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ABSTRACT: In spite of the success of genome-wide association studies in finding many common variants associated with
disease, these variants seem to explain only a small proportion of the estimated heritability. Data collection has turned toward
exome and whole genome sequencing, but it is well known that single marker methods frequently used for common variants
have low power to detect rare variants associated with disease, even with very large sample sizes. In response, a variety of
methods have been developed that attempt to cluster rare variants so that they may gather strength from one another under
the premise that there may be multiple causal variants within a gene. Most of these methods group variants by gene or
proximity, and test one gene or marker window at a time. We propose a penalized regression method (PeRC) that analyzes
all genes at once, allowing grouping of all (rare and common) variants within a gene, along with subgrouping of the rare
variants, thus borrowing strength from both rare and common variants within the same gene. The method can incorporate
either a burden-based weighting of the rare variants or one in which the weights are data driven. In simulations, our method
performs favorably when compared to many previously proposed approaches, including its predecessor, the sparse group lasso
[Friedman et al., 2010].
Genet Epidemiol 37:592–602, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Although genome-wide association studies have been suc-
cessful at identifying many common variants as contributors
to complex diseases, most of these variants seem to have very
small estimated effect sizes and explain only a small propor-
tion of the heritability of complex diseases [McCarthy and
Hirschhorn, 2008]. Attention has turned to the analysis of
rare variants, where the suggestion by previous studies that
multiple rare variants within the same gene can contribute
to largely monogenic disorders (for a summary, see Bansal
et al. [2010]) has led to the development of a variety of meth-
ods that group or collapse variants within a region, gene, or
gene pathway. Testing individual rare variants within a gene
is likely to be highly underpowered unless the effect sizes are
huge. Collapsing or grouping variants together capitalizes on
the fact that the gene is the relevant functional biological
unit that may be expected to have some relationship with
phenotype. Burden tests (such as CAST [Morgenthaler and
Thilly, 2007], GRANVIL [Morris and Zeggini, 2009], and the
variable threshold (VT) method [Price et al., 2010]) collapse
the rare variants into a single variable, such as an indicator
or count, for analysis, ignoring the effects from the com-
mon variants that may contain additional information. These
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methods require the use of a minor allele frequency (MAF)
threshold cutoff to define what constitutes a rare variant and
difficulties arise when the number of rare variants in the re-
gion is so small or so large that either none or all of the
individuals within a phenotype group (e.g. cases or controls)
carry rare variants. The combined multivariate and collaps-
ing (CMC) method allows rare variants to be simultaneously
analyzed with common variants in a multivariate test [Li and
Leal, 2008]. The problem of defining and separating com-
mon and rare variants was avoided with the introduction
of weighting methods that compute a weighted sum statis-
tic (WSS), such as that proposed by Madsen and Brown-
ing [2009]. Most methods use weights inversely related to
the MAF (resulting in rarer variants having higher weights).
All of these methods suffer when there are protective vari-
ants in addition to risk variants, as they sum over variables
with effects in potentially opposite directions. To overcome
this problem, methods such as C-alpha were introduced that
compare the expected variances of the distribution of the al-
lele frequencies within the cases and controls to the actual
variance [Neale et al., 2011]. SKAT, the sequence kernel as-
sociation test, is a generalized version of C-alpha that allows
for weights [Wu et al., 2011]. Since burden tests have been
shown to be more powerful when most variants in a region
are causal and have effects in the same direction, Lee et al.
[2012] have developed the method SKAT-O, an extension of
the SKAT test, which optimally combines a burden test and
the nonburden SKAT test. Han and Pan [2009] developed the
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adaptive sum method (aSum) that determines the direction
of the variant weights from the data and incorporates them
into the burden test. The VW-TOW method, which estimates
weights from the data, places large weights on variants that
have strong associations with the trait and on rare variants
[Sha et al., 2012]. To allow larger weights on common vari-
ants, the authors propose dividing the variants into common
and rare variants, applying their score test to each group sep-
arately, and finding the optimal combination of the two test
statistics.

