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Abstract: Resistance against commonly used antibiotics has emerged in all bacterial

pathogens. In fact, there is no antibiotic currently in clinical use against which resistance

has not been reported. In particular, rapidly increasing urbanization in developing nations are

sites of major concern. Additionally, the widespread practice by physicians to prescribe

antibiotics in cases of viral infections puts selective pressure on antibiotics that still remain

effective and it will only be a matter of time before resistance develops on a large scale. The

biosynthesis pathway of the bacterial cell wall is well studied and a validated target for the

development of antibacterial agents. Cell wall biosynthesis involves two major processes; 1)

the biosynthesis of cell wall teichoic acids and 2) the biosynthesis of peptidoglycan. Key

molecules in these pathways, including enzymes and precursor molecules are attractive

targets for the development of novel antibacterial agents. In this review, we will focus on

the major class of natural antibacterial compounds that target the peptidoglycan precursor

molecule Lipid II; namely the glycopeptides, including the novel generation of lipoglyco-

peptides. We will discuss their mechanism-of-action and clinical applications. Further, we

will briefly discuss additional peptides that target Lipid II such as the lantibiotic nisin and

defensins. We will highlight recent developments and future perspectives.
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Introduction
Bacterial cell wall assembly
The cell wall of both Gram-negative and -positive bacteria comprises a peptidoglycan

layer which is composed of a polymer of alternating amino sugars, N-acetylglucosa-

mine (GlcNAc) and N-acetylmuramic acid (MurNAc). Cross-linking of the polymer

chains by pentapeptides achieves mechanical strength and structural integrity of the

cell.1 In addition to that it protects the cell from osmotic stress. Inhibition of peptido-

glycan biosynthesis inhibits cell growth. This makes the assembly and maintenance of

the peptidoglycan polymer a commonly used target for antibiotics. Figure 1 illustrates

membrane events in the biosynthesis of the peptidoglycan layer.

On the cytoplasmic side of the plasma membrane first the soluble precursor UDP-

MurNAc-pentapeptide is linked to the membrane carrier bactoprenol-phosphate (C55P)

yielding Lipid I. In a second step GlcNac is added by the enzyme MurG to yield Lipid

II.3–5 In preparation for building interpeptide bridges between individual Lipid II mole-

cules additional amino acids are added to the pentapeptide by Fem ligases (eg Gly in case

of S. aureus).2 Lipid II is then translocated along themembrane to the peripheral side by a

not well understoodmechanism.Recent binding studies suggest that this process might be
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mediated by the flippase enzyme MurJ.6 However, other can-

didates including RodA and FtsW have been suggested.7,8 On

the periplasmic side penicillin-binding proteins (PBPs) cata-

lyze the incorporation of the peptidoglycan unit into the grow-

ing cell wall. Class A PBPs obtain insertion of the MurNAc-

peptide-GlcNAc subunit into the nascent peptidoglycan layer

(transglycosylation) before the peptidoglycan chains are

linked together by the formation of peptide crossbridges

through the action of both class A - and B PBPs

(transpeptidation).9

The remaining complex of lipid anchor and pyropho-

sphate is shuttled back to the cytosolic side. It can then be

reused for following Lipid II synthesis.3 The amount of

Lipid II that can be synthesized is limited by the small

amount of bactoprenyl phosphate that is available on the

cytosolic membrane. About 2×105 molecules C55P per

cell have to provide for the enduring synthesis of around

20 peptidoglycan layers in Gram-positive and 1.5 in

Gram-negative bacteria.10,11 This is achieved by a high

turnover rate of Lipid II which was estimated to be about

1–3 transits per second per prenyl chain.12 The dynamic

process of this Lipid II cycle can therefore be regarded as

a bottleneck in the bacterial cell wall synthesis. The fact

that clustering and dislocating Lipid II leads to dysfunc-

tion of the cell wall synthesis suggests that any molecule

that binds lipid II with high affinity is a potential

antibiotic.4

Lipid II- binding antibiotics
Table 1 Overview of known antibiotic compounds that

interact with Lipid II. The stage of development, and the

assumed interaction with Lipid II is shown.

Glycopeptides

All glycopeptides antibiotics have in common that they

inhibit the cell wall synthesis by binding to the carboxyl-

terminal part of the pentapeptide of lipid II. By binding to

the D-Ala-D-Ala domain in growing peptidoglycan chains

Transglycosylation
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Figure 1 Membrane bound processes in the bacterial cell wall biosynthesis cycle. Lipid II binding antibiotics are shown corresponding to the step in the cycle that they inhibit.

