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Potentially linked to the basic physiology of stress response, Gulf War Illness (GWI) is
a debilitating condition presenting with complex immune, endocrine and neurological
symptoms. Here we interrogate the immune response to physiological stress by
measuring 16 blood-borne immune markers at 8 time points before, during and after
maximum exercise challenge in n = 12 GWI veterans and n = 11 healthy veteran
controls deployed to the same theater. Immune markers were combined into functional
sets and the dynamics of their joint expression described as classical rate equations.
These empirical networks were further informed structurally by projection onto prior
knowledge networks mined from the literature. Of the 49 literature-informed immune
signaling interactions, 21 were found active in the combined exercise response data.
However, only 4 signals were common to both subject groups while 7 were uniquely
active in GWI and 10 uniquely active in healthy veterans. Feedforward mediation of
IL-23 and IL-17 by IL-6 and IL-10 emerged as distinguishing control elements that
were characteristically active in GWI versus healthy subjects. Simulated restructuring
of the regulatory circuitry in GWI as a result of applying an IL-6 receptor antagonist
in combination with either a Th1 (IL-2, IFNγ, and TNFα) or IL-23 receptor antagonist
predicted a partial rescue of immune response elements previously associated with
illness severity. Overall, results suggest that pharmacologically altering the topology of
the immune response circuitry identified as active in GWI can inform on strategies that
while not curative, may nonetheless deliver a reduction in symptom burden. A lasting
and more complete remission in GWI may therefore require manipulation of a broader
physiology, namely one that includes endocrine oversight of immune function.
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INTRODUCTION

Gulf War Illness (GWI) is a poorly understood illness (Wolfe
et al., 1998) associated with deployment to the Persian Gulf
between 1990 and 1991. Varying significantly according to a
veteran’s assigned location in theater (Steele et al., 2012), GWI
presents as a complex constellation of symptoms that include
fatigue, widespread pain, cognitive and memory problems,
skin rashes, gastrointestinal and respiratory difficulties (White
et al., 2016). Affecting several of the body’s principal regulatory
systems (Unwin et al., 1999; Bourdette et al., 2001; Kang et al.,
2003) GWI is now thought to involve a neuroinflammatory
pathology arising from exposures to a range of organophosphates
including pyridostigmine, DEET and sarin exacerbated by
environmental stressors in theater (Amourette et al., 2009;
Barbier et al., 2009; O’Callaghan and Miller, 2019). Among
these, our work and the work of others suggest alterations to
the hypothalamic-pituitary-adrenal (HPA) response to challenge
(Golier et al., 2006, 2007; Rice et al., 2016; Craddock et al.,
2014) and that such alterations may become persistent and
stable dysregulations (Rice et al., 2016). Exercise has been
used as a minimally invasive means of interrogating HPA axis
response (Duclos and Tabarin, 2016), one that is especially
appropriate given that a chief presenting symptom of GWI
is debilitating fatigue. Though data suggest that peak exercise
capacity is comparable (Nagelkirk et al., 2003), these individuals
report higher fatigue (Cook et al., 2003) and differ significantly
from healthy control subjects in their ability to recover from
these challenges. More recently, Rayhan et al. (2013a) have
shown that these differences in recovery from exercise may
support the identification of GWI subgroups with significant
differences in autonomic response and distinct cognitive vs.
physical constructs of Chalder fatigue profile (Chalder et al.,
1993). Exercise induced exacerbation of symptoms or post-
exertional malaise (PEM) (McManimen et al., 2016) has also
emerged as a distinguishing feature in a sister illness myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS) (Snell
et al., 2013) with these individuals achieving significantly lower
values for oxygen consumption and workload at peak effort
and at the anaerobic threshold when re-assessed 24 h after
an initial maximal exercise challenge. Our own pilot work has
shown that this altered capacity for recovery from exercise
also manifests as distinct trajectories in immune marker co-
expression (Broderick et al., 2012) and that these illness-specific
alterations differ between men and women (Smylie et al., 2013).
Signaling patterns that emerge in response to exercise were
structurally different in GWI with the latter drawing on a larger
network of alternate signaling patterns in an effort to respond
adequately to challenge (Broderick et al., 2011). Moreover,
these differences were linked to changes in symptom severity,
extending through multiple layers of biology from altered
patterns of gene expression (Whistler et al., 2009) along select
signaling pathways (Broderick et al., 2013). Not unexpectedly,
more recent work has shown this also extends to altered cell
metabolism (Koslik et al., 2014), an experimental observation
further validated with in silico simulations of mitochondrial
function (Lengert and Drossel, 2015).

While this earlier work by our group supported the association
of symptom clusters with characteristic patterns of immune
marker co-expression, it was based on samples collected prior
to exercise, at peak effort and at 4 hours post-exercise. As
a result, the experimental sampling frequency was insufficient
to support the identification of classical rate equations models
(Vashishtha et al., 2015) that in turn might provide additional
insight into the causal mechanisms driving altered immune
signaling in GWI. The objective of the present work is to discover
such causal mechanisms that might become characteristically
activated during exercise in GWI as well as elements of immune
regulation that might be conspicuously absent. Toward this we
have extended sampling to include 8 blood draws collected prior
to, during and up to 4 h after peak exercise in n = 12 veterans
with GWI and n = 11 healthy control veterans (HC). In an
effort to cast this data in the context of a priori knowledge,
we apply as a mechanistic scaffold an extension of a literature-
based model of immune signaling (Fritsch et al., 2013) previously
reported by our group. We group individual cytokine and
chemokine measurements into the functional sets reported by
Folcik et al. (2007, 2011) and apply a rate equation framework
which leverages the basic topological features of biological
networks to infer regulatory control actions rather than rely on a
more conventional structurally naïve fit to data (Vashishtha et al.,
2015). Candidate causal relationships inferred from the data are
then projected onto documented signaling mechanisms extracted
from the literature. Results of this analysis again suggest that
immune response to exercise in GWI veterans draws on a set of
known immune signaling mechanisms that differs significantly
from the signaling patterns expressed in healthy veterans.
Many of these differences involved mechanisms mediating the
coordinated activity of innate immune response with the Th1 and
Th17 adaptive immune axes. Consistent with earlier exploratory
work by our group, simulated interventions directed at disrupting
these abhorrent regulatory motifs resulted in only partial rescue
suggesting that lasting remission in GWI may require therapeutic
modulation of a broader physiology, namely one that includes
endocrine oversight of immune function (Craddock et al., 2015).

MATERIALS AND METHODS

Cohort Recruitment
A subset of n = 12 GWI subjects and n = 12 healthy control
(HC) but sedentary Gulf War era veterans were recruited from
a larger ongoing study at the Miami Veterans Administration
Medical Center. Subjects were male and ranged in age between 40
and 60, and of comparable body mass index (BMI), ethnicity and
duration of illness. Inclusion criteria was derived from Fukuda
et al. (1998) and consisted in identifying veterans deployed
to the theater of operations between August 8, 1990 and July
31, 1991, with one or more symptoms present after 6 months
from at least 2 of the following: fatigue; mood and cognitive
complaints; and musculoskeletal complaints. Subjects were in
good health prior to 1990, and had no current exclusionary
diagnoses (Reeves et al., 2003). Medications that could have
impacted immune function were excluded. Use of the Fukuda
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definition in GWS is supported by Collins et al. (2002). Healthy
control subjects were recruited from the veteran population, and
the local National Guard units to adjust for military training and
vaccination protocols. They were self-defined as sedentary, and
were matched to GWI by age, gender, race/ethnicity and BMI
as closely as possible. Summary results of the included subset
of subject demographics and exercise performance are listed
in Table 1. Additional details about recruitment inclusion and
exclusion criteria for this cohort can be found in Broderick et al.
(2013). Subjects are further described in greater detail with regard
to symptom burden measures in Table 1. These measures include
the Medical Outcomes Study 36-item short-form survey (SF-
36) (Ware and Sherbourne, 1992) assessing health-related quality
of life, the Multidimensional Fatigue Inventory (MFI) (Smets
et al., 1995), a 20-item self-report instrument designed to measure
fatigue, the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al.,

TABLE 1 | Summary of demographic variables and exercise performance.

