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Abstract: Ultrasound detection is one of the major components of photoacoustic imaging systems.
Advancement in ultrasound transducer technology has a significant impact on the translation
of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound
transducer technologies including conventional piezoelectric and micromachined transducers, as
well as optical ultrasound detection technology. We explain the core components of each technology,
their working principle, and describe their manufacturing process. We then quantitatively compare
their performance when they are used in the receive mode of a photoacoustic imaging system.

Keywords: ultrasound transducer; photoacoustic imaging; piezoelectric; micromachined; CMUT;
PMUT; optical ultrasound detection

1. Introduction

Ultrasound transducers are devices that convert ultrasound pressure waves into electrical signal.
In an ultrasound imaging machine the transducer is a transceiver device: the waves propagated
from an ultrasound transducer are backscattered/reflected from an impedance mismatch in the tissue
and received by the same transducer; the strength of the received pressure waves is in the range of
0.1~4 MPa [1]. Another modality that directly benefits from ultrasound transducer technology is
photoacoustic imaging (PAI). PAI is an emerging modality that uses a combination of optical excitation
and acoustic detection for visualizing vascular, functional, and molecular changes within living
tissue [2–11]. As opposed to the optical imaging modalities such as optical coherence tomography [12]
that employs ballistic photons, PAI uses diffused photons providing significantly deeper penetration.
In PAI, thermoelastic expansion of tissue chromophores occurs when irradiated by a nanosecond
pulsed laser—resulting in emission of acoustic waves that are then detected by ultrasound transducers
for image formation [9,13–17]; in PAI the ultrasound transducer is a receiver device. The strength
of the acoustic waves generated from the chromophores is around 800 PA·mK−1 [4]. The strength of
the generated pressure in PAI depends on the absorption coefficient of the chromophores, the light
fluence, and the characteristics of the ultrasound transducer. The lower range of the generated pressure
waves in PAI compared to ultrasound imaging signifies the importance of an efficient and effective
ultrasound detection technology [18]. In PAI, where the optically induced ultrasound pressure is
typically weak [17], the primary requirement of the detection unit is to have a high sensitivity and a
large acceptance angle over a wide range of spectral bandwidth.

Acoustic and optical detection methods are complementary technologies that together have solved
many unmet industrial and clinical needs. The contactless nature and the wavelength selectivity
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capability to study a particular target in the tissue (e.g., enabling functional sensing) are advantages of
optical sensing over acoustic sensing, and the less penetration depth of optical sensing compared to
acoustic detection technology is its disadvantage; although utilizing short wavelengths (such as X-ray),
deep sensing applications are possible at a cost of ionizing the imaging target. In photoacoustic sensing,
the advantages of both technologies are utilized: wavelength selectivity and adequate penetration
depth; to address different unmet needs, photoacoustic technology has been implemented for different
wavelengths from X-ray to infrared (IR). Due to the widely used intermediate penetration depth
achieved by IR light, higher sensitivity of IR devices, and the fast growing advancement of IR optical
components, most of photoacoustic systems are implemented in this regime. Infrared photoacoustic
technology has been successfully used in both preclinical (to study small animal brain [19–22],
eye [23–26], and skin [27–29]) and clinical (to detect breast cancer [30–32], cervical cancer [33,34],
skin melanoma [35,36], and brain tumor [37,38]) applications.

Based on the ultrasound detection mechanism, transducers can be categorized into two main
categories: physical ultrasound transducers and optical ultrasound detection. The physical transducers
can further be classified as: (i) conventional piezoelectric, and (ii) micromachined (capacitive or
piezoelectric).

Several review studies have been conducted on ultrasound transducer technologies [39–46].
However, these studies were primarily focused on ultrasound imaging and specific to one or two
technologies. The purpose of this review is to study the effectiveness of various ultrasound transducer
technologies, recognize their pros and cons, and learn about their performance when they are used
in the receive mode of a photoacoustic imaging system. This review does not cover the ultrasound
transducer technologies that are specifically used for industrial or intravascular applications.

The search protocol used for this review study is as follows. A PubMed database search of
“transducer” AND “ultrasound” AND “photoacoustic” AND “imaging” yielded 216 results with 196
published in the last ten years. We have narrowed down the search by “piezoelectric” (45 results)
and “micromachined” (29 results). Capacitive micromachined ultrasonic transducers (CMUTs) and
piezoelectric micromachined ultrasound transducers (PMUTs) have been utilized in 22 and 7 articles,
respectively. Moreover, 4 articles were found relevant to photoacoustic imaging among articles on
optical ultrasound detection. In this study, we have reviewed a total of 189 articles.

The organization of the manuscript is as follows. First, the general design characteristics of
physical ultrasound transducers are discussed. We then investigate the physical ultrasound transducers
along with a quantitative analysis of their performance. Next, we discuss optical ultrasound detection
technologies and present their corresponding specifications. Finally, we summarize the pros and
cons of various ultrasound detection technologies and discuss their performance in photoacoustic
imaging applications.

2. Ultrasound Transducer Characteristics

The design parameters in an ultrasound transducer are classified into two categories: (i) geometric
characteristics of layers (width, length, thickness, and specific to arrays including the number of
elements, kerf, and pitch size [47]), (ii) material properties (such as coupling coefficient, elastic modulus,
Poisson’s ratio, density, stress coefficient, stiffness constant, acoustic impedance, and dielectric
constant) used for each section. By adjusting these parameters, a transducer with a desired sensitivity,
center frequency, and bandwidth is obtained. If cost is a deciding factor, sensitivity and bandwidth
of the transducer may be affected. The manufacturing cost of a transducer largely depends on the
fabrication process and the number of attempts needed to obtain required specifications [9].

