransferase; GGT, gamma glutamyl 
transpeptidase; ALB, albumin; PLT, platelet; PT, prothrombin time; INR, inter-
national normalized ratio; NLR, neutrophil to lymphocyte ratio; PLR, platelet to 
lymphocyte ratio. 

Table 2 
Preoperative clinical risk factors for extrahepatic metastasis in hepatocellular 
carcinoma patients receiving transarterial chemoembolization treatment.  

Variables Univariable analysis Multivariable analysis 

HR (95% CI) p value HR (95% CI) p value 

Age (≥60 years) 0.79 (0.55- 
1.13)  

0.191    

Gender (Male) 0.97 (0.56- 
1.67)  

0.903    

Etiology (HBV) 0.87 (0.58- 
1.31)  

0.508    

BCLC stage (B) 1.19 (0.76- 
1.87)  

0.448    

Child-Pugh grade (B) 1.12 (0.60- 
2.09)  

0.713    

Serum AFP (≥ 400 ng/ 
ML) 

1.60 (1.11- 
2.32)  

0.013 1.54 (1.06- 
2.23)  

0.023 

ALBI grade (2 and 3) 0.77 (0.51- 
1.16)  

0.210 0.70 (0.46- 
1.06)  

0.091 

TBIL (≥ 20 umol/L) 0.92 (0.61- 
1.39)  

0.698    

AST (≥ 40 U/L) 1.33 (0.92- 
1.91)  

0.126 1.36 (0.93- 
1.99)  

0.110 

ALT (≥ 40 U/L) 1.27 (0.87- 
1.84)  

0.214    

GGT (≥ 50 U/L) 1.27 (0.85- 
1.91)  

0.248    

ALB (≥ 35 g/L) 1.55 (0.68- 
3.52)  

0.297    

PLT (≥ 100 ×109/L) 1.33 (0.85- 
2.07)  

0.207    

PT ≥ 13 (s) 1.02 (0.67- 
1.56)  

0.933    

INR (≥ 1.0) 1.35 (0.83- 
2.17)  

0.224    

NLR (≥ 3) 1.84 (1.21- 
2.80)  

0.004 1.78 (1.17- 
2.72)  

0.007 

PLR (≥ 125) 1.70 (1.14- 
2.55)  

0.010    

Abbreviation: HBV, hepatitis B virus; BCLC, Barcelona Clinic Liver Cancer; AFP, 
alpha fetoprotein; ALBI, albumin-bilirubin; TBIL, total bilirubin; AST, aspartate 
aminotransferase; ALT, alanine aminotransferase; GGT, gamma glutamyl 
transpeptidase; ALB, albumin; PLT, platelets; PT, prothrombin time; INR, in-
ternational normalized ratio; NLR, neutrophil to lymphocyte ratio; PLR, platelet 
to lymphocyte ratio. 
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based on the XGBoost algorithm following feature selection, comprising 
7 AP features (1 tumor-related and 6 peritumoral-related) and 6 PVP 
features (1 tumor-related and 5 peritumoral-related). The most influ-
ential feature was the peritumoral waveletHLL_firstorder_Minimum in 
AP, yet it exhibited an inverse relationship with the risk of EHM (Fig. 8A 
and B). Fig. 8C and D illustrate the interpretability of the Rad-ML model 
for an EHM and a non-EHM patient, respectively. For the first patient, 
the most critical feature of AP_peritumoral_waveletHLL_first-
order_Minimum was low (0.481), resulting in an elevated risk of EHM 
(0.842). For the second patient, the most critical feature was high 
(0.940), indicating a reduced risk of EHM (0.070). 

4. Discussion 

In this research, we applied radiomics and eight machine learning 
algorithms based on preoperative MRI to predict EHM in HCC patients 

treated with TACE and confirmed that the XGBoost algorithm has the 
best predictive performance. Then, our results demonstrated that the 
combined model, consisting of clinical parameters and radiomics fea-
tures, and Rad-ML model outperformed the clinical model in predicting 
EHM. However, the combined model did not improve performance 
compared to the Rad-ML model. 