Demographic variable HC GWI

Subjects 12 12

Race

Caucasian 0 4 2

African American 1 6 4

Asian 2 2 6

Age (years) 47.1 (1.3) 45.0 (1.2)

Body mass index (BMI) 30.1 (1.5) 33.4 (1.6)

Time to VO2 max (min) 9.8 (1.1) 6.7 (1.6)

VO2 max (ml/min/kg) 25.4 (1.8) 21.0 (2.2)

SF36 Health Survey (range 0–100, 100 (optimal)

Vitality 73.3 (4.0) 53.8 (5.9)

Phys function 80.8 (5.0) 43.8 (9.2)

Physical limit 77.1 (10.9) 14.6 (8.9)

Emotional limit 86.1 (7.7) 25.0 (11.7)

Emotional wellness 58.3 (1.3) 44.3 (4.1)

Social function 82.3 (5.2) 28.0 (8.9)

Pain 64.6 (6.7) 34.2 (7.7)

General 60.4 (3.8) 37.1 (4.2)

Multidimensional fatigue inventory (MFI)

(subscale 0–100, 100 (fatigued)

General fatigue 34.1 (6.7) 71.7 (6.6)

Physical fatigue 25.8 (7.3) 68.0 (4.8)

Mental fatigue 36.8 (8.3) 80.9 (5.2)

Reduced activity 28.5 (7.0) 62.1 (6.2)

Red motivation 22.0 (5.2) 56.2 (6.6)

PSQI score 7.4 (1.7) 14.1 (1.2)

(0 = No difficulty; 21 = severe difficulty)

Davidson trauma scale (TS)

(total score 0 – 136, 136 severe)

DTS total 29.0 (8.9) 88.8 (8.7)

Intrusiveness 9.1 (3.1) 26.6 (2.6)

Avoidance/Numbness 9.3 (3.4) 33.9 (4.1)

Hyperarousal 11.4 (3.7) 30.8 (2.0)

Demographic variables such as Race, average age, BMI and exercise performance
VO2 max levels and average time to VO2 max, as well as average symptom burden
measures with their respective standard errors () for Healthy control (HC) and GWI.

1989) and the Davidson Trauma Scale (DTS) (Davidson et al.,
1997) and instrument designed to assess symptoms of post-
traumatic stress disorder (PTSD).

Ethics Statement
All subjects signed an informed consent approved by the
Institutional Review Board of the University of Miami and
the Miami Veterans Affairs Medical Center. Ethics review and
approval for data analysis was also obtained by the IRB of the
University of Alberta.

Graded eXercise Test
All subjects included in the study (HC and GWI) underwent
a standard maximal Graded eXercise Test (GXT) to stimulate
immune response. A Vmax Spectra 29c Cardiopulmonary
Exercise Testing Instrument, Sensor-Medics Ergoline 800 fully
automated cycle ergometer, and SensorMedics Marquette MAX
1 Stress ECG (GE Healthcare, Chicago, IL) were used during the
GXT. Following the McArdle protocol (McArdle et al., 2007),
subjects pedaled at an initial output of 60W for 2 min, followed
by an increase of 30W every 2 min until the subject reached: (1) a
plateau in maximal oxygen consumption (VO2); (2) a respiratory
exchange ratio > 1.15; or (3) the subject stopped the test. A total
of 8 blood draws were conducted on each subject. First blood
draw (T0) was conducted prior to exercise following a 30-min
rest. Second and third blood draws were conducted ∼3–5 min.
after starting the exercise test (T0 + 3) and upon reaching peak
effort (VO2 max) (T1) respectively, followed by blood draws at
10, 20, 30, 60 min., and 4 h after VO2 max (T1 + 10, T1 + 20,
T1 + 30, T1 + 60, and T2). All control subjects were screened
as sedentary upon recruitment on the basis of their response
to a questionnaire (Hurwitz et al., 2009). Analysis in this same
cohort (Smylie et al., 2013) of the weight-adjusted maximum
VO2 measured in ml/min/kg indicated a decline in the average
maximum VO2 achievable with healthy controls performing best
(p = 0.04). In light of this finding we suggest that results presented
here be interpreted as immune response at maximum perceived
exertion but not necessarily at equivalent exercise intensity. We
consider reduced exercise capacity to be another symptom of
GWI. The characteristic immune response patterns measured
at maximum perceived exertion capture this implicitly. Exercise
performance obtained in this cohort for subjects in each group
are reported in Table 1.

Cytokine Profiling
Plasma was separated from each sample within 2 h of collection
and stored at −80◦C until assayed. Concentration levels of 16
cytokines were measured in plasma using Quansys reagents
and 96 well plates based chemiluminescent imaging instrument
(Quansys Biosciences, Logan, Utah). The Q-PlexTM Human
Cytokine- Screen (16-plex) is a quantitative enzyme-linked
immunoabsorbent assay (ELISA), where 16 distinct capture
antibodies have been absorbed to each well of a 96-well plate in
a defined array. The range of the standard curves and exposure
time were adjusted previously to provide reliable comparisons
between subject groups in this illness population at both low
and high cytokine concentrations in plasma. Quadruplicate
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determinations were made, i.e., each sample was run in duplicate
in two separate assays. The standard sample concentrations
used to establish second order polynomial calibration curves
for each cytokine as well as the detection limits for this
assay have been described in detail in previous work by our
group (Broderick et al., 2010). In brief, these support an
average coefficient of variability (CV) of 0.20 for inter-assay
comparisons and a value of 0.09 for intra-assay repeatability. Raw
values for cytokine concentration levels (pg/ml) are reported in
Supplementary Table S1.

Quantitative Analysis
Statistical Evaluation of Cytokine Data
Prior to analysis, the raw cytokine concentration data was filtered
and normalized. All the cytokine levels that were undetectable
by ELISA (zeros) were replaced by the minimum concentration
level of that particular cytokine observed across all the subjects
(HC and GWI). The raw cytokine data was linearly interpolated
across the entire time course using the minimum time interval
(i.e.∼3 min) to provide equally spaced sample estimates. Further,
interpolated data was log2 transformed and normalized for every
cytokine across both groups by subtracting the average log2
transformed cytokine levels at rest (T0) in the HC group for
each cytokine. This normalized log2 transformed data is finally
converted to fold change by calculating the log2 normalized
cytokine concentration exponent of 2. Summary statistics of the
filtered and normalized cytokine concentration levels (pg/ml) are
reported in Supplementary Table S2. It is important to note that
these summary statistics are applied to measurements sharing
the same target sampling time. As differences in alignment
of individual time courses arise as a result of the exercise
capacity and response kinetics of each individual, important
response features may be easily obscured. This is only further
complicated in the case of more complex oscillatory behavior
such as that observed in this exercise response data as reported
previously by our group (Lyman et al., 2019). For this reason,
we have focused the analysis on this work on the recovery
of network motifs and response mechanisms active in each
individual subject’s exercise challenge and common across
individuals within each group. Though indicative of overall
trends, the statistics presented in Supplementary Table S1 were
computed primarily as an indication of the range of values
recorded. Accordingly, we identified an outlier in the healthy
control subjects with out-of-range expression levels in several
cytokines, namely IL-2, IL-6 and IL-13. This subject was removed
from further study leaving n = 11 healthy control subjects
(Supplementary Figure S1).