All of the methods above operate on a single region or gene
at a time, and, since multiple genes can contribute to disease
risk, we propose instead to analyze all genes simultaneously
in a regression framework. Analyzing variables together in a
regression model allows one to consider the impact of one
variable on another, the hope being that a weak effect may
become more visible when other causal effects are already ac-
counted for. Previous studies have shown that joint modeling
may improve power in certain situations for both quantita-
tive and qualitative traits [Ayers and Cordell, 2010; Clayton,
2012; Hoggart et al., 2008; Pirinen et al., 2012]. Currently,
many sequencing studies are underway, resulting in enor-
mous amounts of detected variants. However, sample sizes
remain limited to several hundred up to a thousand, and con-
sequently, we have many more predictors than the number of
test subjects, overwhelming standard regression methods. In
genetic studies, we expect that only a handful of our genes will
have true effects on our trait. Penalized regression methods
can be used on these underdetermined problems, shrinking
the size of the coefficients, pushing the coefficients of vari-
ants with little or no apparent effect on a trait down toward
zero and performing model selection. With the aim of find-
ing the subset of genes most associated with the disease, we
propose PeRC (Penalized regression of Rare and Common
variants), a method that groups SNPs by genes, and collapses
the rare variants in the gene into a single variable where the
rare variants are allowed to contribute different effects. This
approach capitalizes on the recent success of genome-wide
association studies (GWAS) that shows there will generally be
adequate power to detect/select common variants associated
with phenotype.

Methods

Penalized Regression Approach

Regression methods can be used to analyze both qualitative
and quantitative traits. Logistic regression is often used to
analyze binary phenotypes such as case/control status. Given
a phenotype vector y of 0’s and 1’s for m observations and a
matrix of SNP genotypes X , if we let p = P (y = 1|X = x), our
logistic regression equation for individual i may be written
as:

log

(
p i

1 – p i

)
= ηi = β0 + βTX i. (1)

where β is our vector of regression coefficients. The likelihood
may be formulated as a product over all individuals i:

L =

m∏
i=1

p yi

i (1 – p i)
1–yi .

With some rearranging, the log likelihood may be written as
a sum over the m individuals:

log L =

m∑
i=1

yiηi – log(1 + exp(ηi)). (2)

For a quantitative trait, we maximize the negative sum of
squares of differences (RSS) between observed and predicted
trait values, rather than maximizing the above likelihood:

log L = –RSS(β|X , Y) = –

m∑
i=1

(yi – ηi(β|X ))2. (3)

With current genotyping and sequencing studies, the num-
ber of markers is typically on the order of hundreds of thou-
sands to millions, while sample size is on the order of hun-
dreds to thousands, leading to underdetermined problems
where standard regression methods cannot produce a unique
interpretable model. Penalized likelihood methods can be
applied to these high dimensional regression problems to
perform model selection. We maximize the log likelihood
subject to a penalty that is dependent on the magnitude of
the estimated parameters. A penalty on the log likelihood will
penalize models that have a large number of large regression
coefficients more heavily, and thus the penalized likelihood
will be optimized with a sparser model. In genetics, we sus-
pect that there are only a modest number of underlying causal
variants compared to the total number of variants, and our
ideal penalty would quickly exclude variables with little ef-
fect, retaining only the most relevant variables in the model.
Thus, we choose to maximize the penalized log likelihood:

log L (X , Y, β) – f (β, λ)

where the penalty f is a function of the regression coeffi-
cients and penalty parameters. Many different penalty func-
tions have been proposed such as the L 1 norm (or Lasso)
[Tibshirani, 1996], the L 2 norm (or ridge) [Hoerl and Ken-
nard, 1970; Le Cessie and van Houwelingen, 1992], and the
combination of these two norms, the elastic net [Zou and
Hastie, 2005]. The elastic net penalty may be written as:

f (λ, β) = λ1‖β‖1 + λ2‖β‖2
2

where ‖β‖1 =
∑

j |βj | and ‖β‖2
2 =

∑
j β2

j are the L 1 and L 2

norm, respectively (with j indexing variables) and λ1 and λ2

are fixed parameters controlling the penalty strengths. The
elastic net penalty above is reduced to the Lasso if we let
λ2 = 0 and to the ridge if λ1 = 0. The L 1 norm imposes heavy
shrinkage and drives the coefficient of many variables to zero
and generally includes only one of a group of highly corre-
lated variables [Bondell and Reich, 2008]. Ridge regression
in contrast results in similar coefficients for highly corre-
lated variables. The elastic net is somewhere in the middle,
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encouraging correlated variables to enter the model together.
The penalty functions also have Bayesian interpretations: the
lasso penalty corresponds to a double exponential or Laplace
prior on β, the ridge penalty corresponds to a zero mean
Gaussian or normal prior, and the elastic net is a mixture of
Gaussian and Laplace priors. As most of the mass of these
priors is around zero, most of the coefficient estimates will be
near zero. Penalized regression and Bayesian selection meth-
ods have previously been applied to a variety of problems
in human genetics [Ayers and Cordell, 2010; Hoggart et al.,
2008; Li et al., 2010; Malo et al., 2008; Yi and Zhi, 2011] and
in animal and plant genetics [Mutshinda and Sillanpää, 2010,
2011; Sun et al., 2010; Xu, 2010; Yi and Xu, 2008]. The focus
in the animal and plant literature has been in prediction of
phenotype or genetic breeding value, rather than in variable
selection per se.