In clinical model, our study found that preoperative serum AFP 
≥ 400 ng/ML and NLR ≥ 3 were independent risk factors for EHM in 
HCC patients receiving TACE treatments. Numerous clinical models 
have previously documented that elevated serum AFP levels serve as a 
substantial indicator for predicting EHM in patients with HCC [18–25], 
a finding that is in line with our research. Nonetheless, discrepancies 
persist, and some clinical models have not corroborated the predictive 
value of AFP for EHM [26–30]. This discrepancy may be attributed to 
variations in study sample sizes, disparate therapeutic regimens, and the 
heterogeneous nature of the research populations. Furthermore, 

Fig. 2. The receiver operator characteristic curves of eight machine learning algorithms for predicting EHM in HCC patients receiving TACE treatment in the training 
cohort (A) and test cohort (B). Abbreviation: EHM, extrahepatic metastasis; HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; ROC, receiver 
operator characteristic; AUC, area under the curve; LR, logistic regression; SVM, support vector machine; NB, Naive Bayes; KNN, K-Nearest Neighbor; LightGBM, 
Light Gradient Boosting Machine; RF, random forest; AdaBoost, Adaptive Boosting; XGBoost, eXtreme Gradient Boosting. 

Table 3 
Performance of eight machine learning algorithms for predicting extrahepatic metastasis in hepatocellular carcinoma patients receiving transarterial chemo-
embolization treatment.  

Models AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F1 score 

Training cohort              
LR 0.583 (0.509-0.657)  0.677  0.355  0.834  0.523  0.730  0.406 
SVM 0.595 (0.510-0.679)  0.679  0.384  0.826  0.546  0.735  0.426 
NB 0.596 (0.512-0.681)  0.699  0.323  0.882  0.551  0.732  0.407 
KNN 0.778 (0.718-0.837)  0.747  0.775  0.651  0.682  0.761  0.724 
LightGBM 0.801 (0.747-0.856)  0.744  0.707  0.755  0.821  0.741  0.749 
AdaBoost 0.852 (0.806-0.898)  0.765  0.773  0.762  0.619  0.865  0.683 
RF 0.854 (0.807-0.900)  0.762  0.805  0.741  0.604  0.882  0.687 
XGBoost 0.869 (0.824-0.914)  0.828  0.717  0.882  0.758  0.861  0.733 
Test corhort              
LR 0.569 (0.292-0.847)  0.614  0.733  0.586  0.346  0.696  0.389 
SVM 0.547 (0.411-0.683)  0.638  0.399  0.804  0.475  0.714  0.381 
NB 0.555 (0.422-0.687)  0.675  0.479  0.717  0.491  0.712  0.457 
KNN 0.524 (0.401-0.648)  0.632  0.333  0.760  0.425  0.680  0.324 
LightGBM 0.666 (0.550-0.783)  0.677  0.640  0.675  0.549  0.715  0.570 
AdaBoost 0.705 (0.451-0.955)  0.650  0.722  0.738  0.476  0.768  0.566 
RF 0.711 (0.569-0.852)  0.654  0.778  0.648  0.475  0.774  0.588 
XGBoost 0.762 (0.664-0.859)  0.734  0.692  0.741  0.568  0.825  0.624 

Abbreviation: PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; NB, Naive Bayes; KNN, K-Nearest 
Neighbor; LightGBM, Light Gradient Boosting Machine; AdaBoost, Adaptive Boosting; RF, random forest; XGBoost, eXtreme Gradient Boosting. 
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preoperative NLR as an independent risk factor for EHM has not been 
previously reported in clinical models [20–29]. Nonetheless, some 
meta-analyses and reviews have consistently demonstrated that elevated 
NLR pre-treatment serves as a reliable prognostic indicator of recurrence 
and survival in HCC patients, potentially due to the crucial role of NLR 
as an inflammatory marker in reducing immunity, secreting and 
modulating multiple chemokines and cytokines [31–34]. The C-index of 
our clinical model, however, was only 0.61 in the training set and 0.62 
in the test set, which reflected a suboptimal performance. This finding 
was consistent with some prior investigations. A recent study, for 
instance, developed a prediction model for EHM in HCC, identifying 
neutrophils, prothrombin time, tumor number, and size as independent 
risk factors, yielding a C-index of 0.672 in the training group and 0.694 
in the validation group [26]. Another study determined that a nomo-
gram constructed by tumor number, tumor size, platelet count, serum 
AFP, and macrovascular invasion was associated with high risk of EHM, 
with a C-index of 0.733 and 0.739 in the training and validation sets, 
respectively [19]. These studies corroborate our conclusion that clinical 
models alone are insufficient for predicting EHM performance, thus 
motivating us to develop a predictive model incorporating radiomics 
and machine learning algorithms. 