Differences in the time course response to exercise for
individual cytokines separating one subject from the next were
characterized using the SMETS (Semi Metric Ensemble Time
Series) measure. This measure was developed for the comparison
of multiple time series of arbitrary and unequal length (Tapinos
and Mendes, 2013) and is well suited to the misalignments in
sampling time and the varying duration in exercise response
observed in this work as a result of differences in fitness level
and illness severity. In order to generate distribution statistics

for this measure of divergence in trajectory we combined a leave-
one-out cross-validation strategy with a standard bootstrapping.
More precisely, 11 subsets n = 10 of 11 (leave-one -out in HC)
subject time series were randomly sampled without replacement
and were compared with another equal-sized group of 11 subsets
of n = 10 of 12 (leave-two-out in GWI) subject time series also
randomly sub-sampled without replacement. This was done for
each of the 16 cytokines. Intra-group and inter-group SMETS
values were calculated by comparing each of the 10 subsampled
time series from one group with each other as well as with each
of the 10 subsampled time series from the opposing group. This
is repeated 11 times. Differences in the resulting distributions of
intra and inter-group SMETS values were tested for significance
using the standard two-sample t test and the Wilcoxon ranksum
test (Supplementary Table S3).

Aggregating Cytokines Into Functional Sets
In previous work, our group updated and further developed
the network of documented immune signaling interactions
used by the agent-based Basic Immune Simulator (Folcik
et al., 2007) to create an augmented model of innate and
adaptive immune cell signaling (Fritsch et al., 2013). In this
model, various adaptive immune cell subsets were aggregated
into functional groups (namely, T helper cell populations
Th1, Th2, Th17, and cytotoxic T lymphocytes CTL) as
were sub-populations of innate immune cells (natural killer
cells NK and dendritic cells DC). In much the same way
individual cytokines were grouped based on the predominant
cell population of origin and mode of action (see Table 2).
For example, cytokines released primarily by monocytes
(DCs) were grouped into a monokine (MK) group whereas
cytokines released by lymphocytes such as NKs, Th1, Th2,
and CTLs are grouped into a cytokine group (CK). These
groups were further subdivided into monokine MK1 and
cytokine CK1 forming the pro-inflammatory cytokine
functional sub-groups, with MK2 and CK2 comprising the
corresponding anti-inflammatory sets. The remaining cytokine
groups were composed of individual cytokines (e.g., MK15
contains only IL-15).

TABLE 2 | Aggregated Cytokine groupings.

Node ID Group Cytokines

1. MK1A IL-1(α, IL-1(β, IL-8 and IL-12

2. MK1B IL-1(α, IL-1(β, IL-8 and IL-12

3. MK2 IL-10

4. MK6 IL-6

5. MK15 IL-15

6. MK23 IL-23

7. CK1 IL-2, IFN(γ, TNF(α and TNF(β

8. CK2 IL-4, IL-5 and IL-13

9. CK17 IL-17

Resulting aggregated variables used in the extracted cytokine network from the
immune signaling model reported in Fritsch et al. (2013). MK1A and MK1B
represent the first and second principal components respectively obtained from
individual cytokines.
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In order to take advantage of this documented signaling
network it was necessary to aggregate the individual cytokines
measured experimentally in this work into their corresponding
functional sets as defined in Fritsch et al. (2013). In cases where
the functional sets contained multiple cytokines, such as MK1,
CK1 and CK2, the activation level for the aggregate set was
estimated by applying principal component analysis (PCA) to
the concentration levels of the constituent cytokines and using
the first principal component (PC) or latent vector score as a
measure of joint expression. As a general rule, a second additional
principal component was used only if the first component
captured less than 80% of the variability in the aggregate set.
This was the case for MK1, which was scored as two separate
co-expression patterns MK1A and MK1B (Tables 2, 3).

As shown in Table 3, cytokine co-expression patterns were
relatively consistent across subject groups for sets MK1A and
B, with over 75 and 10% of the overall variability captured by
the first and second principal components (PC), respectively.
This was not the case for CK1 and CK2 where the shared
variability captured by the first principal component PC1 was
visibly lower in GWI (0.41 and 0.68, respectively) suggesting that
cytokines aggregated under CK1 and CK2 behaved less cohesively
in the illness group. With the exception of set CK2, the loading
coefficients for PC1 were consistent in sign (positive or negative)
across both subject groups. Accordingly, in order to create a
common coordinate system and facilitate the comparison of
network structures across groups, aggregate expression for these

TABLE 3 | Variance captured by the first principal component (PC1) for
aggregated cytokine variables and their respective loadings.

Variable Aggregated cytokines Healthy GWI Healthy + GWI

MK1a Tot Variance (PC1) 0.7568 0.8292 0.7873

IL-1a 0.9877 0.9974 0.9931

IL-1b −0.0594 −0.0447 −0.0536

IL-8 −0.1386 −0.0502 −0.0968

IL-12 −0.0424 −0.0267 −0.0378

MK1b Fract. Tot Variance (PC2) 0.1321 0.1075 0.121

IL-1a 0.1437 0.0513 0.0984

IL-1b 0.2803 0.3054 0.2972

IL-8 0.9413 0.9039 0.9267

IL-12 −0.1218 −0.2950 −0.2078

CK1 Tot Variance (PC1) 0.9234 0.4105 0.8874

IL-2 0.9917 0.5938 0.9913

IFN-y −0.0245 −0.2533 −0.0269

TNF-a 0.0031 0.7621 0.0149

TNF-b 0.1261 0.0492 0.1278

CK2 Tot Variance (PC1) 0.9811 0.6788 0.9613

IL-4 0.0963 0.9225 0.0921

IL-5 0.7585 −0.0470 0.7568

IL-13 0.6445 −0.3832 0.6471

In healthy and GWI models data from respective individual groups was used for
PCA whereas all the data was combined in HC + GWI model for PCA. Variance for
MK1b represents the fractional variance covered by second principal component
(PC2). Data was normalized, interpolated and converted to fold change before the
PCA calculations.

sets was estimated using a PCA model based on profiles from all
subjects thereby capturing co-expression patterns shared by both
groups (HC and GWI).

Creation of Literature-Based Reference Networks
Building on our earlier literature-based model describing
cytokine-cell immune signaling (Fritsch et al., 2013), we
removed immune cell nodes lying between any two cytokines
to create an abstracted graph of cytokine-cytokine interaction.
Only edges connecting first (cytokine-cytokine) and second
neighbor cytokines (cytokine-cell-cytokine) were included in
the final network. In the latter case, the aggregate mode of
action linking cytokines was determined by multiplying the
sign of the intervening edges. For example, in Fritsch et al.
(2013) the MK2 cytokine set inhibits the dendritic cell set
(DC1) which typically promotes the secretion of MK15. In
the abstraction presented here this translates into a direct
inhibition of MK15 by MK2. Also, as MK1 was divided into
two subsets, note that all outgoing and incoming edges for
MK1 were directly propagated to MK1A and MK1B nodes
(Supplementary Figure S2).