In disease association studies, if we suspect that there may
be several genes causing a disease, and that there may be more
than one causal variant within a gene, we can take advantage
of multiple signals within a gene by analyzing our variables
in groups. This is consistent with the idea that the gene is the
functional biological unit, and so evidence for the existence
of effects at some variants within the gene should effectively
upweight the prior for other variants within the same gene.
To force variables to be grouped by (a) encouraging variables
within a group to enter a model together, and (b) encourag-
ing sparsity between groups, we can use the group lasso or
the sparse group lasso [Friedman et al., 2010a; Meier et al.,
2008; Yuan and Lin, 2006]. The sparse group lasso encourages
sparsity between and within groups, and has been previously
applied to GWAS for variants with frequencies > 1% [Zhou
et al., 2010]. If g indexes the G groups, this penalty function
may be written as:

f (λ, β) =

G∑
g =1

⎡
⎣λ1

⎛
⎝∑

j ∈g

β2
j

⎞
⎠

1/2

+ λ2

∑
j ∈g

|βj |
⎤
⎦

where λ1 is a parameter that controls the strength of the group
penalty and λ2 is a parameter that controls the strength of
the sparsity penalty. If one variable within a group enters the
model, then this penalty does not strongly discourage another
variable within that group from also entering the model.
Zhou et al. [2010] recommend setting λ1 = λ2 as it performed
well in simulations. The group lasso penalty corresponds to
a multivariate p g dimensional, multi-Laplacian prior over
each group, where p g is the number of variables in group g .

In PeRC, we choose to use a combination of these two
penalties to group both rare and common variants within
a region, such as a sliding window, gene, or gene network.
We propose to first collapse/cluster the RVs within a group
into a single variable to model a common effect. However,
we allow rare variants to contribute differently to this effect
by allowing the weights of the rare variants (denoted as αr

below) to be estimated as we optimize. We can replace ηi in
our likelihood with:

ηi = β0 +
∑

g

{ ∑
c∈g c

xicβc + γg

∑
r∈g r

xirαr

}
.

Here γg > 0 is the coefficient for the linear combination of the
rare variants in group g , αr are the estimated weights for each
rare variant in g r (the set of rare variants with MAF ≤ τ), and
g c is the set of common variants (MAF > τ) in g . If we force
all αr to be constant, we are performing a procedure similar
to a burden test. Otherwise, we have an unidentifiable model
unless restrictions are placed on the weights αr . We can do
this via a penalty, restricting the rare variants to have weights
in the approximate range of (–1,1) by using a penalty that
penalizes variables little inside this range, and heavily outside
this range. This prevents the influence of any particular rare
variant from becoming too large and keeps the grouped rare
variants coefficient γg on the same scale as the coefficients βc

for the common variants. These properties can be achieved
with a fourth order polynomial penalty, which is a form of
bridge regression (equivalent to a prior from the exponential
power family) that does not provide sparse solutions and is
similar to a uniform prior in the range (-1,1). This idea is
similar to the hierarchical prior used by Yi et al. [2011], who
place an informative prior on αr and a weakly informative
prior on the γg , and model all variables in the likelihood as
we model our rare variables. The method is used to group
synonymous and nonsynonymous rare variants and com-
mon variants into four separate groups within a gene. Here,
we encourage rare and common variants in the same gene or
window to be in the model together via a group penalty. The
penalty structure imposed in our approach allows an individ-
ual regression coefficient to be estimated for each common
variant, effectively allowing individual common variants to
be selected, while our grouping penalty allows a borrowing of
strength between common and rare variants within the same
gene.

Our generalized penalty function can be written as:

f (λ, β) =

G∑
g =1

[
λ1sg

(∑
c∈g c

wcβ
2
c + rg γ

2
g

)1/2

+ λ2

(∑
c∈g c

wc |βc | + rg |γg |
)

+ λ3

(∑
c∈g c

wcβ
2
c + rg γ

2
g

)
+ λ4

∑
r∈g r

drα
4
r

]
.