We compared the predictive effects of eight machine learning algo-
rithms and found that the XGBoost algorithm achieved the highest AUC 
in both the training and test sets. This suggests that the XGBoost 

algorithm is well-suited for predicting EHM in HCC patients treated with 
TACE. XGBoost algorithm employs a computationally efficient approach 
to gradient boosting, utilizing decision trees added iteratively to rectify 
classification errors, while utilizing a boosted decision tree structure 
that bins similar features for reduced computational complexity, 
resulting in improved performance [35]. A recent study reviewed 
existing methods for cancer detection using machine learning, focusing 
on the four most common cancers around the world: breast, prostate, 
lung, and colorectal cancer. The results showed that the XGBoost algo-
rithm performed the highest overall accuracy of 73% and 75% using two 
different transforms [36]. Another comparative study of machine 
learning algorithms found that XGBoost was superior to SVM (AUC of 
0.896 and 0.850, respectively) in computer-aided diagnosis of pulmo-
nary nodule classification [37]. However, comparative studies of ma-
chine learning algorithms in HCC patients receiving TACE are limited, 
and our study expands the application of Rad-ML in these patient 
populations. 

The combined model and Rad-ML model demonstrated better per-
formance than the clinical model in predicting EHM. This finding un-
derscores the value of radiomic features to improve predictive 
performance. A study that applied deep learning to predict EHM and 
macrovascular invasion in HCC patients produced similar results to ours 
[38]. It was found that the AUC of clinical model, deep learning model 
and combined model in the validation set were 0.780, 0.836 and 0.862, 

Fig. 3. Nomogram of the combined model for predicting the 1-year, 2-year, and 3-year EHM rates in HCC patients receiving TACE treatment. Abbreviation: EHM, 
extrahepatic metastasis; HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; Rad-ML, radiomics machine learning; AFP, alpha fetoprotein; NLR, 
neutrophil to lymphocyte ratio. 

Table 4 
Performance of different models for predicting extrahepatic metastasis in hepatocellular carcinoma patients receiving transarterial chemoembolization treatment.  

Models C-index (95% CI) 1-year AUC (95% CI) 2-year AUC (95% CI) 3-year AUC (95% CI) 4-year AUC (95% CI) 5-year AUC (95% CI) p value 

Training cohort        
Clinical model 0.61 (0.53-0.68) 0.66 (55.33-75.65) 0.60 (50.96-69.94) 0.62 (51.16-71.80) 0.61 (47.03-73.92) 0.52 (33.35-70.30) < 0.001a 

Rad-ML model 0.85 (0.80-0.90) 0.88 (82.59-93.98) 0.86 (79.42-93.32) 0.87 (77.37-95.62) 0.88 (75.45-101.21) 0.96 (90.74-100.66) < 0.001b 

Combined model 0.86 (0.82-0.90) 0.90 (85.13-95.09) 0.88 (81.50-94.01) 0.89 (80.84-96.31) 0.90 (78.27-101.05) 0.95 (88.69-100.68) 0.731c 

Test corhort        
Clinical model 0.62 (0.51-0.73) 0.62 (46.62-78.18) 0.59 (43.42-74.61) 0.61 (45.06-76.12) 0.53 (31.77 − 74.28) 0.62 (50.22-73.03) < 0.001a 

Rad-ML model 0.82 (0.72-0.91) 0.82 (70.51-92.50) 0.80 (67.19-93.53) 0.88 (75.60-100.41) 0.95 (87.97-102.73) 0.93 (81.18-104.78) < 0.001b 

Combined model 0.83 (0.75-0.92) 0.83 (73.12-93.75) 0.82 (69.97-94.37) 0.89 (77.38-99.74) 0.95 (86.90-102.39) 0.93 (81.38-105.52) 0.143c 

Note: aClinical model vs Combined model; bClinical model vs Rad-ML model; cRad-ML model vs Combined model. 
Abbreviation: C-index, Concordance index; AUC, area under the curve; Rad-ML, radiomics machine learning. 
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respectively. Deep learning model and combined model predicted better 
than clinical model, but there was no significant difference between 
them. Given that the prediction of the clinical model was unsatisfactory, 
as mentioned before, its inclusion did not improve the predictive 
effectiveness of the combined model. 

We investigated the features contributing to the Rad-ML model’s 

prediction of EHM and explained the black box of radiomics using SHAP 
method. Firstly, we applied the previously reported radiomic segmen-
tation method on the recurrence of HCC in authoritative literature, that 
is, the tumoral and peritumoral features in AP and PVP were segmented 
respectively [39], which contains more information than previous 
studies that only covered single phase and only tumor segmentation [38, 

Fig. 4. Time dependent area under the curves of clinical model, Rad-ML model, and combined model for predicting the 1-year, 2-year, 3-year, 4-year, and 5-year 
EHM in HCC patients receiving TACE treatment in the training cohort (A) and test cohort (B). Abbreviation: Rad-ML, radiomics machine learning; EHM, extra-
hepatic metastasis; HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; AUC, area under the curve. 