To further consolidate this network, we also extracted
interactions linking the 16 cytokines measured in our
experiments using the “Search Tool for the Retrieval of
Interacting Genes” (STRING) database (Szklarczyk et al.,
2015). Interactions in the STRING database are included and
scored on the basis of several supporting sources such as co-
occurrence in manually curated literature and co-expression
in available experimental databases to name a few. Every
interaction in the STRING database was assigned a confidence
score with direction and type of regulation predicted for
most edges (except direct physical binding) based on natural
language processing (NLP) (Szklarczyk et al., 2015). It is
important to note that all the interactions retained in the
extracted cytokine network had a confidence score of ≥ 0.80
with respect to their predicted direction based on human
studies. Source and target cytokine nodes associated with
each edge along with supporting evidence and confidence
scores are summarized in Supplementary Table S4. The
combined confidence score supporting every association is
computed by combining the probabilities from the different
evidence channels and corrected for the probability of randomly
observing an interaction. For a more detailed description of
these scores please see von Mering et al. (2005). We then
translated this basic cytokine-cytokine network into one linking
the 9 cytokine sets described in Fritsch et al. (2013). Since
MK1A, MK1B, CK1 and CK2 individually represent several
cytokines in one aggregated variable, multiple edges among
constituent cytokines within or between aggregate sets were
also rationalized using the union of all incoming and outgoing
edges for that cytokine sub-network. This yielded an abstracted
network with 38 edges linking 9 aggregate sets from an initial
directed network of 47 edges linking 16 individual cytokines
extracted from the STRING database. As might be expected
these two reference networks overlapped substantially with 30
interactions sharing source, target and direction across both
networks. Building on this consensus and including interactions
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unique to each, we created a single unified reference network
with 50 directed edges linking 9-aggregate cytokine nodes
(Supplementary Figure S2).

Inferring Directed Cytokine Networks From Data
An ordinary differential equation (ODE) based model was
used to infer directed interactions among the grouped cytokine
variables. These models have been widely used for the inference
of regulatory networks. In this model, we use a simple linear rate
equation to describe the rate of change of concentration of every
aggregated cytokine variable as described in Eq. 1:

∂xi
∂t
= ai,1x1 + ai,2x2 + . . .+ ai,nxn (1)

where ai,j describes the influence of network node j on the rate
of change of expression of network node i. A positive value of ai,j
represents activation of node i by node j, negative value represents
inhibition and zero value represents no interaction between node
j and i. Eq. 1 can also be rewritten in the matrix form (Eq. 2).

Ẋ (t) = A · X(t) (2)

where X is an n × 1 vector and A is an n × n matrix containing
the weight of all edges in the network.

Consistent with our recent work (Vashishtha et al., 2015),
we used an extension of standard PCA called partial least
squares (PLS) regression (Wold et al., 2001a,b) for the
estimation of latent vectors. Furthermore, we used the broken-
stick technique, a variant of Horn’s technique (Horn, 1965)
to select an appropriate number of latent vectors to be
retained for identification of the unknown parameter set A
in Eq. 2. Note that, this method was chosen over Bartlett’s
method (Bartlett, 1950), which is more permissive and therefore
more prone to false positives in the inference of interactions
(Jackson, 1991; Vashishtha et al., 2015). Parameters of the
broken stick method were tuned to provide the maximum
F score values for the inference of the combined literature-
based reference network described in the previous section
(Supplementary Figure S2). A global optimization method,
namely constrained simulated annealing, was used to balance
computational cost and thoroughness. All algorithms were
encoded in MatLab using the functions available in the
Statistics, Machine Learning and Global Optimization toolboxes
(The MathWorks, Inc., Natick, MA, United States). For
more details about parameter tuning we refer the reader to
(Vashishtha et al., 2015).

Network Analysis
Graph edit distance
Weighted Graph edit distances (GED) (Bunke, 2000) were
calculated to quantify the topological differences among the
networks of same group (intra GEDs) as well as between
networks of two groups (inter GEDs). A weighted Graph Edit
Distance (GED) corresponds to the “cost” associated with the edit
operations to transform one graph into another (Dickinson et al.,
2004; Harper et al., 2004). Here, we make the cost of these edit
operations proportional to the differences in the edge weights.

The weighted GEDA,B between two networks of order N with
adjacency matrices A and B is:

GEDA,B =

N∑
i=1

N∑
j≥1

∣∣aij − bij
∣∣ (3)

where ai,j and bi,j are the weights for an element in
adjacency matrix A and B, respectively. Statistical significance
of the edit costs separating networks across illness groups
compared to networks within groups was based on repeated
random sub-sampling of subjects. Local restructuring of the
networks that drive these global topological differences was
described in terms of node centrality measures such as
betweenness centrality, degree centrality and closeness centrality.
Furthermore, ‘hubs’ and ‘authority’ centrality scores were used
to further differentiate the local topological features of healthy
networks from GWI networks. Details of these metrics are
described in Supplementary Data Sheet 3. A general review of
basic metrics used to describe global and local network structure
and their applications in biology may also be found in Barabási
and Oltvai (2004) and Huber et al. (2007).

All calculations related to network identification and
rationalization as well as the analysis of network attributes
were conducted with the MATLAB software environment
(The MathWorks Inc., Natick, MA, United States). Note
that, MatLab 2016a was used for node centrality measures
calculations. The graphical rendering of directed networks
was performed using ‘Orthogonal’ layout of yEd graph editor
program (yWorks Gmbh, Germany).

Simulating network dynamics
The dynamic behavior supported by the directed cytokine
networks identified in this work was explored via a discrete
state simulation engine NetSim (Di Camillo et al., 2009) where
the target transition state for any given cytokine node at time
t + 1 is determined by resolving the fuzzy logic statement
describing the regulation of that node. A sigmoidal activation
function is then used by NetSim to modulate the incremental
transition from the node’s current state in the direction of its
target state. This incremental change in state is weighted by a time
constant capturing both synthesis and degradation dynamics. In
all simulations the parameters describing node dynamics were
sampled from Gaussian distributions with mean and standard
deviation as recommended by the authors. As recovery dynamics
are of specific interest here, the initial states for each simulation
were set to values measured at peak exercise effort.

RESULTS

Although the exercise capacity of GWI veterans approaches that
of healthy controls in terms of time required to reach maximal
VO2, they differ significantly in their ability to recover from this
challenge. This impaired recovery presents as an exacerbation
of GWI symptoms and has been documented in several studies
as post-exertional malaise (Cook et al., 2003; Rayhan et al.,
2013b). Therefore, we have focused in this work on isolating
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and comparing the networked response of the immune system
in GWI subjects to that of HC subjects in the recovery phase.
Specifically, we consider the 4-h time period starting at the
VO2 max time point and described by 6 out of the 8 time
points measured.

