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Abstract
Androgen deprivation therapy targeting the androgens/androgen receptor (AR) signaling continues to be the 
mainstay treatment of advanced-stage prostate cancer. The use of second-generation antiandrogens, such as 
abiraterone acetate and enzalutamide, has improved the survival of prostate cancer patients; however, a majority 
of these patients progress to castration-resistant prostate cancer (CRPC). The mechanisms of resistance to 
antiandrogen treatments are complex, including specific mutations, alternative splicing, and amplification of 
oncogenic proteins resulting in dysregulation of various signaling pathways. In this review, we focus on the major 
mechanisms of acquired resistance to second generation antiandrogens, including AR-dependent and AR-
independent resistance mechanisms as well as other resistance mechanisms leading to CRPC emergence. Evolving 
knowledge of resistance mechanisms to AR targeted treatments will lead to additional research on designing more 
effective therapies for advanced-stage prostate cancer.
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cancer

http://crossmark.crossref.org/dialog/?doi=10.20517/cdr.2020.45&domain=pdf


Verma et al . Cancer Drug Resist  2020;3:742-61  I  http://dx.doi.org/10.20517/cdr.2020.45                                              Page 743

INTRODUCTION
Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of 
cancer related deaths among men in the United States[1]. According to an estimate by the American Cancer 
Society, approximately 191,930 new cases of prostate cancer will be diagnosed and 33,330 deaths will occur 
from this disease in 2020[2]. The majority of deaths from prostate cancer is due to advanced-stage metastatic 
spread dependent on the androgen receptor (AR). Because of the crucial role of AR in the development 
and progression of prostate cancer, androgen deprivation therapy (ADT) is the standard-of-care therapy 
for relapsed or metastatic patients attained by either surgery or medical castration with luteinizing 
hormone-releasing hormone (LHRH) agonists or antagonists[3]. The first-generation antiandrogens such as 
hydroxyflutamide and bicalutamide have been used over many years for the treatment of prostate cancer. 
Most tumors initially shrink in response to ADT, but eventually emerges as castration-resistant prostate 
cancer (CRPC) within 18-24 months. Detailed studies on CRPC have shown their dependency on the 
AR signaling axis despite systemic depletion of androgens by various mechanisms. Upon progression, 
CRPC eventually metastasizes to the bone and later to other distant organs. Patients with metastatic 
CRPC (mCRPC) exhibit poor prognosis and low predicted overall survival of less than 2 years from the 
initial time of progression; such patients account for a large portion of the prostate cancer-related deaths. 
Two novel agents, abiraterone acetate and enzalutamide, were developed as second-generation AR axis-
targets agents that offer more effective inhibition of the AR pathway[4]. Understanding the mechanisms of 
resistance to the second-generation antiandrogens is the key to develop more effective therapies. In this 
review, we will discuss the current knowledge regarding the pathways leading to castration resistance and 
the mechanisms of resistance against these agents.

AR
AR play an essential role in the development and function of a normal prostate gland in men. Aberrant 
AR expression is primarily involved in prostate carcinogenesis that are AR sensitive, but is also engaged 
in the metastatic growth of CRPC, in fact, the androgen axis continues to play an important role in the 
function and growth of CRPC[5,6]. AR is a nuclear ligand-activated transcriptional factor, a member of the 
steroid hormone nuclear receptor family, whose coding gene is located on the X chromosome at the locus 
Xq11-Xq12. AR consists of three main functional domains, the N-terminal transactivation domain (NTD) 
comprising of exon 1, a central DNA-binding domain (DBD) constitutes exons 2-3, and a C-terminal 
ligand-binding domain (LBD) spanning between exons 4-8 [Figure 1A and B][7].

The presence of a hinge region between the DBD and LBD is involved in nuclear localization and 
degradation. The N-terminus has a unique LxxLL-like motif, which binds to a hydrophobic cleft of the 
C-terminus generated by ligand binding to the receptor. This binding stabilizes the ligand binding caused by 
physical interactions between the N-terminal and C-terminal of the receptor[8]. The initial N-C interaction 
occurs in the cytoplasm. AR binds with androgens testosterone and dihydrotestosterone. Of note, adrenal 
androgens have lower binding affinity with the AR. Upon binding of AR with androgens, the complex acts 
as a transcriptional activator. In the absence of androgens, heat shock protein (HSP) binds to AR, therefore, 
AR remains inactive in the cytoplasm. Binding of androgens with AR induces a conformational change, 
resulting in the dissociation of HSP from AR, and the AR dimer translocate to the nucleus where it binds 
to androgen responsive elements of genomic DNA and regulate several target genes involved in growth and 
proliferation [Figure 1C][9,10].