The first term groups the rare and common variants within
our region of interest, the second and third terms correspond
to the elastic net and promote sparsity of the individual com-
mon variants and the groups of rare variants, while the final
term prevents the coefficients for the rare variants from be-
coming too large and promotes a small amount of sparsity
in the rare variants. If λ = (λ1, λ2, λ3, λ4), then when τ = 1,
λ = (λ1, λ2, 0, 0) corresponds to a sparse group lasso, and
(0, λ2, λ3, 0) corresponds to the elastic net. We realize that
using a ridge penalty with a group penalty may be slightly
redundant as the sparse group lasso gives an elastic net fit
within each nonzero group, but this addition makes PeRC
more flexible in terms of the analyses one can perform. To
perform a burden-based procedure, we simply set λ4 = 0, and
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Figure 1. The first plot is the penalty function for the weights on the rare variants which applies little penalty between 0 and 1 and a large penalty
elsewhere. The second plot is the elastic net penalty function vs. β .

force αr = 1 for all r. We could also force αr = 2/|g r| (to give
a proportion of rare variants on a scale of 0–2 rather than
a count), but we found that this did not perform as well in
practice. We will refer to the weighted procedure as PeRC W
and the burden procedure as PeRC B. For our weighted anal-
ysis, we keep λ4 constant at 0.5 to maintain the shape of that
part of the penalty function (although we could choose in-
stead to make it slightly higher to encourage more sparsity).
We place a weight sg on each group dependent on its size,
for example,

√
(lg /max(lg )), where lg is the total number of

common variants in the group plus one to account for the
rare group coefficient. This prevents the preferential selec-
tion of large groups solely for their ability to explain a larger
proportion of phenotype variance due to increased degrees of
freedom. Additionally, we can assign individual weights to the
penalty terms for each variable. For instance, we may choose
to penalize the common variants based on their MAF and
set wc equal to 2

√
MAF c (1 – MAF c ), which results in wc = 1

when MAF c = 0.5, as implemented in the software Mendel
[Zhou et al., 2010, 2011]. This downweights the penalty of
less common variants relative to more common variants. We
also place a weight rg on the rare group coefficient of similar
form, where the MAF is replaced by the average MAF of

the variants in the rare group, or for the case of the burden
procedure, the MAF of the collapsed locus. With weights
rg = wc = 1 and unstandardized genotypes, the method pref-
erentially selects mostly common variants. For each rare vari-
ant, we place weight dr =

√
MAF r(1 – MAF r)/

√
τ(1 – τ) to

allow little penalty to be placed on very rare variants with fre-
quencies much smaller than τ. After some experimentation,
we have currently set (λ1, λ2, λ3) = κ(1, 1, 1) for the bur-
den procedure, and (λ1, λ2, λ3) = κ(4, 1, 1) for the weighted
procedure, where κ is a penalty strength to be determined
by permutation testing for both the weighted and burden
tests. This choice of penalty parameters allows for strong
grouping, leading to heavy group sparsity and intermediate
sparsity within a selected gene, yet has the ability to select a
wide range of causal gene configurations. The log likelihood
is maximized using cyclic coordinate ascent. See Figure 1 for
a pictorial representation of the resulting penalty function
shapes.

Cyclic Coordinate Ascent

The log likelihood and the negative penalty functions
are concave, and since the sum of concave functions is
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Table 1. The distribution of the causal variants for each causal gene

Minor allele frequency range

Causal Variant MAF
Causal Total > 0.08 0.03 – 0.08 0.01 – 0.03 .005 – 0.01 0.005 – 0.001 < 0.001
gene # Variants (causal) Count Count Count Count Count Count Sum Average

1 35 (11) 0 1 0 0 7 3 0.063 0.0058
2 40 (13) 1 0 2 1 5 4 0.175 0.0135
3 10 (2) 1 1 0 0 0 0 0.255 0.1276
4 86 (18) 0 0 3 1 4 10 0.066 0.0037
5 50 (13) 0 0 1 2 1 9 0.033 0.0045
6 80 (5) 0 0 1 0 2 2 0.023 0.0025
7 168 (36) 0 1 0 2 8 25 0.107 0.0029
8 5 (3) 0 0 1 0 0 2 0.012 0.0040
9 290 (24) 0 1 0 4 8 11 0.078 0.0032
10 20 (7) 0 1 1 0 3 2 0.080 0.0114

concave, we can use the CLG algorithm [Genkin et al., 2005]
for optimization. We maximize the penalized log likelihood
via Newton’s method and cyclic coordinate descent [Fried-
man et al., 2007; Friedman et al., 2010b; Wu and Lange, 2008;
Wu et al., 2009]. The coefficient update is:

βn+1
j = βn

j –
O ′(βn)