Electromechanical coupling coefficient of the material represents the coupling efficiency of the
transducer. In receive mode, this coefficient can be defined as the ratio between the electrical energy
induced and the mechanical energy applied to the sensing material [48]. Coupling coefficient is
primarily determined based on the inherent material properties of the transducer sensing elements such
as stress coefficient, stiffness constant, acoustic impedance, and dielectric constant. Stress coefficient
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and stiffness constant are two mechanical properties that determine the elasticity of the sensing material.
A highly elastic material with thermal stability is desired to build a transducer with a wide frequency
range and low mechanical loss. Acoustic impedance determines the compliance of the transducer
material to the target tissue material. Acoustic waves can be transmitted efficiently through the
propagating medium when there is less acoustic impedance mismatch between the transducer material
and the imaging target medium. Reduced acoustic impedance mismatch improves the signal-to-noise
ratio (SNR) of the signal converted from the received pressure waves. In addition to acoustic impedance,
there is the electrical impedance match between the transducer material and the back-end electronics
(i.e., signal routing, data acquisition unit, amplifiers). Electrical impedance also affects the power
transmission efficiency and SNR of the converted signal. Such electrical match is achieved using a
matching network that can be realized using a material with high dielectric constant [49,50]. Moreover,
a high dielectric constant is essential to improve the coupling coefficient [51].

The receive sensitivity of an ultrasound transducer is typically represented as a ratio of the
detected electrical signal amplitude (in the range of micro- to milli-volts) and applied acoustic pressure
(in the range of pascal to kilopascal). In photoacoustic imaging, the sensitivity is represented by
noise equivalent pressure (NEP) [52], a frequency dependant metric with a unit of Pa·Hz−1/2. NEP is
defined as the photoacoustic pressure at the imaging target that generates a transducer output equal
to the noise amplitude [53]. We used sensitivity (mV/kPa) for quantitative comparison between the
physical transducers and NEP (Pa·Hz−1/2) for transducers that work based on optical ultrasound
detection methods.

An ideal ultrasound detection device should possess the following attributes: sufficiently high
electromechanical coupling coefficient, an acoustic impedance that is close to tissue impedance, a large
dielectric constant, low electrical and mechanical losses, low stiffness, and high thermal stability, that all
together leads to a transducer with a high sensitivity over a wide spectral bandwidth.

3. Physical Ultrasound Transducer Technologies

3.1. Piezoelectric Transducers

Piezoelectric ultrasound transducers are the most widely manufactured and clinically available
transducers that are integrated in commercial ultrasound systems [39,54,55]. The main component
of a piezoelectric ultrasound transducer is piezo-material that operates based on converse and direct
piezoelectric effect. In transmission mode of an ultrasound transducer, the generated acoustic waves
are a result of the transient expansion and contraction of a piezo-material when exposed to an
alternating electric field across the piezo-electrodes [56]. In receive mode, the incident acoustic
pressure waves deform the piezo-material, and are measured in terms of the potential difference
across the piezo-electrodes induced by the deformation [57,58]. A cross section of a piezoelectric linear
array transducer is shown in Figure 1a. Piezoelectric ultrasound transducer elements are usually
manufactured with a matching layer to reduce the impedance mismatch between the imaging target
and backing layer to suppress the back scattered ringing effect. Among piezo-materials, naturally
occurring crystals (quartz [59]), are seldom used in manufacturing transducers because of their weak
piezoelectric performance, low dielectric and elastic properties, and low stability [54]. Engineered
single crystals (such as lead magnesium niobate–lead titanate (PMN–PT) [60] and lead zinc niobate–lead
titanate (PZN–PT) [61]) exhibit a high coupling coefficient and a large bandwidth that can specifically
be valuable to photoacoustic imaging applications, however, the manufacturing process of these
transducers is complex, expensive, and time consuming.
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Figure 1. Geometric characteristics and manufacturing steps of a piezoelectric linear array ultrasound 
transducer. (a) A photograph of a piezoelectric ultrasound imaging probe; the cross-section of the 
sensing layer is provided in the blue dotted box [39], (b) structural difference between 2-2, 1-3 
composite material when used in an ultrasound array transducer [62], (c) process flow of conventional 
dice and fill (DF) fabrication method using 1-3 composite and epoxy filling that includes: (i) 
piezoceramic material, (ii) dice in x direction, (iii) dice in y direction, (iv) epoxy filling, (v) reverse, (vi) 
backside dicing in x and y directions, (vii) 2nd epoxy filling, and (viii) deposit conductive layer. 
Reprinted with permission from [63]. 

The most popular piezoelectric materials are piezoceramics (such as barium titanate (BaTiO3) 
[64], lithium niobite (LiNbO3) [65,66], lead zirconate titanate (PZT) [67], zinc oxide (ZnO) [68]), and 
polymers (such as polyvinylidene difluoride (PVDF) [69]). Piezoceramics consist of randomly 
oriented crystallites separated by grain boundaries. They offer strong piezoelectric properties along 
the polarization axes, and are less expensive than polymers. Polymers such as PVDF as piezo-material 
alongside their copolymer trifluoroethylene (TrFE) as the thin electrode have also been found to be 
effective for producing high frequency transducers due to their low stiffness and improved adhesion 
(compliance) when compared to traditional sputtered thick metal electrodes [70–74]. With these 
polymers, low acoustic impedance (i.e., close to the tissue impedance) can be achieved at the cost of 
low energy conversion. To further improve the quality of piezoelectric transducers, composite 
materials have been developed [75]. The piezoelectric composite consists of a piezoelectric phase 

Figure 1. Geometric characteristics and manufacturing steps of a piezoelectric linear array ultrasound
transducer. (a) A photograph of a piezoelectric ultrasound imaging probe; the cross-section of the
sensing layer is provided in the blue dotted box [39], (b) structural difference between 2-2, 1-3 composite
material when used in an ultrasound array transducer [62], (c) process flow of conventional dice and fill
(DF) fabrication method using 1-3 composite and epoxy filling that includes: (i) piezoceramic material,
(ii) dice in x direction, (iii) dice in y direction, (iv) epoxy filling, (v) reverse, (vi) backside dicing in x and
y directions, (vii) 2nd epoxy filling, and (viii) deposit conductive layer. Reprinted with permission
from [63].