AR TARGETING AGENTS
Several reports suggest that both AR responsive or refractory prostate cancer harbor increased AR 
expression due to genetic amplification of AR genes and AR enhancer elements[11-14]. Hence, research on 
prostate cancer treatments have targeted agents involved in the androgen receptor signaling axis. Androgen 
deprivation therapy (ADT), which inhibits transcriptional activity of AR, is utilized in the treatment of 
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advanced prostate cancer. The therapeutic strategies involved in ADT strive to reduce levels of circulating 
androgen by surgical or chemical castration, and use antiandrogen to prevent androgen from binding to 
the AR. Circulating androgen levels are reduced by more than 90% within 24 h of surgical castration[15]. 
Chemical castration could be performed by using luteinizing hormone-releasing hormone (LHRH) 
agonist such as leuprolide acetate and goserelin acetate or with LHRH antagonist including degarelix. 
The first-generation nonsteroidal antiandrogens that are in clinical use include flutamide, nilutamide, and 
bicalutamide. Over past several years, these LHRH agonists and antiandrogens have been in the clinical 
use for the treatment of advanced-stage prostate cancer; however, this therapy is palliative and not curative. 
Various types of antiandrogens have been developed in past decades [Table 1]. These include antiandrogens 
such as enzalutamide, biculatamide, niculatamide, apalutamide, flutamide, cypreterone, abiraterone acetate, 
and darolutamide. Several of these antiandrogens have received FDA approval and are clinically prescribed 
for the treatment of advanced-stage prostate cancer. Enzalutamide, apalutamide, and darolutamide block 
AR based testosterone signaling in the cells by interrupting the interaction between androgens and 
ARs[16], bicalutamide binds with AR ligand binding site, and flutamide compete with DHT for AR and 
inhibit the translocation of AR into nucleus, preventing AR-based downstream signaling[17,18]. Abiraterone 
acetate is a CYP17 enzyme inhibitor that inhibit the biosynthesis of testosterone[19]. The search for more 
effective therapies to block the transcriptional activity of AR remains the focus, of which the antiandrogen 
enzalutamide and the CYP17 enzyme inhibitor abiraterone acetate are discussed in detail.

ANTIANDROGENS-ABIRATERONE ACETATE AND ENZALUTAMIDE
Abiraterone acetate (Zytiga®) is a molecule whose structure is similar to pregnenolone. Abiraterone acetate 
selectively and irreversibly blocks the production of intratumoral androgen biosynthesis by inhibiting 