O ′′(βn)

where n is the iteration number. The derivative of the penalty
function is not continuous nor differentiable at zero. When
the current coefficient estimate βn

j is zero, special steps must
be taken. The elastic net penalty has continuous first and
second derivatives, but the derivative is discontinuous at zero
due to the absolute value term. Additionally, the derivative
of the group penalty has a singularity when all coefficients
in a group are zero. We attempt a move in the direction that
improves the penalized log likelihood given the other penalty
parts, but this move is not accepted if the derivative of the
objective function changes sign (we pass the local maximum).
We do not allow coefficients to take large steps or to change
signs in one iteration. If our Newton update is 	β = βn+1

j – βn
j ,

then let

βn+1
j – βn

j =

⎧⎨
⎩

–δ if	β < –δ

	β if – δ ≤ 	β ≤ δ

δ if	β > δ

where δ is currently set at 0.1. This is the proposed new value
for βn+1

j . If this value does not improve the objective function,
we halve δ and reattempt. For the weighted procedure, the
coefficient γg is restricted to be nonnegative. One potential
problem occurs when the group coefficient γg is zero. At this
point, changing the value of αr∀r ∈ g r cannot improve the
likelihood, it can only change the penalty, thus we would ex-
pect all αr to be driven to zero, causing γg to remain at zero. To
overcome this, we perturb γg , allow the αr and subsequently
γg be reestimated , and cycle through again, making sure the
surrogate is improved. Similar issues occur with the fused
lasso [Friedman et al., 2007].

Simulation Study

Using FREGENE [Hoggart et al., 2007], we simulated five
chromosomes consisting of 50 Mb of sequence data for

approximately 20K individuals. Gene regions were simulated
for each of the chromosomes as follows, with each chromo-
some having a different gene density of between 250 and
1,150 genes per chromosome, for a total of 3,600 genes. First,
the number of variants within a gene was simulated from
a log normal density and restricted to between 3 and 300
variants per gene. A region of SNPs of this size was then ran-
domly selected to be a gene. If the selected region had a length
greater than 50 kb, another region was selected. This was re-
peated until we had 3,600 genes. Second, we chose two causal
genes per chromosome for a total of 10 causal genes. For each
causal gene, a fixed number of causal variants from given
frequency ranges were randomly selected. Table 1 shows the
distribution of causal variant MAFs for each gene along with
the gene size, the sum of the causal variant MAFs, and the
average causal variant frequency of that gene. Although there
are a large number of causal variants in some genes, many are
quite rare and thus unlikely to occur in a given population
sample.

Case/control status was simulated 100 times for the entire
population using logit(P (yi = 1)) = α0 + β1xij 1

+ · · · + βnxij p ,
where j indexes the causal variants, and p is the number of
causal variants. The regression coefficient βj for each causal
variant was set to ln 5

4 |log(MAFj )|, as implemented in the
simulations performed by Wu et al. [2011] when evaluat-
ing the software SKAT. α0 was adjusted to give a population
prevalance around 11%. For each of the 100 population repli-
cates, we randomly selected 1,000 cases and 1,000 controls
to analyze. In Scenario 1, all causal variants were risk vari-
ants. In Scenario 2, 1/3 of the causal variants were selected to
be protective. Although we are only considering two differ-
ent scenarios of 100 replicates each, in actuality, this design
generates 20 different causal variant structures, for a total of
2,000 tests on causal genes, and approximately 72K tests on
null genes, the results of which can be used to assess true and
false detection rates.

Analysis was performedusing our penalized regression ap-
proach PeRC with rare variant threshold τ = .01. Analysis
was also performed in the R package SKAT [Wu et al., 2011]
and in the Score-seq software [Lin and Tang, 2011]. In SKAT,
we performed four analyses with different prechosen weights
based on MAFs drawn from the Beta(MAF; a1, a2) distri-
bution: (1) a1 = 1 and a2 = 25, the SKAT default, (2) a1 = 1
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and a2 = 1, equivalent to C-alpha, (3) a1 = 0.5 and a2 = 0.5,
equivalent to the weights used in Madsen and Browning
[2009], which we will refer to as MB, and (4) SKAT-O
with defaults. In Score-seq, we considered several different
analyses: (1) the VT test, (2) T1 with rare variants < 1%,
(3) T5 with rare variants < 5%, and (4) the Fp test (which
also uses MB weights). We attempted to use the Score-seq
EREC test, which is a permutation test, but found it to be
too slow for this size of analysis. We also compared our re-
sults to those obtained using GRANVIL [Morris and Zeggini,
2009] (with default rare variant threshold τ = .05), single
marker (SM) analysis in PLINK [Purcell et al., 2007] with
an additive model, the sparse group lasso as implemented in
Mendel (ML) [Zhou et al., 2010, 2011] with nonuniform
weights based on the MAFs, and VW-TOW with τ = .01
and 10,000 permutations as recommended by the authors
[Sha et al., 2012]. Although some of these methods use very
similar statistics, they are implemented in slightly different
ways.