Fig. 5. Calibration and performance of clinical model, Rad-ML model, and combined model for predicting the 1-year, 2-year, and 3-year EHM in HCC patients 
receiving TACE treatment in the training cohort (A, B, and C) and test cohort (D, E, and F). Abbreviation: Rad-ML, radiomics machine learning; EHM, extrahepatic 
metastasis; HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization. 
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40]. Secondly, after feature selection, there were 13 remaining features, 
including 11 peritumoral features and 2 tumor features, and the most 
important feature was the peritumoral waveletHLL_firstorder_Minimum 
in the AP. This result suggests that increased peritumoral heterogeneity 
plays an important role of EHM in HCC patients treated with TACE. A 
recent study using radiomic analysis based on dynamic enhanced CT for 
predicting EHM in HCC patients found that the Rad-ML model achieved 
a high AUC of 0.944 in the test set, while the result in the external 
validation cohort was not satisfactory with an AUC of 0.744 [40]., which 
may be related to the fact that the study only performed tumor 

segmentation in the AP. Up to now, the known signs of non-smooth 
tumor margin, incomplete tumor capsule, presence of satellite nod-
ules, high peritumoral enhancement in AP, and rim hyperenhancement 
in AP are correlated with adverse prognosis in HCC [41,42], which could 
explain the important role of peritumoral radiomic features in predicting 
EHM. However, the mechanism of peritumoral features in EHM of HCC 
patients receiving TACE treatments still needs to be further studied. 

Based on the Rad-ML score, we classified three types of EHM risk 
stratification: low risk, intermediate risk, and high risk. Given that the 
rate of EHM in low-risk patients was 0% at 4 years, we recommend an 

Fig. 6. Decision curve analysis and performance of clinical model, Rad-ML model, and combined model for predicting the 1-year, 2-year, and 3-year EHM in HCC 
patients receiving TACE treatment in the training cohort (A, B, and C) and test cohort (D, E, and F). Abbreviation: Rad-ML, radiomics machine learning; EHM, 
extrahepatic metastasis; HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization. 

Fig. 7. Kaplan-Meier analysis and performance of the Rad-ML model in predicting EHM in HCC patients receiving TACE treatment in the training cohort (A) and test 
cohort (B). Abbreviation: Rad-ML, radiomics machine learning; EHM, extrahepatic metastasis; HCC, hepatocellular carcinoma; TACE, transarterial 
chemoembolization. 
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appropriate extension of follow-up for reasons of cost-effectiveness of 
surveillance. For intermediate-risk patients, we recommend following 
existing follow-up strategy. For high-risk patients, shorter follow-up and 
early combination of systemic therapy may be advisable. 

Our study has several limitations. Firstly, as a retrospective, single- 
center study, it may contain selection bias, and the findings require 
validation in larger, multicenter prospective studies. Secondly, as our 
study predominantly included patients with HBV-related HCC, the 

Fig. 8. The SHAP explanatory diagram shows the distribution of features’ importance of the Rad-ML model in predicting EHM in HCC patients receiving TACE 
treatment (A and B). Inference process of the Rad-ML model with an EHM (C) and non-EHM patient (D). Abbreviation: SHAP, SHapley Additive exPlanations; Rad- 
ML, radiomics machine learning; EHM, extrahepatic metastasis; HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; AP, arterial phase; PVP, 
portal venous phase. 
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results may not be applicable to patients with other underlying liver 
diseases. Thirdly, radiological features in the hepatobiliary phase were 
not evaluated as only a small proportion of patients underwent pre-
therapy gadoxetic acid-enhanced MRI. Although the above limitations 
restrict the scope of application of the findings, they do not affect the 
accuracy of the conclusions, and further prospective multicenter studies 
are needed to determine whether our findings can be generalized to a 
wider population. 

In conclusion, our study demonstrates the good value of the Rad-ML 
model based on preoperative MRI for predicting EHM in HCC patients 
treated with TACE. In addition, the interpretability of the Rad-ML model 
illustrates the importance of peritumoral features in the AP, which may 
help clinicians better understand the factors influencing EHM risk and 
guide personalized treatment strategies for HCC patients. However, 
further validation of our findings in larger, independent patient cohorts 
are necessary to confirm the generalizability and clinical utility of our 
model. 
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