Note: *varying per species.2

Abbreviations: G, N-acetyl glucosamine; M, N-acetyl muramic acid; MraY, phospho-MurNAc-pentapeptide translocase; MurG, Undecaprenyldiphospho-muramoylpenta-

peptide beta-N-acetylglucosaminyltransferase; UMP, uridine monophosphate; UDP, uridine diphosphate.
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Table 1 Summarizes the four main classes of peptide antibiotics that target Lipid II: 1) glycopeptides, including the novel generation of

lipoglycopeptides; 2) cyclic depsipeptide antibiotics; and 3) the lantibiotic group and 4) more recently, defensins

Class Antibiotic or

subclass

Stage of

development

Described interaction with Lipid II Refs

Glycopeptides Vancomycin Clinical use Binds to terminal D-alanyl-D-alanine part of the

pentapeptide side chain of MurNAc.

16

Teicoplanin Clinical use

(Europe)

Similar to vancomycin (D-Ala-D-Ala domain of

pentapeptide)

17

Telavancin Clinical use Similar to vancomycin (D-Ala-D-Ala domain of

pentapeptide)

18

Dalbavancin Clinical use Similar to vancomycin (D-Ala-D-Ala domain of

pentapeptide)

19

Oritavancin Clinical use D-Ala-D-Ala domain of pentapeptide and additional motif

at the lipid II stem peptide (crossbridge and the D-iso-

glutamine in position 2)

20,21

Mannopeptimycin Preclinical Unknown 22

Cyclic depsipeptide antibiotics Katanosin B

(lysobactin)

Preclinical Complex formation with Lipid I, II and Lipid IIA (1:1) 23

Plusbacin A3 Preclinical Inhibition of PG chain extension by transglycosylation 24

Ramoplanin Phase III Probably hydrogen bonds from the backbone NH groups of

ramoplanin bind to the pyrophosphate moiety of Lipid II

(2:1).

25

Bacitracin C55-PP 26

Friulimicin C55-PP 27

Teixobactin Preclinical Probably hydrogen-bond interact-ions with the

pyrophosphate moiety of Lipid II

28

Lantibiotics Nisin Preclinical N-terminus lantinionine ring binds to pyrophosphate

moiety via direct hydrogen bonding with polypeptide

backbone of nisin. Also minor interactions with the first

isoprene unit and the MurNAc sugar have been assumed.

29

Type A I Subtilin Preclinical Similar to nisin (no structural differences in key positions) 30

(linear peptide) Epidermin Preclinical Similar to nisin (no structural differences in key positions) 31

Mutacin 1140 Preclinical Similar to nisin (no structural differences in key positions) 32

Lantibiotics Nukacin ISK-1 Preclinical Based on structural similarity to mersacidin and positional

significance of the amino acids in the region of ring A lipid II

binding similar to mersacacidin is assumed

33

Type A II

(both linear and globular) Lacticin 481 Preclinical Unknown 34

Lantibiotics Mersacidin Preclinical Complexing the sugar phosphate group, electrostatic

interactions and conformational changes are supposed to

contribute to this interaction.

35

Type B

(globular peptide)

Plantaricin C Preclinical Binding may be assigned to the same binding motif found in

mersacidin but the molecular interaction differs from that

between lipid II and mersacidin. An additional linking site

might have been found as it contains a highly positively

charged N terminus, which is missing in mersacidin.

36

Pediocin PD-1 Preclinical Unknown 37

(Continued)
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they disrupt transglycosylation and transpeptidation with

destabilization of the cell wall and ultimately cell death.44

Vancomycin, teicoplanin and telavancin are in clinical use

today and can be regarded as antibiotics of last resort for

the treatment of multidrug-resistant (MDR) Gram-positive

pathogens including most of the MRSA strains.44,45

Vancomycin was the first antibiotic identified as targeting

Lipid II. It has continuously gained popularity after its

clinical introduction in 1988. However, some clinical lim-

itations have been observed such as poor penetration of

pulmonary tissues46 and slow bactericidal activity.47,48 In

addition to that, vancomycin is associated with an elevated

risk of nephrotoxicity, especially when used together with

aminoglycosides. Teicoplanin has essentially the same

efficacy but fewer adverse effects when compared to

vancomycin.49 Despite being marketed throughout

Europe, teicoplanin has never been FDA approved for

the US market.