Results

The different methods have their own strengths and weak-
nesses, as they have been tailored to perform well in different
situations. For example, by design, C-alpha should be more
likely to detect common causal variants than SKAT, and SKAT
should be better at detecting rare variants than C-alpha. Thus,
we expect the best performing method to depend on the type
of data simulated.

We implemented each method over a range of P-value
cutoff thresholds and penalty parameters and counted the
number of true and false detections of genes at each cutoff.
To our knowledge, Mendel v12.0 does not allow selection of
the penalty parameter, but instead allows one to set the num-
ber of desired predictors, which we will use as a defined cutoff
point. We calculated average per gene empirical true detec-
tion rates (power) and false positive detection rates (type I
error) by summing the number of true and false positives
for a given P-value/penalty parameter over all replicates.
For all methods and each gene, we summed the number
of gene detections at a given cutoff or penalty parameter
value over all replicates to get a gene detection count. For
the single marker test SM, we counted a gene detection for
any gene containing a marker below the P-value threshold.
To obtain power, we added the detection counts for all 10
causal genes, and divided this by the total number of possi-
ble true detections (1,000), i.e. the number of true positives
(10) times the number of replicates (100). For type I error,
we added detection counts for all noncausal genes, and di-
vided this sum by the number of true negatives (3,590) times
the number of replicates, i.e. by the total of 359,000 pos-
sible true negative detections (null genes). Figures 3 and 2
show the resulting power vs. false positive (FP) rates per
gene for all methods considered, for Scenarios 1 and 2,
respectively.

PeRC appears to perform well on this data set. In Figure 3,
the methods in Score-seq (T1, VT, Fp, and T5), seem to out-

perform the other methods. In Figure 2, when a third of
the causal variants are protective, most of the methods per-
form worse than in Scenario 1 (with Fp taking a huge loss
of power), but PeRC W seems to perform similarly to the
case with all risk causal variants. The Score-seq methods take
the biggest hit compared to Scenario 1, having similar true
detection rates to SKAT, MB, and Calpha. GRANVIL and
PeRC B also lose power, as expected. Single marker (SM)
analysis and the sparse group lasso (GL) perform poorly in
both cases. Table 2 shows gene detection power and false
positive rates for: (1) the single gene based methods (us-
ing the the Bonferonni corrected P-value of .05/3, 600 to
declare a gene as significant) (2) the SM method (using the
Bonferroni corrected P-value of .05/120, 608 to declare a SNP
as significant, with a gene declared as significant if any SNPs
within it are significant), and (3) the results for PeRC when
using a permutation-based test to find the penalty parameter
that gives the desired experimentwise 5% false positive rate.
In PeRC, to find the κ that yields the desired false positive
rate for our simulations, we assumed each replicate should
have the same κ (since they were drawn from the same popu-
lation on the same set of SNPs and from the same simulation
model), in order to reduce computational costs. For each sce-
nario, we permuted case/control status once for each replicate
and recorded the resulting number of variables in the model
over a range of κ. We selected the κ that gave approximately
five false positives over the 100 replicates, which gave us our
desired per gene false positive rate. For a real data set, we
could permute the case/control status 100 times and select
the value of κ that results in five false positives over all 100
replicates, or we could use a similar procedure, for example, to
that described in Ayers and Cordell [ 2010]. As Mendel v12.0
did not allow selection of the penalty parameter and had lit-
tle power in Figures 3 and 2, we did not include the sparse
group lasso in this table. Table 2 shows that SM, GRANVIL,
PeRC, VW-TOW, and the Score-seq methods control type I
error at the nominal level while SKAT and SKAT-O do
not; although SKAT and SKAT-O had the highest power,
they had higher false positive rates than most of the other
methods.

Next, we examined that genes each method preferentially
selected to see why our method was performing so much
better than the other methods in Scenario 2. The results are
shown in Figures 4 and 5. These figures give the detection
power of the causal genes over the 100 replicates for each
method at several different average false positive rates. On
further inspection, it appears as if our method preferentially
selects the longest causal gene with many causal variants,
even though the penalty has been adjusted to penalize longer
genes more heavily. Most of the methods preferentially se-
lect genes with a higher sum of causal variant MAFs. The
sparse group lasso appears to only detect the small causal
gene with 2 common causal variants. SKAT-O and VW-TOW
select the widest range of genes at low false positive rates. All
methods struggled to detect genes 3, 4, 5, 6, and 8 in both
Scenarios. Gene 3 contained common variants, while genes
4, 5, 6, and 8 had a low sum of causal variants minor allele
frequencies.
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Figure 2. Power vs. false positive rates for the case where two-thirds of the causal variants are risk variants and the rest are protective (Scenario
2). The P-value threshold or penalty parameter rate was varied to obtain points for the curves, which are an average over all replicates at each
point.