Divergence in Exercise Response of
Individual Cytokines
The distribution of SMETS values describing the separation of
time course response in the recovery phase for each individual
cytokine both within and between subject groups was calculated
using a leave-one-out repeated sub-sampling scheme. The mean
values and standard error for intra-group, pooled intra-group
(HC + GWI) and inter-group SMETS values describing the
separation of the exercise response time courses are reported in
Supplementary Table S3A. The corresponding SMETS median
values and the median absolute deviation from the median
(MADM) are reported in Supplementary Table S3B. Results
show that the time course of individual cytokine responses
differed significantly between subject groups for most cytokines
surveyed based on the Wilcoxon ranksum test and the Student’s t
test (Supplementary Table S3C). The SMETS values describing
the divergence of responses across groups were significantly
different from those computed for subjects within each group
separately or when these within-group measures were pooled.
The only exceptions were IL-1α, IL-23, TNFα and TNFβ,
which did not differ significantly in response course between
groups when compared to the separation of responses between
healthy control subjects. Of those cytokines that differed most
significantly between groups, divergence in IL-2, 13 and 17
responses between GWI from HC subjects produced SMETS
values at least 1.5 times those corresponding to the separation
of subjects within the same group. It should be noted that in
general, cytokine dynamics were more diverse in HC subjects,
with higher mean SMETS values separating these subjects in 11
of 16 cytokines. However, only in the case of IL-5, 10, 17, 23 and
TNFβ were these within group differences statistically significant.

Remodeling in Networks of Cytokine
Sets Inferred From Experimental Data
In order to align the empirical analysis with the text-mined
mechanistically informed model we first projected the cytokine
profiles measured at the 6 recovery phase time points into
the space defined by the aggregate functional sets described in
Tables 2, 3, then captured the response trajectories of these sets
by fitting the parameters of a first order linear ODE (Eq. 1).
This was performed for each individual subject in each group
separately such that subject-specific immune response networks
were created that captured the direction (from source to target)
and type (activating or inactivating) of interaction linking these
functional sets of mediators. To isolate the most robust network
features specific to each illness group a combination of leave-one-
out cross-validation and bootstrapping was applied as described
in the Methods section. We re-sampled 100 random subsets of
10 subjects without replacement from the complete sets of 11 HC
and 12 GWI subjects, respectively. Individual cytokine networks

were inferred for every subject of each subset. Within each
subsample a consensus network was identified by majority rule
whereby only those interactions (edges) shared by at least 6 out
of the 10 networks were retained. These 100 consensus networks
identified for each illness group were used to support comparative
statistics describing the significance of network remodeling in
GWI (Supplementary Figure S3 and Supplementary Table S5).

Comparing these empirical networks in terms of their overall
structure, we found significant remodeling of the topology across
groups with the graph edit distance (GED) separating GWI from
HC networks significantly exceeding the pooled GED separating
networks within the same subject group (Figure 1) (HC and
GWI) (pinter <<< 0.01). In addition, we found that within-
group GED was significantly higher in HC compared to GWI
(pintra <<< 0.01) indicating that consensus networks were more
topologically diverse in this group. To assess the nature of
this remodeling we quantified the role of each cytokine set in
the signaling network in terms of centrality measures such as
node degree, betweenness centrality and closeness centrality. In
addition, hub and authority scores were calculated to further
highlight cytokine sets with dominant roles in determining the
overall network topology (Supplementary Table S5). Analysis of
these measures pointed to a major reshuffling of roles for each
cytokine set in the GWI consensus networks. The differences
in the median values for the weighted betweenness centrality
scores were significant for all cytokine functional sets except
MK1B (p < 0.05) (Supplementary Table S5A). In general,
median scores for the weighted betweenness centrality were
higher in HC consensus networks (Supplementary Figure S3)
with MK6 (0.25), MK15 (0.21), and CK2 (0.18) nodes being most
influential and differing significantly from betweenness values in
the corresponding GWI networks (p < 0.01) (Supplementary
Figure S3 and Supplementary Table S5A). Conversely among
the GWI immune networks, cytokine functional sets MK1B

FIGURE 1 | Significantly altered immune circuitry. Graph edit distance (GED)
distributions comparison between HC (blue) and GWI (orange) intra GEDs and
inter group GEDs (yellow).
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(0.20), MK2 (0.16), and MK1A (0.14) exhibited the highest
weighted betweenness centrality values, though only in the case of
MK2 (p < 0.01) did these differ significantly from corresponding
values in the HC networks. Recall that a network node with a
high betweenness centrality can be thought of as a gatekeeper
of information transfer from one segment of the network to
another. With this in mind, these analyses suggest that the flow
of immune messaging is being directed with less coordinated
oversight in GWI and that most of the gatekeepers active in HC
have relinquished this role in favor of disproportionately central
role for the anti-inflammatory functional set MK2 (IL-10).

This loss of a more centrally mediated oversight of immune
signaling in GWI also manifests as broader and more diffuse
connectivity between cytokine functional sets in these networks.
Indeed, individual cytokine sets could more readily influence
(outcloseness centrality), and in turn be more readily affected
by other nodes (incloseness centrality) in the GWI immune
networks than was the case for HC networks (p < 0.05)
(Supplementary Figure S3 and Supplementary Table S5B).
For example, MK23 (3.74), CK2 (2.75), and MK2 (2.57) were
the cytokine functional sets most accessible to the broader
immune signaling network (weighted incloseness centralities)
in the HC group. In GWI, this greater accessibility was
displaced in favor of MK1B (4.38), CK1 (4.35), and MK1A
(4.24) in GWI. In terms of breadth of action MK6 (2.96),
MK1B (2.67), and MK15 (2.61) displayed the highest median
weighted outcloseness in the HC network whereas MK2 (4.25),
MK15 (4.11), and MK23 (3.94) functional sets exercised the
broadest reach in GWI immune signaling networks. Not
surprisingly these differences are in close alignment with median
indegree and outdegree values, which were also generally
higher in GWI networks (Supplementary Table S5C). With the
exception of CK2, all nodes differed significantly in indegree
and outdegree between HC and GWI with MK6 undergoing
the biggest shift in indegree and MK2 the largest shift in
outdegree centrality.

Any shift in connectivity might be expected to have greater
significance if it were to disproportionately favor engaging with
more influential nodes. Changes in incoming connectivity that
result in an increased recruitment of influential source nodes
can be quantified as an increase in authority score. Likewise, an
increase in outreach to highly influential nodes would translate
into an increase in the hub score for that node. Here again
we found a broad shift in the patterns of engagement with
influential nodes across immune networks in each subject group
(Supplementary Table S5D). For example, in the GWI networks
identified here, we found that the cytokine functional set CK1
more than doubled in hub score compared to HC, while its
authority score decreased by a factor of 4. These measures
suggest that the CK1 functional set (IL-2, IFNg, TNFa, and
TNFb) increased its regulatory broadcasting and preferentially
directed this toward more influential cytokine functional sets
despite receiving less prompting by incoming signals from these
influential mediators. Similarly, nodes MK1A, MK1B, and MK2
show increased regulatory broadcasting with only modest (fold
change (FC) < 2) changes in authority score. Conversely MK15
and MK 23 show markedly lower levels of broadcasting to

influential nodes despite similar or higher prompting. Differences
across these metrics are summarized in Table 4.

Collectively these results suggest that the pattern of
interactions linking cytokine functional sets has been significantly
altered in GWI and that this remodeling has resulted in a re-
assignment of the roles these cytokine sets play as information
brokers within the immune signaling network. Immune signaling
appears more diffuse and less centrally mediated in GWI, with a
general trend toward inflammatory functional sets exercising a
broader and more influential signaling with less prompting than
in needed in HC.