The most popular piezoelectric materials are piezoceramics (such as barium titanate (BaTiO3) [64],
lithium niobite (LiNbO3) [65,66], lead zirconate titanate (PZT) [67], zinc oxide (ZnO) [68]), and polymers
(such as polyvinylidene difluoride (PVDF) [69]). Piezoceramics consist of randomly oriented crystallites
separated by grain boundaries. They offer strong piezoelectric properties along the polarization axes,
and are less expensive than polymers. Polymers such as PVDF as piezo-material alongside their
copolymer trifluoroethylene (TrFE) as the thin electrode have also been found to be effective for
producing high frequency transducers due to their low stiffness and improved adhesion (compliance)
when compared to traditional sputtered thick metal electrodes [70–74]. With these polymers,
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low acoustic impedance (i.e., close to the tissue impedance) can be achieved at the cost of low
energy conversion. To further improve the quality of piezoelectric transducers, composite materials
have been developed [75]. The piezoelectric composite consists of a piezoelectric phase (piezo-ceramic)
and a polymer phase (epoxy resin), with a certain connection mode, a certain volume or mass ratio,
and a certain spatial geometric distribution [76]. Among different materials, PZT-epoxy resin-based
composites have been the dominant material to realize the active elements of transducers in piezoelectric
transducers [77–80]. Piezo-composites are classified according to respective phase connectivity (0, 1, 2,
or 3) through which the phase is continuous. Since, there are two phases in piezo-composites they are
referred by 2-digit numbers [76]. The first digit references the piezoelectric phase and the second digit
references the polymer phase. Out of 10 conventional different combinations of connectivity [81,82],
piezoelectric 1–3 [9,13] and 2–2 [14] composites are commonly used in transducer technology and are
proven to exhibit high coupling coefficient with low-acoustic impedance and low stiffness, leading
to improved sensitivity compared to monolithic piezo-materials [62,83]. Structural schematics of
1-3 and 2-2 piezo-composites are shown in Figure 1b. The composites are limited to low energy
and low temperature applications due to their inherently low mechanical quality factor and thermal
conductivity. A quantitative comparison among different types of piezo-material in terms of their
determinant properties is provided in Table 1. Speed of sound (SOS) in biological tissues are in the
range of 1450–1580 ms−1, thus it is desirable to choose a piezo-material with similar SOS. Table 1 shows
that piezo-composite materials provide acoustic impedance and SOS similar to those of biological
tissues, with a higher coupling coefficient as compared to polymer or ceramic based piezo-materials;
that justifies the use of composites as the preferred piezo layer in ultrasound transducers.

Table 1. Material properties of widely used piezoelectric materials in manufacturing of ultrasound
transducers [65,66,76,84–86].

Piezo-materials Acoustic Impedance (MRayl) Coupling Coefficient Relative Permittivity Density (kg·m−3) Speed of Sound (m·s−1)

Quartz 13.3 0.093 4.5 2648 5000

LiNbO3 39 0.49 39 4700 7360

PZT 33.7 0.51 1470–1700 7500 4580

PMN-PT 37.1 0.58 680–800 8060 4610

PVDF 3.9 0.12–0.29 5–13 1780 2200

1-3 Composite 9 0.6 450 3673 1540

Piezoelectric transducers can be developed as single elements or aggregated into an array
(e.g., linear, convex, arc, ring, and spherical). A list of ultrasound transducer arrays that have been
used in different photoacoustic imaging applications is given in Table 2. Conventionally, the arrays are
realized through dice and fill method (DF) [75]. The DF method involves making a series of parallel cuts
on a piece of bulk piezoelectric material with a mechanical dicing saw (Figure 1c shows the steps of a
conventional DF fabrication method using 1-3 composite and epoxy filling). The material is then diced
in the perpendicular direction to produce posts with a rectangular cross section. The diced material is
backfilled with a polymer, then the base ceramic support is removed by lapping polishing [62,63,76].
For 2-2 composite, step 3 is skipped and the remaining steps are similar to those for 1-3 composite.
Other alternative methods to make piezoelectric transducers include the interdigital bonding technique,
stacked plates or lamination techniques, fiber processing, and laser machining [75].
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Table 2. Different configurations of piezoelectric ultrasound transducer arrays that are used in clinical
applications of photoacoustic imaging. BW: bandwidth.

Application Element no. Configuration Center Frequency (MHz) BW (%) Ref

Breast cancer

588 Hemispherical 1 130 [87]

512 Hemispherical 2 >100 [88]

64 Arc 1.5 130 [89]

Dermatology Single Spherically focused
54.2 97 [90]

102.8 105 [91]

Vascular
Single Focused 50 70 [92]

256 Linear 21 66 [93]

Carotid vessel
128 Linear 5 80 [94]

Single Spherically focused 100 80 [95]

Musculoskeletal
32 Unfocused 6.25 80 [96]

128 Linear 11.25 75 [97]

Adipose tissue 256 Curved 5 60 [98,99]

Thyroid
192 Linear 5.8 82.7 [100]

64 Arc 7.5 NA [101]

Gynecology &Urology 128 Microconvex 6.5 NA [102,103]

NA: not available.