A C

B

Figure 1. The androgen-androgen receptor signaling pathway. A: The androgen receptor gene resides on the long arm of X chromosome 
(locus Xq11-Xq12). Upon transcription it produces mRNA containing 8 exons interrupted by introns which codes for the AR protein made 
up of 919 amino acids. AR protein contains several functional domains such as N-terminal domain (NTD), DNA binding domain (DBD) 
and ligand binding domain (LBD); B: Ligand binding domain of androgen receptor in complex with its ligand 5-α-dihydrotestosterone 
(5ADHT). The crystal structure of the androgen receptor ligand binding domain in complex with 5-alpha dihydrotestosterone (PDB 
ID 1T7T with resolution 1.70Å) was downloaded from RCSB protein databank. The PyMOL molecular visualization system was used 
to represent the protein-ligand complex in cartoon-sticks form; C: General mechanism of AR signaling. Testosterone diffuses into 
the cells and gets converted into dihydrotestosterone (DHT) via the action 5-α-reductase (5-a-R). DHT binds to the ligand binding 
pocket of androgen receptor (AR) and promotes its dissociation from the heat shock protein (HSP). Free AR then translocate into the 
nucleus and binds to androgen receptor element (ARE) present in the promoter region of AR responsive genes. At the promoter AR 
recruits components of basal transcriptional machinery such as TATA binding protein (TBP), transcription factor IIF (TFIIF), and cAMP 
responsive element binding protein (CRBP) which ensures the transcription of AR responsive genes
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cytochrome P450 17A1 (CYP17A1), a cytochrome p450 enzyme required for the production of androgens 
through both 17α-hydroxylase and C17, 20-lyase activity[20]. These enzymes are also required for the 
synthesis of steroids including progesterone, glucocorticoids, mineralocorticoids, and estrogens[21]. The 
major function of CYP17A1 enzyme is to convert pregnenolone to dehydroepiandrosterone. CYP17A1 
inhibition ultimately reduces the number of circulating androgens available to activate the AR[22]. Loss of 
CYP17A1 activity results in significant loss of androgen production, specifically in the peripheral organs, 
and loss of adrenal androgen production in particular[23]. Inhibition of CYP17A1 results in higher levels of 
urinary metabolite 3α5α-17HP which is correlated with the excretion of androsterone[22]. Overexpression 
or genomic changes in CYP17A1 contributes to abiraterone acetate resistance[24]. Using a xenograft mouse 
model, Chang et al.[25] demonstrated that the HSD3B1 (1245C) mutation contributes to abiraterone acetate-
resistant progression to CRPC, though the clinical significance is not completely elucidated. Abiraterone 
acetate has been shown to be 10-30 times more effective than ketoconazole, a non-specific inhibitor of p450 
enzymes used to rapidly reduce androgen production[23]. Abiraterone acetate received FDA approval for 
the treatment of CRPC through COU-AA-301 and COU-AA-302 phase III clinical trials[26,27]. The double-
blinded, placebo-controlled COU-AA-301 trial was conducted in chemotherapy-pretreated metastatic 
CRPC patients demonstrating 3.9-month median overall survival for patients treated with abiraterone 
acetate[26]. Initially, it remains an effective and essential paradigm in the treatment of metastatic CRPC, 
but AR reactivation drives prostate cancer to lethal CRPC phenotype in all patients despite effective 
testosterone suppression[16].

Enzalutamide (MDV3100, Xtandi®) is another multi-targeted second-generation AR inhibitor impeding 
testosterone binding to AR, AR nuclear translocation, AR binding to DNA, and co-activator recruitment[23]. 
Enzalutamide was designed to overcome the limitations of first-generation agents such as bicalutamide 
or flutamide[16]. Enzalutamide exhibits three mechanisms of action: first, it prevents ligand binding 
and AR activation by binding to the AR LBD; second, it prevents AR translocation to the nucleus; and 
third, it inhibits the transcription of target genes by preventing binding of AR to DNA. FDA approval of 
enzalutamide is based on the AFFIRM and PREVAIL phase III clinical trials. AFFIRM was a double-blind, 
placebo-controlled trial that demonstrated a median overall survival of 4.8 months longer in patients with 
metastatic CRPC who were treated with enzalutamide. Additionally, PREVAIL was also a double-blind, 
placebo-controlled trial that revealed a 2.2 month longer median overall survival in chemotherapy-naïve 
metastatic CRPC patients treated with enzalutamide[28,29].

Antiandrogens Mode of action
Enzalutamide AR antagonist
Bicalutamide AR antagonist
Ostarine Selective AR modulator 
Apalutamide Selective and competitive inhibitor 
Galeterone CYP17 inhibitor and AR antagonist 
Flutamide AR antagonist
Cyproterone Acetate AR antagonist
AZD3514 AR down regulator
Spironolactone AR Antagonist
Ligandrol Selective AR modulator
Triptophenolide Selective AR modulator
Testolone Selective AR modulator
EPI-001 AR N-terminal domain antagonist 
Darolutamide AR antagonist and blocks AR nuclear translocation
Dehydroepiandrosterone AR agonist 
Nilutamide AR antagonist

Table 1. Various examples of antiandrogens agents*

*Data was extracted from https://www.selleckchem.com/screening/fda-approved-drug-library.html
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CELLULAR SIGNALING PATHWAYS IN ANTIANDROGEN RESISTANCE
Therapeutic agents in prostate cancer can develop resistance by primary or acquired mechanisms. 
Genetic changes, including amplification, mutation, or translocation of driver genes leading to AR splice 
variants and point mutations, are examples of processes causing enzalutamide or abiraterone acetate 
drug resistance[16,30]. Additionally, progression to AR independent forms of prostate cancer such as 
neuroendocrine prostate cancer is frequently observed post-enzalutamide treatment. This highlights a need 
to pursue development of novel strategies to target molecular mechanisms of castrate resistance. Despite 
the initial response of enzalutamide and abiraterone acetate in CRPC patients, the secondary resistance 
mechanisms unavoidably result in clinical progression of the disease. Thus, it is important to understand 
the mechanisms and pathways of resistance towards antiandrogens for which several preclinical models 
have been developed in order to investigate the underlying mechanisms.