Figure 3. Power vs. false positive rates for the case where all causal variants are risk variants (Scenario 1). The P-value threshold or penalty
parameter rate was varied to obtain points for the curves, which are an average over all replicates at each point.
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Table 2. Estimated average power and false positive rates (FPR) and their standard errors (SE) for the simulated data

Method

GRANVIL SKAT-O SKAT Calpha MB PeRC B PeRC W VW-TOW T1 T5 Fp VT SM

Scenario 1
Power Est 0.046 0.247 0.171 0.072 0.057 0.073 0.057 0.013 0.135 0.087 0.059 0.160 0.010

SE (0.006) (0.011) (0.011) (0.008) (0.006) (0.007) (0.006) (0.008) (0.007) (0.007) (0.011) (0.003) (0.004)
FPR Est 3.9e-05 5.0e-04 5.1e-04 1.2e-04 6.1e-05 2.8e-05 8.9e-05 1.9e-05 4.5e-05 7.2e-05 1.7e-05 1.3e-04 2.8e-05

SE (1.0e-05) (4.5e-05) (4.3e-05) (2.2e-05) (1.3e-05) (8.4e-06) (1.7e-05) (1.3e-05) (1.4e-05) (6.6e-06) (1.7e-05) (1.9e-05) (8.2e-06)
Scenario 2
Power Est 0.012 0.120 0.122 0.079 0.022 0.001 0.047 0.007 0.016 0.043 0.001 0.043 0.011

SE (0.004) (0.010) (0.010) (0.007) (0.005) (0.002) (0.006) (0.004) (0.006) (0.001) (0.006) (0.003) (0.003)
FPR Est 5.6e-05 3.2e-04 3.4e-04 2.8e-04 3.6e-05 3.6e-05 6.1e-05 8.4e-06 2.2e-05 7.8e-05 1.1e-05 8.1e-05 5.0e-05

SE (1.3e-05) (4.2e-05) (4.1e-05) (3.0e-05) (1.0e-05) (1.1e-05) (1.2e-05) (8.6e-06) (1.5e-05) (5.5e-06) (1.6e-05) (2.1e-05) (4.8e-06)

Figure 4. Average gene power over all replicates for each causal gene at three different false positive rates for Scenario 1.

To investigate whether PeRC W selects genes solely due
to their length, we permuted the genotypes for the longest
gene (9) to break the genotype phenotype correlation and
re-ran the analysis (Supplementary Figures S1 and S2). At
low false detection rates (top two rows of Supplementary
Figures S1 and S2), our method did not detect gene 9. How-
ever, at a much higher false detection rate (bottom row of
Supplementary Figures S1 and S2), gene 9 was selected as a
false detection for a large proportion of the replicates. PeRC B
did not detect gene 9 after permutation of the genotypes for
either Scenario (data not shown). We then removed all of
the SNPs in gene 9 from the data set and re-ran both PeRC
and Mendel. We recomputed the power and false detection

rates for all of the methods excluding gene 9, (see Supple-
mentary Figures S3 and S4). In this scenario, PeRC W per-
formed poorly, although it did maintain some of its power
when a proportion of the causal variants were protective. Cur-
rently, we control for gene length bias via the sg term in the
penalty function. Silver and Montana [2012] suggest using
weights determined from permutations with a null response
to control this bias, which may be a beneficial addition to
PeRC W.

We investigated the power of PeRC B and PeRC W over
a small selection of different choices for the values of the
penalty parameters (Figures 6 and 7). Although the lasso-like
penalty (with λ1 = λ3 = 0) performed best for both methods
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Figure 5. Average gene power over all replicates for each causal gene at three different false positive rates for Scenario 2.

at low false positive rates, it performed poorly at larger false
positive rates. Thus, in Figures 3– 5, we focused on parameters
that lead to higher power at higher false positive rates and had
the widest range of gene detections (shown in Supplementary
Figures S5– S8).