Concordance With a Literature-Based
Reference Network
Based on the subsampling scheme described above, 100
subsamples were created in each of the HC and GWI
clinical phenotypes. These 100 subsamples each consisted of 10
subject-specific empirical networks. When casting these against
documented signaling mechanisms we found that they were
sufficiently diverse in both GWI and HC to collectively canvas
over 80% of the documented immune circuitry recruited during
exercise in at least half of the instances (median recall 0.82 HC,
0.84 GWI). Similarly, roughly 60% of the regulatory interactions
predicted from the data were also documented in the literature
in at least half of the cases (median PPV = 0.61 HC, 0.60 GWI)
(Supplementary Table S6A). If we restrict this to include only
those interactions shared across networks within each subject
group, the proportion of documented immune circuitry inferred
as active from the data decreases comparably in both HC and
GWI to just below 40% (Supplementary Table S6B; median
recall 0.37 HC, 0.39 GWI).

Finally, by enforcing unanimity across all individual empirical
networks assembled from a repeated subsampling time course
data in each group, we obtain consensus networks for HC
and GWI which converge to a similar number of network
interactions (Supplementary Table S6C; 23 HC, 24 GWI)
supporting a connection density of roughly 30%. In both HC and
GWI groups, network recall, or the proportion of documented
interactions inferred as active from the data, decreased almost
in step as increasing levels of agreement across individual
networks were applied, falling from initial levels > 80% to
settle at somewhat similar values of 29% in HC and 22%
in GWI. In contrast, positive predictive value (PPV), or the
proportion of predicted interactions validated by the literature-
based model, increased only slightly in the healthy control
group from 61 to 67%, and decreased substantially from 60 to
46% in the GWI group as increased levels of consensus were
enforced (Supplementary Table S6C; median PPV 0.67 HC, 0.46
GWI). Notwithstanding spurious false positives expected of this
limited group size, this would suggest that in GWI a higher
proportion of immune signaling diverges from documented
patterns commonly associated with healthy physiology. Focusing
our analysis on only those interactions represented unanimously
in the data collected in each group and documented in
the literature-based model, we obtain conserved characteristic
motifs for HC and GWI consisting of 14 and 11 regulatory
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TABLE 4 | Summary of changes in cytokine node centrality.

Node
names

Betweenness Incloseness Outcloseness Indegree Outdegree Hub ranks Authority ranks

weighted Unweighted Weighted Unweighted Weighted Unweighted Weighted Unweighted Weighted Unweighted

MK1A ⇒ 1.60 ⇒ 1.97 ⇒ 1.15 ⇒ 1.05 ⇒ 1.67 ⇒ 1.50 ⇑ 4.75 ⇒ 1.35 ⇒ 0.86

MK1B ⇒ 1.98 ⇒ 1.25 ⇒ 1.45 ⇒ 1.23 ⇒ 2.00 ⇒ 1.25 ⇑ 2.72 ⇒ 0.72 ⇒ 1.35

MK2 ⇑ 2.25 ⇒ 1.74 ⇒ 1.56 ⇑ 2.25 ⇒ 1.82 ⇒ 0.83 ⇑ 3.00 ⇑ 3.76 ⇒ 1.45 ⇒ 0.84 ⇒ 0.78

MK6 ⇓ 0.14 ⇓ 0.41 ⇒ 1.78 ⇒ 1.50 ⇒ 0.95 ⇒ 0.87 ⇑ 2.33 ⇒ 1.00 ⇒ 1.25 ⇒ 0.67 ⇑ 2.38 ⇒ 1.95

MK15 ⇓ 0.17 ⇓ 0.41 ⇒1.18 ⇒ 1.38 ⇒ 1.57 ⇒ 0.85 ⇒ 1.33 ⇒ 1.00 ⇓ 0.49 ⇒ 0.70 ⇒ 1.98

MK23 ⇒ 0.57 ⇓ 0.17 ⇒ 1.09 ⇒ 1.91 ⇒ 1.15 ⇒ 0.90 ⇒ 1.00 ⇓ 0.40 ⇒ 1.21 ⇒ 0.72

CK1 ∗∗
⇑ 2.96 ⇒ 1.15 ⇒ 1.50 ⇒ 1.11 ⇒ 1.50 ⇒ 1.50 ⇑ 2.22 ⇒ 1.18 ⇓ 0.22 ⇒ 0.93

CK2 ⇓ 0.20 ⇓ 0.14 ⇒ 1.10 ⇒ 1.07 ⇒ 1.57 ⇒ 0.91 ⇒ 1.00 ⇒ 0.56 ⇑ 5.23

CK17 ∗∗
⇒ 1.18 ⇒ 0.92 ⇒ 1.63 ⇒ 1.25 ⇓ 0.33 ⇒ 1.33 ⇒ 1.43 ⇒ 1.26 ⇓ 0.41 ⇓ 0.24

Increase or decrease in fold change for individual node centrality measures (GWI/HC) highlighting p < 0.05 and FC < 0.05 (red down arrow) and FC > 2 (green up arrow),
and no significant change (gray arrow). Results show significant change in the roles of a broad majority of aggregate cytokine sets used in the immune signaling model
of Fritsch et al. (2013), including MK2, 6 and 15, key components of the GWI regulatory motif. Recall MK1A and B represent the first and second principal components
respectively derived from the co-expression patterns of IL-1α, IL-1β, IL-8 and IL-12∗∗.

interactions, respectively (Figures 2, 3 and Table 5). Only 4 of
these interactions were shared across illness groups leaving 7
documented regulatory interactions characteristically active in
GWI alone. Of these 4 shared interactions, only the positive
regulation of MK1A by CK2 retained the same mode of action,
the remaining 3 took on opposing regulatory actions across
groups suggesting the involvement of unobserved intermediate
regulatory elements. In addition, we notice that CK17 is uniquely

FIGURE 2 | Mechanistically informed GWI regulatory motif. Regulatory
interactions extracted from documented prior knowledge that are uniquely
represented in the experimental data in GWI during recovery from maximum
exercise. Solid lines represent interactions uniquely expressed in HC while
dashed lines show interactions shared with GWI. Green arrows indicate a
stimulatory action while red “T” terminators indicate suppressive actions.

targeted for active regulation by several mediators in GWI
whereas it is an active regulator in the HC circuit. One such
regulator of CK17 in GWI is MK23 which is also involved in a
characteristic positive feedback loop with MK2 in GWI. Positive
feedback regulation is characteristic of self-sustaining cascades
and the emergence of multiple stable resting states. In contrast, no
positive feedback loops were identified as active during recovery
from exercise in HC (Figure 3).

In addition to feedback regulation, feedforward control
circuits are found extensively in nature and serve very specific
regulatory functions. Alon (2007) defines 8 such recurring
regulatory building blocks or network motifs, classifying them
as coherent or incoherent controllers. The latter class of motifs

FIGURE 3 | Mechanistically informed HC regulatory motif. Regulatory
interactions extracted from documented prior knowledge (STRING and Fritsch
et al., 2013) that are uniquely represented in the experimental data in HC
during recovery from maximum exercise. Solid lines represent interactions
uniquely expressed in HC while dashed lines show control actions shared with
GWI. Green arrows indicate a stimulatory action whereas a red “T” terminators
indicate suppressive actions.
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TABLE 5 | Documented immune signals represented in experimental data.