Recent studies from our laboratory focused on the generation of antiandrogen resistant cell lines. For these 
studies, we treated androgen responsive human prostate cancer LNCaP cells with increasing concentrations 
of enzalutamide (1~20 μmol/L) by passage in media containing enzalutamide for six months. The resistant 
cells generated from 20 µmol/L enzalutamide were maintained in media containing 5 µmol/L enzalutamide 
and referred to as LNCaP-enzalutamide resistant cells. The LNCaP parental cells and LNCaP-enzalutamide 
resistant cells were subjected to RNA isolation followed by RNA-Seq analysis. The RNA-Seq data of 
LNCaP-enzalutamide resistant cells identified 4,578 upregulated and 4,184 downregulated transcripts. 
These differentially expressed genes were overrepresented by genes related to fatty acid oxidation, drug 
resistance signaling, drug metabolism, glucose and bile acid biosynthesis, lipid metabolism, fatty acid α/β 
oxidation, type II diabetes mellitus, and NF-kB signaling pathway. In contrast, signaling pathways such as 
cell cycle, Wnt signaling, and DNA repair pathways were downregulated. In particular, prolong suppression 
of AR by enzalutamide resulted in perturbations in the AR signaling pathway [Figure 2]. Analysis for 
the upstream regulators in enzalutamide resistant cells exhibited increased expression of transcription 
regulators (HOXA9, IGF2, SATB1, and PLAGL1), kinases (AKT3 and FLT1), peptidase (UCHL1), 
and ligand-dependent nuclear receptor NR3C1 [Figure 3A]. Moreover, a subset of genes that include 
transcriptional regulators such as SPDEF, NKX3.1, ELF3, IRF5, FOXA1, and G-protein coupled receptors 
were downregulated in enzalutamide resistant cells, compared to those of the parental LNCaP cells [Figure 3B]. 
The study provides information on some new lead molecules altered during enzalutamide resistance in 
prostate cancer.

AR-DEPENDENT RESISTANCE MECHANISMS
Abiraterone acetate and enzalutamide are drugs frequently prescribed for advanced prostate cancer; 
however, at least 20%-40% of patients develop primary resistance. Ultimately, patients who exhibit clinical 
or biochemical responses to treatment with these agents eventually develop secondary resistance through 
complex pathways[16]. Development of resistance is mediated by the AR, which include AR amplification, 
AR overexpression, AR somatic point mutations, constitutively active AR splice variants, and altered 
intratumoral androgen biosynthesis.

Clinical evidence demonstrates that AR amplification is important in developing resistance to 
antiandrogens. A study by Mostaghel et al.[31] demonstrated 3-fold increase in AR expression following 
treatment with abiraterone acetate in CRPC xenograft models. Another study that aims to probe the 
genomic landscape used liquid biopsies and circulating tumor DNA (ctDNA) obtained from prostate 
cancer patients and identified that AR amplification results in less responsive to antiandrogens. 
Approximately 50% of patients pretreated with either enzalutamide or orteronel (a CYP17A1 inhibitor) 
prior to abiraterone acetate treatment exhibited evidence of AR amplification, and only 13% of those with 
AR amplification demonstrated a response with > 50% PSA decline after being treated with abiraterone 
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acetate. Approximately 5%-30% of mutations in AR were noted in circulating tumor cells and circulating 
tumor DNA of CRPC patients. Studies have shown that AR point mutations confer resistance to 
enzalutamide and abiraterone acetate[32]. The most frequently reported somatic mutation F877L/F876L has 
been identified in patients treated with enzalutamide and apalutamide. Binding to the mutated AR at ARN-
509, these drugs act as agonists rather than antagonists[33]. Other mutations associated with poor response 
to enzalutamide are L702H, conferring acquired responsiveness to glucocorticoids, and T878A/T877A, 
resulting in progesterone-mediated activation of the AR. The W742C/L mutation is also reported to be 
responsible for the bicalutamide resistance[32-34]. Apart from the mutations in LBD, more than 30 mutations 
have been reported in the other parts of the receptor. Buchanan et al.[35] identified somatic mutations within 
the N-terminal polyglutamine tract of AR. In the NTD of AR gene, there is a polymorphic trinucleotide 
repeat region (CAG)n which encodes for the polyglutamine tract in AR protein. In healthy individuals the 
number of these repeats ranges 6 to 39 and variation in the number of these repeats is found associated 
with onset of prostate cancer[36-39]. Interruption of the polyglutamine tract with two leucine residues (AR-
polyQ2L) is reported to reduce the ligand induced N- and C-terminal interaction and result in the higher 
activity of receptor in comparison to wild type receptor. This high activity of AR receptor is attributed to 
the enhanced interaction with co-activators such as androgen receptor-associated protein 24[35,40]. There 