Modifications to the basic heptapeptide core of the

glycopeptide group have been made in the past years

resulting in better pharmacokinetic and antibacterial

properties in vitro.44 The (semi-)synthetic lipoglycopep-

tides telavancin, dalbavancin and oritavancin have an addi-

tional lipophilic fatty acyl chain which provides several

advantages. By anchoring the compound to the cell mem-

brane the binding affinity to the target site is enhanced.

This mechanism also concentrates the compound at its site

of action and thereby increases its potency. Lower MIC

values and a longer half-life time allow for lower dosage

and less frequent applications.44 Besides binding to Lipid

II these compounds may provide additional antibiotic

activities based on impairing vital membrane functions

due to its strong amphipathic character.48,50 All three lipo-

glycopeptides are promising agents with activity against

MDR staphylococci, enterococci and streptococci.45

Telavancin is a semisynthetic derivate of vancomycin

that contains a deacylaminoethyl moeiety. Besides the

already mentioned advantages obtained from the lipophilic

side chain telavancin has an increased activity against

MRSA and non-VanA enterococci. In comparison to van-

comycin, telavancin provides a stronger binding affinity

for the target binding site and better tissue penetration.48,51

Table 1 (Continued).

Class Antibiotic or

subclass

Stage of

development

Described interaction with Lipid II Refs

Actagardine/

gardimycin

Preclinical Unknown 38

Two-component lantibiotics

(synergistically acting type A I

and B structures)

Lacticin 3147 Preclinical A mersacidin like interaction between the A1 part of

lacticin 3147 en lipid II is proposed.

39

Nonlantibiotic bacteriocins Colicin M Preclinical Enzymatic cleavage of lipid II between the undecaprenyl and 40

1-pyrophospho-MurNAc moiety

Lactococcin 972 Preclinical Unknown 41

Defensins and defensin- based

compounds

Plectasin

NZ2114

Preclinical The pyrophosphate moiety forms hydrogen bonds to F2,

G3 and C37 on plectasin. The D-gamma-glutamate of Lipid

II forms a salt bridge with the N-terminus of plectasin and

the side-chain of His18.

15

Oryzeacin Preclinical Unknown

Eurocin Preclinical Unknown

Lucifensin Preclinical Unknown

Gallicin Preclinical Unknown

HNP-1 Preclinical Interactions with MurNac, phosphate cage and isoprenyl

units

13

BAS0012758 Preclinical Interactions with MurNac, phosphate cage and isoprenyl

units

42

6Jc48-1 Preclinical Interactions with MurNac, phosphate cage and isoprenyl

units

43

Note: Data from references.13–15
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Telavancin is now also available on the European market

since approval by the European Medicines Agency (EMA)

in 2011 for the treatment of hospital-acquired pneumonia

caused by MRSA.

Despite these beneficial developments and the

extended antimicrobial spectrum of the novel generation

glycopeptides there is an increasing concern about dwind-

ling activity of vancomycin and spreading bacterial resis-

tance against glycopeptide antibiotics.52,53 Bacteria

carrying the vanA-type gene cluster that encodes an epi-

tope substitution of D-Ala-D-Lactate termini for D-Ala-D-

Ala termini are able to evade the attack of glycopeptides

including the generation of lipoglycopeptides.54 Although

this resistance mechanism is presumed to be extremely

cost extensive energetically and causes a fitness reduction

in VRSA isolates, the composition of the pentapeptide of

lipid II is not functionally critical. Modifications to the

pentapeptide composition can therefore easily spread

under the selective pressure of glycopeptide usage without

any impact on cell wall synthesis.3,55 While VRSA isolates

are uncommon, an increasingly growing number of clin-

ical isolates appear with vancomycin-intermediate resis-

tance profiles. These VISA strains cause complicated,

hard-to-treat infections and are increasingly associated

with poor clinical results.56 The vanA genotype, which is

mediated by transposon Tn1546 is the predominant type of

resistance that is reported in Europe. It is very common

among enterococci which cause ~20,000 infectiond per

year in the USA alone and are highly capable of horizontal

gene transfer.44,57 This type of resistance is transferable to

significant pathogens like MRSA due to its location on

conjugative plasmids.58,59 The dissemination of glycopep-

tide resistance in enterococci can therefore lead to clinical

isolates that are resistant to all available antibiotics.52 Five

other types of vancomycin resistance (VanB, D, E and G)