One design constraint in piezoelectric transducer arrays is that the center frequency is inversely
proportional to the thickness. Simultaneously, the element length (l) and width (w) to thickness (t)
ratio of l:t ≥ 10 and w:t ≤ 0.5 must be maintained [104–106]. Despite the simplicity of DF method,
a maximum kerf width of 10 to 15 µm can be achieved using this method and hence, manufacturing
high frequency transducers (center frequency: >20 MHz) is difficult [107]. Other alternative methods
such as interdigital bonding technique, stacked plates or lamination techniques, fiber processing,
and laser machining, have a more complex manufacturing process and introduce non-uniformity [75];
for instance, in the laser machining approach, rapid divergence of the tightly focused laser leads to
thickness non-uniformity, this inhomogeneity causes interference in the signal generated from the
traducer elements. In addition to the challenges in the fabrication process, incorporation of the backing
layer in piezoelectric transducers adds manufacturing difficulty to maintain layer thickness uniformity.
Since medium range frequencies are commonly used for PAI of biological tissues, the DF method can
be utilized to manufacture piezoelectric transducer arrays.

3.2. Micromachined Ultrasonic Transducers

3.2.1. Capacitive Micromachined Ultrasonic Transducer (CMUT)

Capacitive micromachined ultrasonic transducers (CMUTs) are considered to be the next generation
of ultrasound transducers [108]. CMUT is an array of miniaturized capacitors consisting of suspended
membranes made of silicon nitride on dielectric posts, made of silicon nitride/oxide, with a conducting
layer made of aluminum/gold and a rigid silicon conducting substrate as the base with a cavity in
between. Different polymer materials (e.g., bisbenzocyclobutene) have also been used as the dielectric
posts and diaphragms of CMUT arrays [109,110]. As opposed to the conventional piezoelectric
transducers, CMUTs rely on electrostatic principles for ultrasound wave generation and reception
when a superimposed DC bias and AC signal of desired frequency is applied [111] (see Figure 2a).



Micromachines 2020, 11, 692 7 of 24

Micromachines 2020, 11, x FOR PEER REVIEW 7 of 24 

 

 

Figure 2. Capacitive micromachined ultrasonic transducer (CMUT) technology. (a) Schematic of a 
cross-section of a CMUT and its working principle, (b) steps of sacrificial release process: (i) substrate 
and insulation layer realization, (ii) sacrificial layer deposition and pattern, (iii) membrane layer 
deposition, (iv) sacrificial layer release, and (v) top electrode deposition, (c) steps of wafer bonding 
process: (i) thermal oxidation of silicon wafer (substrate), (ii) gap height and shape realization, (iii) 
bonding between silicon on insulator (SOI) and oxidized silicon wafer, (iv) thick silicon wafer etching, 
(v) buried oxide layer etching and top electrode realization [112], and (d) other CMUT designs 
fabricated using: (i) local oxidation of silicon (LOCOS) process [113], (ii) thick-buried-oxide process 
[114–117], (iii) mechanically coupled plate to the membrane [118], (iv) compliant post structure [114]. 
Reproduced with permission from [46]. 

Several process flows have been proposed by various research groups to implement CMUT 
arrays including, surface micromachining, fusion bonding, and adhesive bonding techniques [105]. 
Among those, the two most common fabrication methods of CMUT arrays are sacrificial release and 
wafer bonding processes. The basic process flow of the sacrificial release process is as follows  
(Figure 2b); initially, a sacrificial layer is deposited or grown on the carrier substrate. After membrane 
material deposition, the sacrificial layer is etched out with an etchant, specifically chosen for 
sacrificial layer material and not to etch the membrane layer material [115]. Although, sacrificial 
release process is relatively simple, reliable, and can be achieved at lower maximum processing 
temperature (250 °C) [116], non-uniform effective gap height due to the roughness in the silicon 
nitride layer causes deviations in device performance [117]. In addition, the diaphragm may induce 
substantial intrinsic stress that eventually alters the device properties. The basic process flow of the 
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such as aluminum is deposited for electrical routing. This process offers better control over gap height 
and thickness of the diaphragm with less residual stress. However, the wafer bonding process is very 
sensitive to surface roughness and cleanness that might affect the overall yield. There are a few other 
less popular fabrication processes such as local oxidation of silicon (LOCOS), thick buried oxide, 
mechanically coupled plate, and compliant post structure based CMUT arrays. The details of these 

Figure 2. Capacitive micromachined ultrasonic transducer (CMUT) technology. (a) Schematic
of a cross-section of a CMUT and its working principle, (b) steps of sacrificial release process:
(i) substrate and insulation layer realization, (ii) sacrificial layer deposition and pattern, (iii) membrane
layer deposition, (iv) sacrificial layer release, and (v) top electrode deposition, (c) steps of wafer
bonding process: (i) thermal oxidation of silicon wafer (substrate), (ii) gap height and shape
realization, (iii) bonding between silicon on insulator (SOI) and oxidized silicon wafer, (iv) thick silicon
wafer etching, (v) buried oxide layer etching and top electrode realization [112], and (d) other CMUT
designs fabricated using: (i) local oxidation of silicon (LOCOS) process [113], (ii) thick-buried-oxide
process [114–117], (iii) mechanically coupled plate to the membrane [118], (iv) compliant post
structure [114]. Reproduced with permission from [46].