Figure 2. Distinct gene expression pattern of LNCaP-enzalutamide resistant cells in relation to AR. LNCaP cells treated with 
antiandrogen enzalutamide to generate LNCaP-enzalutamide resistant cells. These resistant cells show distinct gene expressed pattern 
in relation of AR in nucleus, cytoplasm, plasma membrane, and extracellular space. The red color shows increased expression, pink color 
shows less expression whereas green color shows decreased expression. The blue arrowhead shows genes leads to inhibition, while 
orange color shows gene leads to activation, while the dotted line shows its indirect interaction. AR: androgen receptor
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are evidences that suggest that enhanced interaction with co-activators strengthens the AR signaling in 
androgen depleted environment and in presence of weak AR agonist. This consequently results in the 
failure of antiandrogen therapy[41].

Androgen receptor splice variants (AR-Vs) are also involved in the progression of prostate cancer, as well 
as the development of resistance to antiandrogens[42]. Prostate cancer progression occurs when AR-Vs lack 
the LBD and remain constitutively active, and their expression is amplified during ADT[43,44]. AR-V7 is one 
of the most widely studied splice variant in prostate cancer research. A study conducted by Chen et al.[45] 
reported the high expression of AR-V7 in CRPC patients. Another study by Antonarakis et al.[30] 
reported the high proportion of AR-V7 in circulating tumor cells and found it to be associated with the 
enzalutamide and abiraterone acetate resistance. Proteins encoded by AR-V7 lack the LBD domain of AR 
which is directly targeted by both enzalutamide and abiraterone acetate. Furthermore, AR-V7 proteins 
remain constitutively active in a ligand independent manner which gives AR-V7 expressing cells a selective 
advantage in an androgen depleted environment[43]. Another important AR-V reported in prostate cancer 
is ARv567e. It lacks exons 5, 6, and 7 which encode the LBD of AR. Interestingly, ARv567e is reported to 

Figure 3. Cascade of upstream and downstream transcriptional regulators. The NGS data of LNCaP-enzalutamide resistant cells 
identified (A) upstream and (B) downstream regulators, based on overlap p-values computed based on significant overlap between 
genes in the dataset and known targets regulated by the transcriptional regulator and represented in graph on scale of expression log 
ratio at overlap P -value ≤ 0.001. NGS: next generation sequencing
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induce oncogenesis autonomously[46]. While expression of AR-V7 is reported both in benign and malignant 
prostate cancer tissues, ARv567e expression has been associated with only malignant prostate cancer 
tissues[46-48]. Tagawa et al.[49], with a cohort of 54 CRPC patients, reported the presence of AR-V7 splice 
variant in 36 patients (67%), ARv567e in 42 patients (78%), and the presence of both variants in 29 (54%) 
patients, but in 5 patients, both variants were absent. Previously, it was supposed that AR splice variants 
activate AR signaling independent of full-length AR, but it was found that ARv567e binds with full length 
AR to initiate ligand independent AR signaling which results in the cellular proliferation in the absence of 
androgen[50]. Apart from these two major AR-Vs other splice variants have been detected in CRPC such as 
AR-V1, AR-V2, AR-V3, AR-V4, AR-V5, AR-V6, AR-V8, and up to AR-V14[51]. AR-V1, AR-V4, and AR-V6 
can dimerize with AR-V7 and AR-FL and therefore nuclear localization of these variants is induced by 
AR-V7 and AR-FL. Nuclear localization of these additional AR-Vs results in the enhanced activation 
of canonical AR targets and splice variant specific targets which consequently increases the severity of 
prostate cancer[52]. AR-8 is another important splice variant highly expressed in CRPC cell lines such as 
C4-2, C4-2B, and CWR22Rv1. AR-8 has been found truncated at C-terminal and it does not possess DBD 
or LBD this it lack of trans-activating function. AR-8 remains attached to the plasma membrane via its 
two palmitoylated cysteine residues and associates with AR-FL and EGFR to mediate Src-induced AR 
activation[53].