have been described on phenotypic and genotypic basis in

enterococci. The VanA type, however is to date the only

one detected in S. aureus. Glycopeptides can directly

induce resistance by activating resistance pathways in

susceptible isolates. Interestingly, also glycopeptide

dependent growth has been described for some VanA and

VanB-type enterococci. This is clinically important

because long periods of vancomycin treatment can account

for this phenomenon.52

Dalbavancin is a semisynthetic derivate of teicoplanin-

like antibiotic A-40,926. The acetylglucosamine group of

teicoplanin has been removed in order to achieve improved

efficacy against VanA enterococci, unfortunately without

success.48,60 Oritavancin is the only glycopeotide that is

effective against the vanA type isolates because of its ability

of binding Lipid II in species with the substitute

D-Ala-D-Lac that causes resistance against the other glyco-

peptide antibiotics. This ability can be explained by binding

sites at the Lipid II stem peptide.21 Additional interactions

have been described, including the pentaglycine crossbridge

or the D-isoglutamine in position 2 of the Lipid II stem

peptide of S. aureus and the D-aspartate/D-asparagine

cross-bridge in Enterococcus faecium.21,61 However, in

vitro induction of moderate level resistance to oritavancin

has been observed in Enterococci isolates that express the

VanA or VanB phenotypes.62

Clinical trials on (lipo-) glycopeptide antibiotics

For decades vancomycin has been the first line treatment

of infections with MRSA including skin and soft-tissue

infections, bacterial pneumonia and infectious endocardi-

tis. However, since vancomycin was approved around

thirty years ago (and teicoplanin in the European Union),

three novel semisynthetic antibiotics targeting Lipid II

have been developed that build up the generation of lipo-

glycopeptides: telavancin, oritavancin and dalbavancin. As

described earlier the molecules of lipoglycopeptides differ

from that of vancomycin by the presence of a lipophilic

fatty acyl side chain that improves target binding, potency

and pharmacokinetic properties.63–65

Telavancin, the first developed and approved lipogly-

copeptide antibiotic has been evaluated in six randomised

controlled trials which will be briefly discussed. The FAST

and FAST 2 Study (published in 2005 and 2006) compared

clinical outcomes of complicated Gram-positive skin and

skin structure infections (cSSTI) treated with either tela-

vancin (FAST: 7.5 mg/kg, FAST 2: 10 mg/kg once daily)

or the standard treatment that comprised of vancomycin

(1 g twice daily) or ß-lactam antibiotics (nafcillin, oxacil-

lin or cloxacillin in a standard dose). This phase II trials

included respectively 167 and 195 patients and showed

equal clinical cure rates in both treatment arms (FAST:

80% vs 77%; FAST 2: 96% vs 90% for telavancin vs

standard treatment). In the subgroup of patients with

MRSA infections (n=48) telavancin was superior to the

standard treatment within the FAST trial with cure rates of

82% versus 69% for the standard treatment.66 However,

this difference was not statistically significant (p=1.0) and

this finding could not be reproduced within the second trial

(FAST 2) where cure rates of MRSA infections did not

significantly differ in both arms (96% vs 90%). It is
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important to note, that the amount of patients in the stan-