Several process flows have been proposed by various research groups to implement CMUT
arrays including, surface micromachining, fusion bonding, and adhesive bonding techniques [105].
Among those, the two most common fabrication methods of CMUT arrays are sacrificial release
and wafer bonding processes. The basic process flow of the sacrificial release process is as follows
(Figure 2b); initially, a sacrificial layer is deposited or grown on the carrier substrate. After membrane
material deposition, the sacrificial layer is etched out with an etchant, specifically chosen for sacrificial
layer material and not to etch the membrane layer material [115]. Although, sacrificial release
process is relatively simple, reliable, and can be achieved at lower maximum processing temperature
(250 ◦C) [116], non-uniform effective gap height due to the roughness in the silicon nitride layer causes
deviations in device performance [117]. In addition, the diaphragm may induce substantial intrinsic
stress that eventually alters the device properties. The basic process flow of the wafer bonding process
is as follows (Figure 2c): initially, a highly doped silicon wafer is thermally oxidized to grow a SiO2

layer followed by etching the oxide layer to determine the gap height and shape of the transducer
elements. Next, silicon on insulator (SOI) wafer is brought in contact with the oxidized silicon wafer
for bonding process [118]. The bulk silicon form SOI is removed by mechanical grinding and the
buried oxide layer is etched to expose the Si diaphragm. Finally, a conducting layer such as aluminum
is deposited for electrical routing. This process offers better control over gap height and thickness
of the diaphragm with less residual stress. However, the wafer bonding process is very sensitive to
surface roughness and cleanness that might affect the overall yield. There are a few other less popular
fabrication processes such as local oxidation of silicon (LOCOS), thick buried oxide, mechanically
coupled plate, and compliant post structure based CMUT arrays. The details of these processes can be
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found in [46]. A graphical representation of the final device structure for each method is depicted in
Figure 2d.

CMUTs have gained much popularity over the last decade because they consume lower power,
provide excellent electrical and thermal stability, and have a wider fractional bandwidth [46,104,105].
Micromachining techniques have advanced to allow batch fabrication of CMUT arrays of different
shapes and frequencies on the same wafer with high yield and reduced price. CMUT technology
has also enabled realizing densely packed elements in 2D configurations for volumetric imaging
(see [119–121] for more details). The limitation of CMUT is that a large DC bias near the collapse
voltage is required to achieve adequate sensitivity. This increases the risk of dielectric charging, changes
the DC operating point which leads to an early breakdown of the device, hence greatly limiting the
biomedical applicability of CMUT [111]. Hitachi Medico, Japan, Vermon, France, Butterfly Inc., USA,
Kolo Medical, USA, Philips, USA, and Fraunhofer Institute for Photonic Microsystems (IPMS) are the
pioneers in developing and commercializing CMUT technology.

As compared to conventional piezoelectric transducers, capacitive transducers may offer higher
sensitivity and wider bandwidth as well as higher acceptance angle. These features are all important in
photoacoustic imaging, where the spectral content of PA signals is distributed over a wide frequency
range [43,122]. There is extensive literature discussing the use of CMUTs in different photoacoustic
applications [43,119,120,123,124]. In Table 3, the existing CMUT probes that have been used in
photoacoustic imaging applications are listed.

Table 3. Different configurations of CMUT that have been used in photoacoustic imaging applications.

Configuration Element no. CF (MHz) BW (%) Imaging Target Ref

2D (16 × 16) 256 3.48 93.48 Fishing line filled with ICG, pig blood, and mixture of both [120]

2D (16 × 16) 256 5 99 Tube filled with ink [125]

2D (16 × 16) 256 5.5 112 Hair sample in tissue mimicking phantom [119]

2D (Transparent) NR 3.5 118 Wire phantom [126]

2D (Transparent) Single 1.46 105 Pencil lead; loop shaped tube filled with ICG [126]

2D (Transparent) NA 2 52.3 Characterization with hydrophone [127]

Ring NA 3 NA Two polyethylene tubes [128]

Hemisphere (spiral) * 500 4 >100 Arterioles and venules [129]

BW: bandwidth; CF: center frequency, NA: not available. * Clinical application.

3.2.2. Piezoelectric Micromachined Ultrasonic Transducer (PMUT)

Piezoelectric micromachined ultrasound transducers (PMUTs) are low-cost technology with a
high sensitivity that follows the principle of piezoelectric effect. In PMUT, an ultrasound wave is
generated and detected based on flexural vibration of a diaphragm similar to a thin film on a silicon
substrate without any vacuum gap [40] (see Figure 3a). Apart from the classification of sacrificial layer
release and reverse wafer bonding methods that are similar to those used in manufacturing CMUT
(see Figure 2b,c), there are two other methods to realize PMUT array diaphragms through back and
front side etching (see Figure 3b,c) [130].