Testosterone and 5α-dihydrotestosterone are sex steroid hormones that are largely synthesized from 
cholesterol in the testes and partially in the adrenal glands. Intratumoral synthesis of these hormones 
increases in CRPC patients. Cholesterol and weak androgens synthesized in the adrenal glands, 
such as androstenedione and dehydroepiandrosterone, may act as precursors of testosterone and 
5α-dihydrotestosterone[24]. These augmented intratumoral levels of androgens promote both paracrine and 
autocrine activation of the AR regardless of systemic hormone levels. Studies conducted in cell culture and 
in vivo models suggests that enzalutamide resistance may be related to overexpression of genes encoding 
for enzymes involved in androgen biosynthesis such as SRD51A, HSD3β1, and AKR1C3[54]. One of these 
enzymes, AKR1C, is a potential target for pharmacological approaches against AR resistance. In both 
in vitro and in vivo preclinical models, indomethacin, an NSAID, inhibits AKR1C activity and re-sensitizes 
CRPC to enzalutamide.

The half-life of AR increases upon binding with the androgen with reduction in its degradation. Both 
the ubiquitin-proteasome system and the autophagy-lysosome pathway play important roles in the 
degradation of AR protein. Reports suggest several E3 ubiquitin ligases ubiquitinate AR proteins with 
distinct AR domain interactions including UBE3A (E6-AP), RCHY1 (ARNIP), and CHIP binding to 
the AR N-terminal domain, RNF4 (SNURF) to the AR DNA-binding domain while RNF6 and SIAH2 
bind to the AR ligand binding domain[55-60]. In addition, Ser-213 and Ser-791 phosphorylation is essential 
for AR degradation by MDM2 E3 ligase while Thr-850 phosphorylation may stabilize AR by recruiting 
RNF6. AR phosphorylation at Ser-578 by p21-activated kinase 6 (PAK6) promotes the association between 
AR and MDM2 to activate MDM2-mediated proteasomal degradation of AR[47]. Reports suggest that 
RNF6 and SIAH2 may represent effective therapeutic targets. In contrast, proteases such as ubiquitin-
specific peptidases or deubiquitinases hydrolytically cleave ubiquitin or ubiquitin-like proteins from their 
substrates affect AR transcriptional activity and stability[61]. USP7, USP10, USP14, and USP26 are some 
deubiquitinases which affect AR stability and its binding and are thus important therapeutic targets to 
control CRPC progression[62].

AR-INDEPENDENT RESISTANCE MECHANISMS
PI3K-Akt signaling 
The PI3K-Akt-mTOR pathways are well known to regulate all major cellular processes such as cell growth, 
development, proliferation, protein synthesis regulation, and programmed cell death[63]. Aberrant activation 
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of PI3K-Akt has been implicated in prostate cancer development and progression[64] and activation of this 
pathway may be responsible for antiandrogen drug resistance[33]. Activation of PI3K signaling and loss 
of the tumor suppressor gene PTEN, the negative regulator of PI3K/Akt pathway, occurs prominently in 
metastatic prostate cancer[65,66]. A phase II randomized clinical trial, those having PTEN loss demonstrated 
the trends for improvement with the addition of Akt inhibitor to abiraterone acetate/prednisone 
treatment[67]. Studies on preclinical models have shown that the activation of PI3K/Akt pathway is critical 
to CRPC development[68]. PI3K isoform, especially p110α, is associated with the insulin and growth factor 
pathways while p110β isoform is known to regulate cell mitosis and survival[69]. Overexpression of p110β is 
specifically involved in prostate cancer growth and proliferation[70]. Interaction of AR with Src kinase and 
p58α regulatory subunit of PI3K activates mitogen-activated protein kinase (MAPK) and Akt pathways, 
leading to increased cell proliferation and survival[71]. In addition, activation of MAPK and Akt also 
enhance AR signals by phosphorylating the AR or transcriptional co-activators[65]. During the castration 
stage, Akt directly phosphorylates AR at two locations on Ser-791 and Ser-217; however, its clinical 
significance is not been established. Chandrasekar et al.[72] demonstrated higher level of Src activation 
(androgen-independent) was associated with worse prostate cancer phenotypes like unlimited cell growth, 
tumor migration and invasion, and inhibition of apoptotic pathways. Besides, several clinical trials are 
being conducted via combination therapy of molecular targeted drugs like tyrosine kinase inhibitors with 
second-generation antiandrogens drugs. Thomas et al.[73] in an in vivo study showed synergistic targeting of 
the PI3K/Akt pathway, and they showed that the AR axis significantly delayed CRPC progression.