Source Target Mode of action ∗ Active in group

CK1 MK6 −1 GWI

CK1 MK15 −1 GWI

CK2 MK1A 1 GWI

MK1A CK17 −1 GWI

MK1B CK1 1 GWI

MK1B MK23 1 GWI

MK6 CK17 −1 GWI

MK15 CK1 1 GWI

MK15 MK2 1 GWI

MK23 MK1B −1 GWI

MK23 MK2 1 GWI

CK1 MK15 1 HC

CK1 MK23 1 HC

CK2 MK1A 1 HC

CK2 MK1B 1 HC

CK17 MK6 −1 HC

MK1A MK1B −1 HC

MK2 CK1 −1 HC

MK2 MK2 −1 HC

MK2 MK15 −1 HC

MK6 CK2 1 HC

MK23 MK1B 1 HC

MK23 MK2 −1 HC

MK23 MK15 −1 HC

MK23 MK23 −1 HC

Immune signaling interactions documented in the literature (Fritsch et al., 2013)
and the STRING database (Szklarczyk et al., 2015) that were also represented
in the experimental data collected under exercise challenge in Gulf War Illness
(GWI) veterans as well as healthy control veterans (HC). Shaded source-target
interactions are shared between both illness groups in direction but not necessarily
mode of action. Cytokine sets appearing as unique sources or targets in each group
are underlined and italicized. ∗Mode of action + 1 is an activator, −1 is an inhibitor.

serves as a basic pulse generator and response accelerator whereas
the former responds to persistent input with a ‘sign-sensitive
delay’, i.e., a controller that delays activation but allows rapid
deactivation of a response. Interestingly, the only coherent type
2 motif identified was characteristic of the active HC sub-circuit,
suggesting increased robustness to rapid fluctuations in the
inflammatory set CK1 and a rapid down-regulation of MK15 by
the anti-inflammatory set MK2 (Figure 4). While incoherent type
1 FFL pulse-generating motifs were found active in both groups,
the GWI sub-circuit presented with a unique incoherent type 1
regulation of CK17 by MK23. Incoherent feed-forward control
motifs produce bimodal behavior (Hart and Alon, 2013) as well
as supporting a ratio-based control function, e.g., fold change in
signal over background noise (Goentoro et al., 2009). Of note
CK17 was also the object of coherent type 3 control in GWI
only. In both motifs we find an apparent inhibitory action of
MK23 on CK17, which contradicts the well-documented positive
contribution of IL-23 to the maintenance and development of
Th17 cells (Gaffen et al., 2014). It is important to note that the
control action in question was inferred from the experimental
data only and was not supported by the literature-based model.
Indeed, if we consider the documented control actions in the

GWI circuit (Figure 2) we find a cascade linking MK23 to
CK17 through the intermediaries MK1B, CK1, and MK6 with
alternating control actions such that the net effect is an indirect
inhibition of CK17 (Supplementary Figure S4). The incoherent
FFL motifs identified should therefore be considered apparent
motifs that summarize the net control effects observed. With
this in mind, these results suggest an altered and characteristic
recruitment of basic regulatory control elements in the oversight
of Th17 response to exercise a combined with a reduced
engagement in GWI of control elements supporting robust and
rapid anti-inflammatory response.

Simulated ad hoc Cytokine Inhibition
In the previous section, we identified a characteristic control
sub-circuitry active during recovery from exercise in each illness
group. This active sub-circuitry consists of control actions
inferred for experimental data with some of these being further
validated against a literature-informed template consisting of
known documented mechanistic interactions (Figures 2, 3). One
could now ask if there exist minor changes to this circuitry that
might allow the GWI sub-circuit to perform at least partially
like the healthy control sub-circuit in response to exercise.
Mainstream pharmaceutical immune-therapy often involves
delivering monoclonal antibodies, cytokine supplementation
therapy or small molecules that act as immune receptor agonists
or antagonists. As the GWI circuit is de facto more abundantly
connected we simulate the effects of a pharmaceutical blockade
of receptors for a specific cytokine functional group by removing
all outgoing edges from that network node. A simulated blockade
was applied iteratively to all nodes in the GWI circuit both
individually and in pairs with the objective of minimizing the
topological differences with the healthy control circuit. The
original GWI circuit diverged topologically from the HC circuit
with a graph edit distance (GED) of 0.2569 (0.0021 Std. Err.).
Results presented in Supplementary Table S7 suggest that
attenuating MK6 signaling was the single best intervention target.
Blockade of MK6 alone reduced the topological separation of
the GWI network from the target HC network to a GED of
0.2427, a small but statistically significant reduction (∼5%).
Similarity to the healthy control circuit architecture is further
improved slightly by combining antagonism of MK6 action with
antagonism of CK1 (GED 0.2338).

The effects of these changes in immune network signaling on
expected immune response behavior in GWI were then simulated
using the NetSim environment in order to provide a qualitative
data agnostic perspective. Results presented in Figure 5 suggest
that this topologically motivated approach nonetheless produced
a rescue of the MK1B and CK17 response, a characteristic
component in GWI. Transient restorative effects on MK2 and
MK15 responses were also produced but were accompanied by
a significant abrogating the otherwise normal MK6 response.
The second leading alteration to the GWI immune circuitry
consisted in a concurrent blockade of MK6 and MK23 receptor
function. Response of this modified GWI immune circuit to a
simulated relaxation is described in Figure 6. Results indicate
that this strategy would improve adherence to the predicted
healthy control circuit response in cytokine sets MK1A, MK1B,
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FIGURE 4 | Basic regulatory control motifs in HC and GWI. Minimal regulatory component feedforward control motifs suggested by Alon (2007; Milo et al., 2002)
emerge as unique features in the sub-circuits for each illness group. Specifically, coherent feedforward loops (FFL) type 1 and 2 unique to HC (A–C), indicating
robustness to sudden disturbances. The GWI circuit however presents with the incoherent type 1 FFL (D), associated with bi-modal behavior.

and CK2 without inducing significant negative effects in other
cytokine responses. It is important to note that these simulations
assume that with the exception of pharmaceutically targeted
cytokine signals the remainder of the circuitry is still active.
Moreover, it also assumes that although some corrective results
are produced at the level of individual cytokine sets that the
overall immune network continues to operate in the vicinity of
the GWI regulatory regime and as such does not significantly
activate any new cytokine signaling mechanisms. We have shown
previously that certain cytokine sets act as primary drivers of
symptom burden, including IL-1a (MK1A) and IL-10 (MK2),
and though not curative that mediating these may reduce illness
severity (Broderick et al., 2013).