The manufacturing process of PMUT with circular diaphragms released from the front-side is
described in [131]. For front-side etching (depicted in Figure 3b), a silicon wafer with a platinized
thermal oxide layer is used as the substrate for the deposition of the piezoelectric and electrode
layer. Lithography and reactive ion etch processes are used to pattern the top electrode, etch the
thin film PZT layer to expose the bottom electrode followed by the deposition of insulation layer
and electrode track fan-out to bonding pads. Then, the SiO2/Ti/Pt/PZT/Pt thin film membranes are
released from the Si substrate with XeF2. Finally, the devices are laminated with a 15 µm thick dry
film resist to seal the etched chambers and protect the thin film stack. In backside etching [132]
(depicted in Figure 3c), the fabrication process flow starts with a Si (100) wafer [29]. As is the case
for surface micromachining, the process begins with preparation of the insulator, (e.g., SiO2 or Si3N4)
on the silicon. This is then etched from one side of the Si in preparation for boron (B) doping. Boron
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diffusion occurs at a specific rate, allowing the control of the junction depth. After doping, the surface
is cleaned and coated with low temperature oxide (LTO). Subsequently, standard photolithography
is used to pattern the backside etch window. Later, the wafer is etched with an etchant such as
ethylenediamine-pyrocatechol-water-pyrazine (EDP). After the back-side etching, a Ti/Pt bottom
electrode is deposited by e-beam evaporation, followed by deposition of PZT and the top electrode.
Finally, the top electrode and PZT are etched separately to pattern the top electrode and access the
bottom electrode.
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on top of oxidized silicon wafer, (i) SiO2, Ti, Pt, and PZT layer grown on silicon wafer, (ii) pattern top 
electrode, (iii) insulation pad deposition, (iv) Ti/Pt deposition, (v) etch through layers to realize bias, 
and (vi) release the front side diaphragm, reprinted with permission from [130], and (c) steps of 
backside etching method: (i) silicon wafer, (ii) wet oxidation, (iii) oxide etching, (iv) boron diffusion, 
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deposition, (x) TiW-Au deposition, (xi) top electrode etch, and (xii) PZT etch. Reprinted with
permission from [132].

Since ultrasound transducers become smaller with increasing frequency, the effects of surface 
damage introduced during composite machining should be taken into account because the damaged 
layer volume increases in relation to the size of active piezoelectric materials. The use of a 
micromachining technique resolves the miniaturization issue of conventional piezoelectric 
transducers by realizing narrow channels or kerfs less than 10 microns, enabling high aspect ratio of 
piezoelectric elements [62]; this problem has been resolved in PMUT. Since the sensitivity is not 

Figure 3. Piezoelectric micromachined ultrasound transducers (PMUT) technology. (a) Schematic
of a cross-section of a PMUT and its working principle, (b) fabrication process flow of PMUTs with
diaphragm defined by front-side etching method: (i) deposition of piezoelectric and electrode layer
on top of oxidized silicon wafer, (i) SiO2, Ti, Pt, and PZT layer grown on silicon wafer, (ii) pattern top
electrode, (iii) insulation pad deposition, (iv) Ti/Pt deposition, (v) etch through layers to realize bias, and
(vi) release the front side diaphragm, reprinted with permission from [130], and (c) steps of backside
etching method: (i) silicon wafer, (ii) wet oxidation, (iii) oxide etching, (iv) boron diffusion, (v) low
temperature oxide growth, (vi) oxide etch, (vii) Si etch, (viii) Ti-Pt deposition, (ix) PZT deposition,
(x) TiW-Au deposition, (xi) top electrode etch, and (xii) PZT etch. Reprinted with permission from [132].

Since ultrasound transducers become smaller with increasing frequency, the effects of surface
damage introduced during composite machining should be taken into account because the damaged
layer volume increases in relation to the size of active piezoelectric materials. The use of a
micromachining technique resolves the miniaturization issue of conventional piezoelectric transducers
by realizing narrow channels or kerfs less than 10 microns, enabling high aspect ratio of piezoelectric
elements [62]; this problem has been resolved in PMUT. Since the sensitivity is not limited unlike
CMUTs, because they do not have a vacuum gap between the top and bottom electrodes, there is
room to improve the coupling coefficient in PMUTs. Attributes of PMUTs such as low-cost with
stable operation, established fabrication process, usage of popular materials (similar to conventional
piezoelectric transducers) and capability of miniaturization [40,130–133] have made PMUTs a suitable
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candidate for photoacoustic imaging applications. Table 4 lists the studies where PMUTs have been
used for photoacoustic imaging.

Table 4. Different configurations of PMUT that have been used in photoacoustic imaging applications.

Configuration Element no. CF (MHz) BW (%) Imaging Target Ref

Linear 65 6.83 29.2 Six pencil leads at different depths [134]

Linear 80 7 68% Four pencil leads at different depths [135]

1.5D Endoscopic 256 (32 × 16) 5 30 Metal spring; tricuspid valve and right ventricle in a porcine model [136]

BW: bandwidth; CF: center frequency.

3.2.3. ASIC Technology in Physical Ultrasound Transducers

In clinical transducer arrays, each element is connected through a long wire to the analog-front-end
(AFE) unit which includes transmit and receive beamformer, preamplifier, switches, and analog-digital
converters (ADCs). Although this keeps all the electronics in one place, this arrangement causes
interferences and reflections along the cable [137,138]. The number of cable connections can be
reduced by multiplexing, however that has negative consequences such as limited bandwidth and
slower processing [139]. CMOS technology-based application specific integrated circuits (ASIC) [140]
is a novel technology, applicable to micromachined transducers, that is capable of integrating the
AFE along with preamplifiers immediately after the ultrasound waves are received [141]. Philips,
GE, and Siemens have successfully implemented ASICs within their probes (Philips X7-2t [142],
GE 6VT-D [143], Siemens Z6M [144]). ASICs are also applicable to CMUTs and PMUTs [123,134].
Recently, Kolo Medical [145] and Butterfly Network [123] have launched commercial CMUT arrays
based on SiliconWave™ and CMOS technologies, respectively. Since ASICs are custom designed, they
are expensive, and their repair processes are still highly complicated.

3.3. Comparison between Physical Ultrasound Transducer Technologies

The physical ultrasound transducer technologies including PZT, CMUT, and PMUT are compared
in terms of sensitivity, bandwidth, energy conversion and some other technical specifications in Table 5.
Quantitative measurements of piezoelectric and CMUT are based on 2.43 and 2.63 MHz transducers,
respectively, presented in [146,147] and that of PMUT are based on a 7~9 MHz transducer presented
in [134,135].