Glucocorticoid signaling
Glucocorticoid receptor (GR), a member of the steroid hormone nuclear receptors family whose structure 
and mechanism of action is similar to androgen receptor, is expressed in almost all human tissues[74]. GRs 
complexed with heat shock proteins are found in the cytoplasm. GRs consist of four functional domains, 
similar to ARs, including DNA binding domain, ligand binding domain, N-terminal, and the hinge 
region[75]. ARs and GRs share similar transcriptomes and response elements in target genes. The binding 
of glucocorticoids promotes homodimerization and translocation in the nucleus where GR mediates 
transcriptional activation and influences target gene expression[76]. The role of glucocorticoids and GRs 
in prostate cancer is complex as it influences both harmful and beneficial effects. Venkitaraman et al.[77] 
demonstrated that glucocorticoids inhibit lymphangiogenesis through vascular endothelial growth 
factor downregulation and inhibit prostate cancer cell proliferation through the glucocorticoid receptor 
induction. Induction of GR upregulates p21 and p27 expression and downregulate oncogenic molecules 
such as MAPKs, NF-kt, and STAT1[78]. GR mediates a similar but distinct set of AR-target gene expression. 
Glucocorticoids initially have suppressive effects on prostate cancer and are often given in conjunction with 
early treatments of CRPC with chemotherapy and second-generation antiandrogen agents (enzalutamide 
or abiraterone acetate)[72]. Both AR and GR possess similar DNA binding domain structures. GR has 
been shown to share response elements with many AR regulated target genes which ultimately leads to 
its upregulation in patients treated with chemotherapy along with second-generation antiandrogens[79]. 
Upregulated GR signaling mediates resistance to androgen-targeted agents and the mechanism is known as 
“glucocorticoids receptor take-over” pathway[80]. A recent investigation by Puhr et al.[81] on GR expression 
and its functional significance in both prostate cancer cell lines and prostate cancer patients found that 
GR expression is low in primary prostate cancer tissue but is significantly increased during long-term 
exposure to enzalutamide. Similar findings were reported by Arora et al.[79] who demonstrated how GR 
overexpression conferred resistance to enzalutamide. Li et al.[82] further determined that treatment with 
enzalutamide maintained the cortisol level and enhanced glucocorticoid signaling by inhibiting the 
11β-hydroxysteroid dehydrogenase-2 (11β-HSD2). 

NF-ҡB signaling 
The NF-kB family proteins are important component of the oncogenic pathway in multiple human 
malignancies[83]. There are five distinct NF-kB proteins of which p65/p50 heterodimer has shown to be 
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constitutively active in prostate cancer[84]. Moreover, activation of NF-kB/p52 pathway has been implicated 
in the development of resistance to prostate cancer[85]. Overexpression of p52 increases glucose uptake 
and produces higher ATP and lactate levels moderating enzalutamide resistant in CRPC cells[86]. It has 
been shown that processing of p100 to p52 through molecules such as B-cell activating factor, CD40, 
lymphotoxin β, and STAT3 may activate AR-Vs and glucose metabolism frequently involved in CRPC 
progression[87]. Activation of AR-Vs mediated by heterogeneous nuclear RNA-binding protein (hnRPA-1) 
leads to significant hyperplasia and induced castration resistance growth[88]. This leads to inhibition of 
apoptosis and cell cycle and thus limiting sensitivity to second-generation antiandrogen therapy. Liu et al.[18] 
showed that overexpression of androgen receptor splice variant-7 (AR-V7) could activate NF-kB which in 
turn upregulates interleukin IL-6 gene expression. The study indicates a positive interaction between AR-
V7 expression and activated NF-kB/IL-6 signaling in CRPC pathogenesis. They also demonstrated that 
AR-V7-induced NF-kB activation and IL-6 gene transcription could be inhibited by melatonin in LNCaP 
and 22Rv1 cells. Nadiminty et al.[89] demonstrated that the mechanism of resistance to enzalutamide to 
be mediated by AR splice variants that lack the ligand binding domain (LBD); the AR variants expression 
are increased by NF-kB signaling. This group further demonstrated that downregulation of NF-kB2/p52 
expression in CRPC cells by short hairpin RNA abrogates splice variants expression[89]. Downregulation of 
NF-kB inhibits AR-Vs expression and restores the sensitivity of CRPC to second-generation antiandrogen 
therapy and desensitizes cells to androgens[90]. Another study reported that downregulation of hnRPA-1 
may lead to the re-sensitization of enzalutamide resistant prostate cancers[91]. NF-kB has been shown to 
regulate the expression of several cytokines, in particular IL-6, in normal tissues and cancer cells. IL-6 
is highly expressed in CRPC, increasing the transcriptional activity of the AR in a ligand-independent 
manner[92]. But experimental therapies against IL-6 and the clinical trials on patients with late-stage prostate 
cancer has not been yet reported. IL-6 acts through the Janus kinase (JAK)-signal transducer and activator 
of transcription (STAT) pathway which has been approached as anti-STAT3 therapeutics in several human 
cancers including prostate cancer[93]. Treatment of prostate cancer cells with the JAK inhibitor AG490 
leads to the re-sensitization of cells to enzalutamide[94]. Liu et al.[94] demonstrated that co-treatment with 
enzalutamide and AG490 has an inhibitory effect on cell growth and induces apoptosis. Another study 
demonstrated that combinational therapy of antiandrogens with NF-kB inhibitors efficiently inhibits tumor 
growth of human CRPC xenografts.