Conclusions

Many recent methods developed for rare and common
variant analysis have been geared toward determining the
optimal weights for the different variants. Here, we have pro-
posed a flexible regression framework to test for association
between a dichotomous phenotype or a quantitative trait
with rare and common grouped variants where the weights
for the rare variants can be determined by the data. With
weights based on minor allele frequencies for the group and
common coefficients, we find that we may lose power to
detect common variants as they are more heavily penalized.
The large number of possible weights and penalty parameters
creates an enormous search space of parameters of which
we have only touched the surface. Here, we have selected
the penalty parameters (λ1, λ2, λ3) = κ(4, 1, 1) for PeRC W,
which encourages heavy grouping. For PeRC B, the lasso
(λ1 = λ3 = 0) seems to be optimal for Scenario 1, but very
strong grouping, (λ1, λ2, λ3) = κ(8, 1, 1), is optimal for Sce-
nario 2, perhaps because we are drawing more information
from the common variants, searching for hints of association
from any common variants that might be in association with

a causal rare variant (Figures 6 and 7). A more detailed in-
vestigation of the choice of penalty parameter is beyond the
scope of this manuscript, but would be an interesting topic
for further work. An interesting exploratory approach would
be to investigate the number and positions of selected predic-
tors at a variety of penalty parameter ratios and over a range
of κ values.

We recently became aware of a new hierarchical method
CHARM [Cardin et al., 2012] that shares the same spirit
as PeRC W, allowing each variant to have a different effect
size but without model selection. CHARM uses a prior dis-
tribution of effect sizes centered at zero with a hierarchical
parameter controlling the degree to which the effect sizes
vary from zero. Like PeRC, CHARM is able to distinguish
between multiple signals and linkage disequilibrium. Unlike
PeRC, CHARM only analyzes one gene at a time. The authors
of CHARM state that it requires approximately one minute
of computation time per SNP, so we did not attempt to run
CHARM on our 120K SNP data set.

The advantage of our model is that we can include all
genes simultaneously, considering the impact of one variable
on another, so that, in principal, a weak effect may become
more visible when other causal effects are already accounted
for. Penalty parameters can be adjusted to change the weights
on the rare variants, common variants, and groups of vari-
ants through various weighting options to tailor the method
to the required analysis. The user can also input their own
weights. PeRC also allows for penalized and unpenalized co-
variates, and can perform the lasso, sparse group lasso, elastic
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Figure 6. Power vs. false positive rates for PeRC B over a variety of penalty parameters. The two plots on the left represent Scenario 1, where
the bottom plot is a larger range of false positive rates than the top plot. The two plots on the right correspond to Scenario 2.

Figure 7. Power vs. false positive rates for PeRC W over a variety of penalty parameters. The two plots on the left represent Scenario 1, where
the bottom plot is a larger range of false positive rates than the top plot. The two plots on the right correspond to Scenario 2.

Genetic Epidemiology, Vol. 37, No. 6, 592–602, 2013 601



net, and ridge by controlling the penalty parameters appro-
priately. Currently, PeRC does not handle missing genotypes,
so they must be imputed beforehand and input to PeRC as
dosage data. For 20 values of the penalty parameter κ on ap-
proximately 120K SNPs, PeRC W required around 4 hr for
to run, while PeRC B required around an hour. Although
PeRC does not always outperform other methods, its im-
proved performance over the sparse group lasso is encour-
aging for rare variant penalized regression. Additionally, we
may be able to improve performance by using an optimal
combination of the burden and weighted models, similarly
to SKAT-O, to take advantage of the strengths of each model
within the different scenarios of risk variants (risk vs. pro-
tective). We have shown that our method is able to detect
long causal genes with many very rare variants with the cur-
rent selected penalty parameters. The coefficients for the rare
variants are estimated from the data, allowing variants to
have both risk and protective effects. Thus, PeRC W is fairly
insensitive to whether or not the causal variants are risk or
protective. PeRC can also be used with sequence data for a
set of genes or pathways that may have been shown or sus-
pected to be associated with a trait in attempt to determine
which genes and/or SNPs are contributing most to the trait
variance.
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Meier L, van de Geer S, Bühlmann P. 2008. The group lasso for logistic regression. J R
Statis Soc Ser B 70: 53–71.

Morgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multi-allelic
or mono-allelic risk for common diseases: a cohort allelic sums test (cast). Mutat
Res 615: 28–56.

Morris AP, Zeggini E. 2009. An evaluation of statistical approaches to rare variant
analysis in genetic association studies. Genet Epidemiol 34: 188–193.

Mutshinda CM, Sillanpää MJ. 2010. Extended Bayesian LASSO for multiple quantitative
trait loci mapping and unobserved phenotype prediction. Genetics 186: 1067–1075.
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