Table 5. Comparison between physical ultrasound transducer technologies. DF: dice and fill, IC:
integrated circuit, DC: direct current.

Parameters Piezoelectric (PZT) [146,147] CMUT [146,147] PMUT [134,135]

Method DF, Laminating Wafer bonding,
micromachining

Micromachining,
wafer transfer

Sensitivity (mV/kPA) 4.28 22.57 0.48

Bandwidth (%) 60–80 ≥100 50–60

Energy conversion (%) 45–75 [148] >80 2.38–3.71

SNR (dB) 18–22 [149,150] 22–87 [120,151] 10–46

IC integration Not compatible Compatible Compatible

Matching layer Required N/A N/A

DC bias N/A Required N/A

4. Optical Ultrasound Detection Technologies

The large size and optically opaque design of the widely used piezoelectric ultrasound transducers
cause technical difficulties in some of the biomedical applications where optical illumination path
and acoustic detection path must be coaxial. The mechanism that optical ultrasound detection
methods offer could be a potential solution. This method employs high-finesse optical resonators
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to detect incident elastic waves. Providing miniaturized and optically transparent ultrasonic
detectors [41], this technique yields a high sensitivity over a significantly wide frequency range,
that are together ideal for photoacoustic imaging [42]. Wissmeyer et al. and Dong et al. have reviewed
different methods with which optical ultrasound detection can be realized [41,42]. Based on different
configurations and detection parameters, optical ultrasound detection techniques can be categorized
into: (i) interferometric method and (ii) refractometric method [42]. Interferometric detection can be
realized using Michelson interferometry (MI) [152,153], Mach-Zehnder interferometry (MZI) [154,155],
doppler [156,157], or resonator [158–160]. In MI or MZI, two-beam method is employed where a
laser beam passes into two optical paths, one of which is disturbed by the ultrasound wave and
the other serves as a reference (see Figure 4a(i),(ii)). The changes in the optical path caused by the
received pressure waves cause proportional changes in the intensity of the beam at the interferometer
output [42]. In contrast to two-beam interferometers, doppler method senses ultrasound waves by
measuring doppler shift (see Figure 4a(iii)). In resonator-based technique, a micron-scale optical
resonator detects ultrasound waves (see Figure 4a(iv)); using this technique, miniaturization of the
ultrasound detection unit is feasible. The optical resonator geometries that are most frequently
used in photoacoustic imaging are Fabry–Pérot interferometers (FP) [161–163], micro-ring resonators
(MRRs) [164–166], and π-phase-shifted fiber Bragg gratings (π-FBGs) [167–169]. Refractometric
methods can be classified as intensity sensitive, beam deflectometry, and phase sensitive [41,42].
In intensity sensitive method [170,171], when the ultrasound waves pass through the interface of two
media with different refractive indices, the intensity of the beam incident on that interface varies
(see Figure 4b(i)). In the beam deflectometry method (see Figure 4b(ii)) [172,173], the interaction of
the received acoustic waves with the medium alters the refractive index of the medium, which in
turn deflects the probe beam that is eventually detected using a position-sensitive detector such as a
quadrant photodiode [42]. In phase sensitive method [174], a collimated light beam passes through an
acoustic field; the beam is deflected from the original path and perturbed; this beam is then focused
through a spatial filter (see Figure 4b(iii)); the resultant beam is collimated and detected by a charge
coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) camera; the image
produced by the camera is the intensity map of the acoustic field.

One of the major limitations of optical ultrasound detection techniques is that they are slow.
Although the scanning time can be reduced by parallelization [42,175], this would increase both
the complexity and cost of the detection unit [41]. Another limitation is that these configurations
mostly rely on continuous-wave (CW) lasers. CW interferometry is sensitive to temperature drifts
and vibrations [42]. More details about the limitations of optical ultrasound detection techniques
are given in [42,176–178]. Performance comparison between different optical ultrasound detectors is
summarized in Table 6. The sensitivity of the optical ultrasound detection methods are represented
in terms of noise equivalent pressure (NEP) that is a function of frequency [42]. By multiplying the
square root of the center frequency, NEP can be presented in terms of pressure unit (Pascal) as shown
in [41]; we used this unit in Table 6.



Micromachines 2020, 11, 692 12 of 24

Micromachines 2020, 11, x FOR PEER REVIEW 12 of 24 

 

 

Figure 4. Optical ultrasound detection techniques. (a) Interferometric methods: (i) Michelson, (ii) 
Mach–Zehnder, (iii) doppler-based sensing, (iv) resonator-based sensing, and (b) refractometric: (i) 
intensity-sensitive detection of refractive index, (ii) single-beam deflectometry, (iii) phase-sensitive 
ultrasound detection. AL: acoustic lens, US: ultrasound, BS: beam splitter, D: detector, DM: 
demodulator, LA: laser, R: reflector, US: ultrasound, CMOS: complementary metal-oxide-
semiconductor, FP: Fourier plane, L: lens, P: prism, PD: photodiode, QPD: quadrant photodiode, SB: 
Schlieren beam, SF: spatial filter. Reprinted with permission from [42]. 