dard treatment arms receiving vancomycin was higher in

the FAST 2 Study (93%) compared to the FAST 1 study

(75%) which might have contributed to different results.67

The studies also assessed microbiologic eradication rates

of MSSA and MRSA after treatment. In contrast to the

FAST trial where treatments were equivalent in this aspect,

the second trial revealed higher eradication rates in the

telavancin group (92% vs 78%, p=0.07) and in the sub-

group with proven MRSA infections (92% vs 68%,

p=0.04).67 This finding might be due to the use of higher

telavancin doses (10 mg/kg) in comparison to the FAST

trial. As expected from in vitro studies telavancin had

lower minimal inhibitory concentrations (MIC’s) for clin-

ical isolates of S. aureus including MRSA (MIC90≤0.25 vs

1 µg/mL for vancomycin).66–70 In 2008, the results of two

methodologic identical randomised controlled phase III

trials (ATLAS 1 and 2) were published that confirmed

non-inferiority of televancin (10 mg/kg once daily) to

vancomycin (1 g twice daily) for the treatment of cSSTI

(more recently redefined as acute bacterial skin and skin

structure infections, ABSSSI). Of 1867 enrolled patients,

1693 were evaluable for the test of cure outcome. Overall,

no differences between both treatments were found con-

cerning clinical cure rates, microbiological eradication and

general safety.71 Telavancin was subsequently approved by

the FDA (2009) and EMA (2011) for the treatment of

cSSTI/ABSSSI. Telavancin has also been assessed for

other types of infections. In 2011, data from the ATTAIN

studies that included 1503 patients showed non-inferiority

of telavancin for the treatment of hospital-acquired pneu-

monia caused by Gram-positive pathogens including

MRSA. This led to an extended approval for this indica-

tion in the EU.72 In 2014, the ASSURE study evaluated

telavancin for treating uncomplicated S. aureus blood-

stream infections including catheter associated S. aureus

bacteraemia. The phase II study compared clinical out-

comes of treatment with telavancin versus vancomycin.

Unfortunately, only 17 out of 60 included patients were

clinically evaluable. However, in this proportion clinical

cure rates of telavancin were similar to that of vancomycin

indicating a potential use of telavancin in gram-positive

bloodstream infections.73 The results of the FAST, ATLAS

and ATTAIN trials were summarized in a meta-analysis

published in 2012 which evaluated the general efficacy

and safety of telavancin. Pooled data showed equal clinical

cure rates of telavancin in comparison to vancomycin.

Microbiologic eradication rates favoured telavancin (90%

vs 84%; OR 1.71; 95% CI: 1.08–2.70), but the risk of an

increase in serum creatinine slightly favoured vancomycin

(OR 2.22; 95% CI 1.38–3.57). The authors therefore con-

cluded that the risk of nephrotoxicity should be taken into

account for treatment decisions.74 Safety outcomes of tel-

avancin versus vancomycin were also compared in a post

hoc analysis of data from the ATTAIN studies after exclu-

sion of patients with pre-existing acute renal failure and

severe renal failure defined as glomerular filtration rate

<30 mL/min. In contrast to the previous meta-analysis

this study showed no significant differences in renal

adverse events among patients treated with either telavan-

cin or vancomycin.75 In summary, telavancin has proven

non-inferiority to vancomycin for the treatment of Gram-

positive ABSSSI and seems to be a rational alternative for

infections with pathogens that are intermediate susceptible

for vancomycin or in case of vancomycin intolerance.

Although there is some evidence for nephrotoxicity of

telavancin, dosing does not need to be guided by serum

concentrations which forms a practical advantage to

vancomycin.63,64,76

The lipoglycopeptide oritavancin has a prolonged term-

inal half-life of 245 hrs due to a slow elimination rate.63

This makes it favourable for single or infrequent dosing. In

2011, the SIMPLIFI trial compared clinical response rates

at treatment days 21–29 of patients with ABSSSI treated

with oritavancin administered either daily (200 mg for 3 to

7 days), in one single dose (1200 mg), or in an infrequent

dose (800 mg, and possibly additional 400 mg on day 5).

Surprisingly, the test of cure rates in the clinically evaluable

population (n=228) were equal in all study groups (72.4%,

81.5% and 77.5%, respectively). Furthermore, similar safety

profiles were found in all administration patterns.77 This

phase II study was followed by two phase III trials

(SOLO I and SOLO II) published in 2014 and 2015, that

demonstrated non-inferiority of a single administration of

1200 mg of oritavancin to a 7 to 10 day treatment with

vancomycin (1 g twice daily) for treating Gram-positive

ABSSSI. There was no significant difference in the primary

composite endpoint demonstrating an early treatment

response (cessation of spreading or reduction in lesion

size, absence of fever and no use of a rescue antibiotic).

Cure rates were 79.6% versus 82.9% (SOLO I) and 82.7%

versus 80.5% (SOLO II) in the oritavancin and vancomycin

treated group, respectively.78–80 Oritavancin was subse-

quently approved by the authorities in 2014 (FDA) and

2015 (EMA). The lipoglycopeptides telavancin and orita-

vancin have in common that they provide an additional
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mechanism of bacterial killing by disrupting the integrity of

the bacterial cell membrane. This dual mode of action may

contribute to the sustained activity of those agents against

vancomycin intermediate susceptible and resistant S. aur-

eus. While both antibiotics provide activity against entero-

cocci carrying the vanB-type resistance gene only

oritavancin is active against vancomycin resistant species

due to vanA as previously described.64 The pharmacoki-

netic profile of oritavancin allows for a single dose treat-

ment which makes it an excellent option for outpatient

treatment and reducing prolonged hospital stays.