DISCUSSION

In this study, we used a Graded eXercise Test (GXT) to stimulate
immune signaling in a group of veterans with Gulf War Illness
(GWI) and matched healthy control subjects. Cytokine levels in
blood serum were measured at 8 time points spanning from the

initial time point at rest to 4 h post-effort. Statistical analysis
using the SMETS metric of the differences in response dynamics
for individual cytokines during recovery confirmed that the
majority of these differed significantly in GWI compared to
HC. The only exceptions to this were responses in IL-1a, IL-
23, TNFα, and TNFβ, which did not differ significantly between
groups compared to the distribution SMETS distances separating
HC subjects from one another. To explore the candidate
mechanisms driving these divergent choreographed behaviors we
identified directed interaction networks from the data collected
in each group, aggregating these cytokines into functional sets
to facilitate the integration of these empirical interactions with
documented immune signals described in work by Folcik et al.
(2007, 2011) and used subsequently in simulations by our group
(Fritsch et al., 2013). This literature-based network was further
reinforced by including immune signaling interactions reported
in the latest version of the STRING database (Szklarczyk et al.,
2015). Integration of literature-based and data-derived signaling
components indicated that vastly different subsets of immune
circuitry become active in each group during recovery with a
smaller proportion of these being documented in our reference
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FIGURE 5 | Simulating regulatory circuit response to MK6 and CK1 antagonism. Simulated response to a step perturbation applied to the characteristic circuits for
GWI (GWI, red line), healthy control (HC, green line), as well as the pharmaceutically edited GWI network (Treated, blue line). Improved adherence to output from the
healthy control circuit are produced for cytokine sets CK17and MK1B, with transient restorative effects on MK2 and MK15. This is accompanied by significant
worsening in MK6 response.

circuit for GWI than HC. Significant differences in topology
occurred specifically regarding involvement in the broader
network of MK2, MK6, and MK15, key components of the
GWI regulatory motif. This remodeling of the signaling network
manifested in part through the emergence of characteristic
feedforward control motifs proposed as basic regulatory building
blocks by Alon (2007). Not surprisingly feedforward mediation
of MK23 and CK17 by MK2 and MK6 emerged as distinguishing
control elements that were characteristically active in GWI
during recovery from exercise. Interestingly, when assessing
topological changes that might be imparted to the GWI sub-
circuit to produce a circuitry that best resembles that of HC,
abrogating MK6 (IL-6) signaling arose as the single most
impactful modification. Combining this with a concurrent
blockade of an inflammatory Th1 cytokine under CK1 (IL-2,
IFNg, TNFa, and TNFb) further improved alignment in topology
between the GWI and HC active sub-circuits. Simulating the
effects of these changes in connectivity suggested that this joint
blockade of MK6 and CK1 might allow for the recovery of
normal response dynamics in MK1B (primarily IL-1b and IL-8),
MK2 (IL-10), and CK17 (IL-17) response dynamics albeit while
worsening MK6 (IL-6) response. In previous work by our group
(Broderick et al., 2013) IL-10 (MK2) arose as a strong correlate
of increased illness severity, specifically multidimensional fatigue
inventory (MFI) (Smets et al., 1995) describing increased
general and physical fatigue accompanied by reduced activity
and motivation scores. Increases in IL-10 also correlated with

decreased general well-being scores under the SF-36, a 36-
item short-form survey (Ware and Sherbourne, 1992) assessing
health-related quality of life. In addition to reducing symptom
burden, theoretical simulations by our group (Craddock et al.,
2015) identified inhibition of Th1 (CK1) inflammatory cytokines
as a main component in a two-pronged intervention that could
potentially deliver lasting remission from GWI.

The pharmaceutical blockade strategy that delivered the next
best topological alignment of GWI and HC sub-circuits consisted
of jointly inhibiting MK6 (IL-6) and MK23 (IL-23) receptors.
Interestingly IL-23 modulation has recently attracted interest as
a potentially important therapeutic target relevant to a broad
range of autoimmune illnesses (Gaffen et al., 2014; Yang et al.,
2014; Sasaki-Iwaoka et al., 2018). Moreover, activation of STAT3,
a key component of IL-23/IL-17 signaling has been linked to
neurotoxin induced neuro-inflammatory hyper-responsiveness
in a mouse model of GWI (Locker et al., 2017). Similarly, selective
antagonism of IL-6 receptor signaling has shown established
efficacy in treating several autoimmune illnesses and in repairing
Th17/Treg imbalance (Tanaka et al., 2012). Moreover, anti-IL-6
therapies have proven especially useful for example in treating
rheumatoid arthritis in patients unresponsive to TNF inhibitors
(Tanaka and Martin Mola, 2014). Simulation of this dual IL-6/IL-
23 blockade suggests that this strategy might support the rescue of
both MK1A and MK1B (IL-1a, IL-1b, IL-8, and IL-12) as well as
responses in Th2 cytokines under CK2 (IL-4, 5, and 13). This is
accomplished under this scenario without negatively impacting
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FIGURE 6 | Simulating regulatory circuit response to MK6 and MK23 antagonism. Simulated response to a step perturbation applied to the characteristic circuits for
GWI (GWI, red line), healthy control (HC, green line), as well as the pharmaceutically edited GWI network (Treated, blue line). Improved adherence to output from the
healthy control circuit are produced for cytokine sets MK1A, MK1B, and CK2 without significant negative effects on other sets.

other responses. Once again, our previous work indicated that
changes in IL-4 and IL-12 correlated significantly with changes
in MFI scores for motivation and the Krupp Fatigue Severity
Inventory (Krupp FSI) (Krupp et al., 1989). Likewise changes
in IL-1a and IL-5 correlated with changes in SF36 measures for
physical function, physical limit, pain, and vitality. Moreover,
results of another analysis by our group (Broderick et al., 2011)
suggested that initial variations in IL-1a levels may catalyze
much broader immune activation during exercise and serve as an
important driver of exacerbation in GWI.

Collectively these results suggest that pharmacologically
altering characteristically active elements of the immune circuitry
can inform on strategies that while not curative may nonetheless
deliver reduction in symptom burden in GWI. It is important
to recall that these characteristic circuits represent immune
signaling that is predominantly active within the stable regulatory
regime that we propose perpetuates GWI (Craddock et al., 2014).
As such, we propose that while a broader response circuitry is
available in principle, for the most part the topology of this
active sub-circuitry remains dominant within this homeostatic
regime and these pharmaceutical interventions are reasonably
well represented by edits to this characteristic circuit. This
assumption becomes less valid the greater the deviation from the
chronic stable state. Moreover, it is also important to remember
that GWI is known for its heterogeneity with presentation and
severity being associated with area of deployment in theater
and the corresponding exposure profile (Steele et al., 2012).

Though the longitudinal sampling used here represents a
significant experimental effort even at this limited group size,
the assumption remains that these GWI subjects are reasonably
representative of the broader illness population. Indeed, a core
premise for this work was that interactions between immune
markers might be conserved more robustly across individuals
than changes in marker expression as they may better reflect core
illness mechanisms.

It should also be noted that the current work remains a
coarse-grained description of immune signaling and that the
interactions inferred from the data and extracted literature are
the aggregate end result of a myriad of intracellular signaling
events. Further informing on the validity of these interactions
by enforcing formal compliance with known pathway level
processes which have been more directly validated would
contribute added rigor and should be pursued. For example,
intracellular transcriptional signaling networks that govern the
behavior of key cell populations such as NK cells (Liquitaya-
Montiel and Mendoza, 2018), T lymphocytes (Martínez-Sosa and
Mendoza, 2013) and others might be introduced as separate
model compartments and these subnetworks connected explicitly
through soluble mediators as in Mendoza (2013). Ideally one
would also have available at least partial transcriptomic data
to inform or at least partially validate such a model. Certainly,
this would deliver a much higher resolution description of
immune dysfunction in GWI. Though data supporting this level
of resolution was unavailable in this study, we propose that the
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approach presented here nonetheless offers a simple framework
for introducing documented functional relationships into an
otherwise naïve mining of experimental data describing soluble
immune mediator expression in GWI. Accordingly, at least in
broad functional terms, the resulting functional motifs may more
reliably inform on beneficial strategies for illness management
than would purely conventional statistical network identification.
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