Figure 4. Optical ultrasound detection techniques. (a) Interferometric methods: (i) Michelson,
(ii) Mach–Zehnder, (iii) doppler-based sensing, (iv) resonator-based sensing, and (b) refractometric:
(i) intensity-sensitive detection of refractive index, (ii) single-beam deflectometry, (iii) phase-sensitive
ultrasound detection. AL: acoustic lens, US: ultrasound, BS: beam splitter, D: detector, DM:
demodulator, LA: laser, R: reflector, US: ultrasound, CMOS: complementary metal-oxide-semiconductor,
FP: Fourier plane, L: lens, P: prism, PD: photodiode, QPD: quadrant photodiode, SB: Schlieren beam,
SF: spatial filter. Reprinted with permission from [42].
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Table 6. Summary of the performances of different optical ultrasound detection techniques. Reproduced
from [41,42].

Method Configuration Readout Element
Diameter/Dimension (µm)

Detection
Geometry

BW
(MHz) NEP (Pa) Ref.

Interferometric

MI ** Point; disk 5; 20 35; 275 [179]

MZI (free space) 90 Bar 17.5 100 (x mm) [176]

MZI (fiber optic) 125/8 Bar 50 92 × 103 (x mm) [180]

Doppler -/12 Point 10 - [181]

RI

FP (free space) ** Bar 25 20 [182]

FP (fiber optic) 125/8 Bar 50 1 [180]

MRR (integrated) 60/0.8 × 0.8 Ring 140 6.8 [183]

FBG (fiber optic) 125/8 × 100 Bar 20 450 [184]

FBG (integrated) 500/1.5 × 1.5 Bar 60 6.5 × 103 [185]

Refractometric

Intensity-sensitive 15 × 10−3 Prism 100 100 * [186]

Deflectometry 90 Needle beam 17 2.76 * [172]

Phase-sensitive 10−2 Schlieren 110 486 * [174]

* Unit: mPA·Hz−1/2, ** Diffraction limited, BW: bandwidth; NEP: noise equivalent pressure, MI: Michelson
interferometry; MZI: Mach–Zehnder interferometry; DI: doppler- interferometry; RI: resonator- interferometry.

5. Discussion and Conclusions

During the past several years, photoacoustic imaging technology has advanced in preclinical
and clinical applications [7,8,16,18,122,187–193]. The clinical translation of this emerging imaging
technology largely depends on the future of laser technology, data acquisition systems, and ultrasound
transducer technology [194]. The ideal fabrication flow of a transducer device is as follows: depending
on the application requirements such as geometrical restriction, desired penetration depth, and spatial
resolution, the type and technology of the transducers are determined; an optimized structural/material
design is then obtained by adjusting the geometric characteristics of the transducers’ layers and their
material properties; finally the transducers are built with a particular fabrication method, complexity
of which depends on the budget. Ultrasound transducers with a high sensitivity in a wide spectral
bandwidth, if cost is not a deciding factor, are ideal for photoacoustic imaging; a higher sensitivity can
help reduce the necessary optical excitation energy and improve the penetration depth.

Among various ultrasound detection technologies, piezoelectric transducers are the most
commonly used [195]; they have been made in forms of single element, as well as linear, arc,
ring, hemispheric, and 2D matrix arrays. Their main limitations are that they require a matching
layer, thermal instability, difficulty in realizing high frequency transducer arrays, and difficulty in
miniaturization. As compared to piezoelectric transducers, CMUTs offer a higher sensitivity and
a wider bandwidth, as well as a higher acceptance angle that are all important in photoacoustic
imaging, where the spectral content of the PA signal is distributed over a wide frequency range [43,122].
In addition, fabrication of miniaturized transparent transducer arrays with desired shape is feasible
using CMUTs. PMUT is a more recent technology with an improved bandwidth, higher sensitivity,
lower acoustic impedance mismatch, flexible geometry, and the capability of CMOS/ASIC integration.
PMUT, although does not outperform CMUT, relies on the established and reliable piezoelectric
technology with micromachining capability. There is extensive research focused on improving
the performance of PMUT that has led to promising results [40,130,133], therefore, despite better
performance of CMUT, PMUT may have faster growth due to existing infrastructure.

In comparison with physical transducers, optical ultrasound detection technologies offer higher
sensitivity over a significantly wide frequency range [42]. These technologies also demonstrate the
capability of miniaturization and optically transparent transducers, which are both valuable features in
biomedical imaging applications where optical illumination and acoustic detection paths must be coaxial
for higher efficiency; this is an ideal arrangement of illumination and detection units in a photoacoustic
imaging system. The main limitations of optical transducers are high sensitivity to temperature
fluctuations and vibrations, as well as system cost. Overall, NEP of the reviewed technologies,
(piezoelectric: 2 mPA·Hz−1/2 [52], CMUT: 1.8~2.3 mPA·Hz−1/2 [123], PMUT: 0.84~1.3 mPA·Hz−1/2 [196],
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optical ultrasound detection: 0.45~486 mPA·Hz−1/2 [42]) suggest that micromachined transducers
(i.e., CMUTs and PMUTs) may be the more suitable transducers for photoacoustic imaging applications.

ASIC is a complimentary technology in transducer manufacturing to integrate the analog-front-end
within the probe housing in order to reduce the noise of the transducer signal. ASIC improves the overall
performance of existing transducers and therefore could help in facilitating the clinical translation of
photoacoustic imaging. According to the technology market analyst projection, the usage of ASIC
integrated miniature ultrasound transducer probes based on micromachined technologies will see
~18% annual compound growth rate by 2023 due to the advent of micromachining processes [197].
With the fast-growing ultrasound transducer technology, numerous computational methods have also
been studied to further improve the performance of transducers by reducing noise in the transducer
signal [198,199]; the result has been higher quality images [5,200,201]. With the advancement of
ultrasound technology, more biomedical applications, which are currently performed using optical
technologies, can be realized [12,202–208].
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