Similar to oritavancin, dalbavancin has an extensive

terminal elimination rate (187 hrs) which allows for infre-

quent dosing intervals. Dalbavancin was firstly evaluated

in a phase II proof-of-concept study including 62 patients

with ABSSSI receiving either a two dose regimen of

dalbavancin (1000 mg at day 1 and 500 mg at day 8), a

single dose (1100 mg) or a prospectively defined standard

of care treatment. Clinical success rates (defined as cure or

improvement) at the follow-up visit were 94.1% among

patients treated with two doses of dalbavancin, 61.5% in

the one dose only group and 76.2% among patients treated

with the standard-of-care.81 The two-dose regimen was

subsequently integrated into phase III clinical trials. Two

identically designed non-inferiority trials (DISCOVER 1

and 2) compared treatment outcomes of ABSSSI with two

doses of dalbavancin (1000 mg +500 mg at day 8) and

vancomycin (1 g or 15 mg/kg twice daily) with an option

to switch to oral linezolid after day 3 in the vancomycin

treated group. A combined analysis of this double-blind

randomized controlled phase III trials including 1312

patients from 2014 showed equal results for both arms

concerning early clinical responses (primary endpoint,

similar to the SOLO trials) and clinical cure rates (second-

ary endpoint). According to the pooled analysis 79.7% of

the dalbavancin group and 97.8% of the control group

showed an early clinical response. Clinical cure rates

were 90.6% in the dalbavancin group versus 93.8% in

the control group.82 The approved two-dose regimen of

dalbavancin was challenged in a separate randomized clin-

ical trial comparing efficacies against a single dose of

1500 mg in 698 patients with ABSSSI. The primary end-

point, a 20% reduction in lesion size or more at 48 to

72 hrs was achieved among 81.4% and 48.2% of the

single-dose and two-dose treated group, respectively.

Clinical outcomes of evaluable patients, including patients

with MRSA-positive baseline cultures and adverse events

were also similar in both groups.83 These data resulted in

an extended approval, including a single-dose treatment of

1500 mg of dalbavancin for the management of ABSSSI.

Dalbavancin was furthermore evaluated in phase II rando-

mized controlled trial including 75 patients with catheter

associated bloodstream infections caused by S. aureus or

coagulase-negative staphylococci (CNS). The primary

combined endpoint was a clinically and microbiological

treatment response. This was achieved among 87% of

patients treated with the two dose regimen of dalbavancin

versus 50% among patients treated with vancomycin twice

daily for 14 days.84 Hence, dalbavancin might be a good

alternative for treating catheter-associated blood stream

infections with susceptible organisms. Data from phase I

trials assessing pharmacokinetics and distribution of dal-

bavancin (two-dose regimen) into bone and articular tis-

sues do also suggest that it might be an effective treatment

for osteomyelitis because of a long acting tissue exposure,

exceeding the MIC of S. aureus for a period of 8 weeks.85

Like oritavancin, dalbavancin is therefore an excellent

candidate for use in outpatients that needs a long lasting

antimicrobial therapy as in endocarditis and osteomyelitis.

However, at this point the only approved indication is the

treatment of ABSSSI.

Cyclic depsipeptide antibiotics

This structural diverse group consists of nonribosomal anti-

biotic peptides (NRPs) that are derived from natural bacter-

ial products, mainly produced by soil bacteria. Structurally,

depsipeptides contain one or more ester bonds along with

the amide bonds. They have distinct binding motives on

Lipid II that include the pyrophosphate-sugar moiety, but

not the stem peptide which is targeted by all (lipo-) glyco-

peptide antibiotics. As development of resistance to glyco-

peptides is basically caused by changes in the stem peptide,

depsipeptides can be considered interesting candidates for

further drug development.

Ramoplanin and its analogues (A1-A3) were first dis-

covered in 1984 by an industrial drug screening pro-

gramme as product of spore forming soil bacteria

belonging to the genus of Actinoplanes sp.86 This macro-

cyclic depsipeptide inhibits the extracellular transglycosy-

lation by binding to Lipid II. Efforts to identify the exact

structure of the ramoplanin-Lipid II complex were not

successful due to ligand-induced polymerization of the

antibiotic-Lipid II complex, resulting in insoluble fibrils

without antimicrobial activity.87 However, early studies

could show that binding does not depend on the presence

of the D-Ala-D-Ala domain and rather involve the
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pyrophosphate moiety of Lipid II.25 In analogy with lipo-

glycopeptides, ramoplanins are proposed to exert addi-

tional antibacterial effects by interfering with cell

membrane integrity.88 Like vancomycin, ramoplanin is

not absorbed when administered orally and might be an

interesting alternative for vancomycin in treating gastro-

intestinal infections with Clostridium difficile or intestinal

colonization with VRE.89 The latter was demonstrated in

one clinical trial with 68 patients receiving ramoplanin

(100 mg or 400 mg) or a placebo but the suppression of

VRE did not show sustainable effect.90

Katanosin B, which is structurally identical to lysobac-

tin, forms 1:1 complexes with several cell wall precursors

including Lipid II.23 Although this agent was first discov-

ered in 1987, the exact binding site has not been described

to date. One study from 1988 demonstrated favourable in

vitro activity against a wide range of bacteria. However, in

vivo studies indicated a relatively high toxicity in mice.91

Efforts to further develop this compound have since been

limited in the past years. The cyclic depsipeptides plusba-

cin A3, bacitracin and friulimicin are also suspected to

exert their antibacterial effects by binding to Lipid II or its

intermediates, but reported evidence for molecular inter-

actions with Lipid II is limited.92–94

Teixoplanin is novel antibiotic of the cyclic depsipep-

tide group that has recently been discovered in a screen of

uncultured soil bacteria. Binding to Lipid II is most prob-

ably mediated by hydrogen-bonds in the pyrophosphate

sugar region.95 Teixoplanin is active against a wide range

of Gram-positive pathogens, including MRSA and VRE.

Like ramoplanin, teixoplanin is also highly active against

C. difficile but with an even lower minimum inhibitory

concentration (MIC) of 0.005 µg mL.−1

Lantibiotics

Lantibiotics are a large family of peptides that are produced

by certain strains of bacilli to kill other bacteria. They block

the cell wall synthesis by clustering the Lipid II molecules

into patches and therefore relocate it within the membrane.96

Nisin, a type A lantibiotic, has been extensively studied and

serves as the paradigm for this family of anti-microbial

peptides. Nisin was discovered almost a century ago and

initially recognized for its use in the food industry as a

preservative before its recognition as an antimicrobial.97–99

Characteristic of lantibiotics, nisin contains lanthionine rings

formed by thioether and dehydrated serine and threonine

amino acid residues.100,101 Nisin was shown to cluster

Lipid II at a 1:2 ratio within the cytoplasmic membrane,

but outside the region where it is normally active.11,102

Following its primary interaction with Lipid II, additional

nisin molecules are recruited in a larger complex that is

capable of membrane perturbation by forming pores in lipid

layers.103 The pore is thought to consist of 8 molecules nisin

and 4 molecules of lipid II and during the killing these

complexes have been shown form even larger clusters.11,104

Together with observations such as the propensity of Lipid II

to enhance the pore forming capacity of nisin in lipid layers,

an actual model of this interaction suggests that Lipid II acts

as a scaffold for the peptide to dock at the membrane

surface prior to insertion and pore formation.1,4,29,101,105

Interestingly, resistance to the antibacterial action of nisin

was found not to be determined by the level of Lipid II per se,

suggesting additional mechanisms-of-action for this

peptide.106

Defensins and defensin- based compounds

Antimicrobial peptides such as defensins were believed to

kill microorganisms by permeabilizing the cell mem-

branes. Due to their cationic nature, they preferentially

target bacterial membranes which contain large amounts

of negatively charged phospholipids, whereas the mamma-

lian cell membrane is composed of neutral, zwitterionic

phospholipids exclusively. Various models for the selec-

tive activity of antimicrobial peptides towards microorgan-

isms have been proposed.107 These include the formation

of solvent-permeable pore structures, covering the mem-

brane like detergents or possible inhibition of metabolic

processes of microorganisms through intracellular

targeting.107 These models agree on the importance of

electrostatic interactions in initiating membrane associa-

tion of cationic peptides.

Disruption of the functional integrity of the bacterial

membrane is a commonmode of action of many antibacterial

compounds and was believed to be the primary mode of

bacterial killing by defensins. An early study reported on

the bactericidal activity of Human Neutrophil Peptides

(HNP-1–3) against E. coli, suggesting a sequential permea-

bilization of the outer and inner membranes.108 However, we

and others reported that linear, unstructured defensins

retained their antibacterial activity in a strain-selective

manner.109,110 Further we showed that certain defensins

were shown to preferentially kill Gram-positive bacteria,

whereas other defensins that carry more positive charge kill

Gram-negative strains more effectively.111,112 Based on these

observations, we were among the first to report on the func-

tional interaction between Lipid II and Human Neutrophil
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Peptide 1 (HNP-1), a member of a major family of natural

antimicrobial peptides called defensins that protect the host’s

epithelial surfaces against microbial invasion.13,113 Several

studies on defensins from other species, including fungi,15

invertebrates14 and humans114 have firmly established Lipid

II as a target for this class of natural antimicrobial peptides. In

their landmark report, Schneider et al reported on the Lipid

II-binding fungal defensin plectasin. In this study, interac-

tions between plectasin and the solvent-exposed pyropho-

sphate region of Lipid II were described.15 These interactions

involved residues Phe2, Gly3, Cys4 and Cys37 as well as the

N-terminus and His18 side-chain of this defensin. Human

defensin peptides themselves are unlikely to be developed

into therapeutics because of their well-described functional

versatility.115–119 A derivative of the fungal defensin plecta-

sin, termed NZ2114, has shownmost promise to date, with in

vivo efficacy in infectious models as well as applications to

combat biofilm formation.120–122 Similar to the plectasin

study, we identified C-terminal hydrophobic residues Ile20

and Leu25 of Human Neutrophil Peptide-1 to be mainly

involved in Lipid II binding. However, since HNP-1 and

other defensins show little promise as therapeutics, we iden-

tified small molecules that bind to Lipid II via a unique

mechanism. Using functional and structural approaches,

these small molecules bind to three distinct sites of the

Lipid II molecule and are excellent lead candidates

for the development of next-generation drugs for this

target.13,42,43,123,124

Future perspective

The discovery of the glycopeptide vancomycin and devel-

opment of its next-generation derivatives has been an

important milestone in the treatment of multi-drug resistant

Gram-positive infections. Currently, vancomycin still serves

as a first-line treatment for many infections caused by

Gram-positive pathogens including methicillin-resistant S.

aureus (MRSA), coagulase-negative Staphylococci (CNS)

and Enterococci. In general, the clinical use of vancomycin

has important drawbacks that might increase the use of

next-generation glycopeptides in the future. Besides its

infamous nephrotoxicity, the IV-only route of administration

every 12 hrs and the need for a trough concentration-guided

dosing are unpractical. Especially in cases of complex

infections that require prolonged treatments like osteomye-

litis or endocarditis this fact forms a relevant disadvantage

that hinders early release from hospital and treatments in an

out-patient setting. The novel class of lipoglycopeptides

showed non-inferiority in clinical studies and can solve

some of these problems. However, an oral alternative with

a favorable safety profile is urgently needed. In addition to

the practical issues with the available glycopeptides, it will

only be a matter of time before resistance against this class

of antibacterials will reach a breaking point.125 Though still

low, resistance to vancomycin in staphylococci is increasing

and a number of vancomycin insensitive strains have been

described.56 Vancomycin resistance is a particular acute

issue for vancomycin-resistant and multi-drug resistant

(MDR) Enterococci.126 In case of MDR Enterococci,

resistance to alternatives of vancomycin such as oxazolidi-

none-linezolid, daptomycin, tigecycline and the last resort

formulation quinupristin/dalfopristin, can lead to serious

limitations for available treatments options.127,128 As all

compounds of the (lipo-)glycopeptide group basically

share a similar mode of action, a high degree of cross-

resistance can be expected. Still, Lipid II and the peptido-

glycan synthesis remain attractive and underexplored targets

for antibiotic drug discovery when focusing on compounds

with a distinct mode of interaction to that of already

approved compounds. In this light, small molecules that

interfere with peptidoglycan synthesis129 or that bind to

Lipid II directly,42,43,123 hold promise for the development

of novel classes of orally available drugs.
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