FOXO signaling
Studies reveal that members of FOXO family also develops antiandrogen resistance. Many pro-apoptotic 
proteins such as caspase-9, Bad, and FOXO subfamily members including FOXO1, FOXO3a, and FOXO4 
are phosphorylated by Akt to maintain cell survival[95-98]. The phosphorylated form of FOXO proteins 
remains inactive in the cytoplasm. Dephosphorylation of these proteins occurs due to Akt activity 
inhibition by several cellular factors such as PTEN or PI3K inhibitors. Activated FOXO proteins translocate 
from the cytoplasm to the nucleus and subsequently bind to promoters of their target genes such as p27, 
FASL, Bim-1, p21, Cyclins (A, B, D, E, and G2), PGC1α, RAG1, RAG2, etc.[99]. FOXO3a increases androgen 
receptor expression by direct binding to the AR gene promoter [100]. However, FOXO1 decreases AR 
transactivation by engagement of histone deacetylase HDAC3 proteins[101]. Inactivated FOXO proteins have 
been implicated in prostate cancer progression towards castration resistance. Das et al.[102] demonstrated 
that activation of Akt induces FOXO3a inactivation, meaning that PI3K/Akt inhibitors would activate 
FOXO3a. Ketola et al.[103] highlighted the role of FOXM1 as the key player of the most aggressive prostate 
cancer subtype 1 (PCS1) of CRPC. Akt pathway upregulates the FOXM1, making it a target of Akt 
inhibitors[104]. FOXO1 also controls cell survival in hepatic cells via gluconeogenesis modulation by 
cooperating with PGC-1α[105].

WNT signaling
Genome-wide analysis of prostate cancer has found that aberrant Wnt/β-catenin signaling drives the 
metastatic growth of prostate cancer[106]. Wnt signaling constitutes both canonical (β-catenin dependent) 
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and non-canonical (β-catenin independent) signaling pathways that regulate cell fate, proliferation, 
differentiation, migration, and self-renewal[107]. Some studies demonstrated that AR and Wnt/β-catenin 
pathways intersect each other[106]. It has been reported that expression of β-catenin and AR protein shows 
significant correlation in CRPC tumors[108,109]. AR and β-catenin may together lead to the expression 
of target genes promoting androgen-independent growth and progression[110]. Aberrant Wnt signaling 
is involved against ADT resistance after and prior to antiandrogen therapy[111,112] and elevated level of 
β-catenin has been found in post-ADT specimens[113]. CRPC patients more frequently develop genetic 
changes compared to treatment-naïve prostate cancer[114]. Gain and loss of functional mutation in 
the β-catenin gene (CTNNB1) and APC encoding gene alter the Wnt signaling in CRPC[12,115]. Wnt-
pathway activating mutations have been associated with resistance to antiandrogens in CRPC tumors[116]. 
Nuclear localization and cytoplasmic accumulation of β-catenin and abnormal β-catenin expression has 
been observed in the specimens obtained from CRPC patients[117,118]. Chen et al.[119] demonstrated that 
suppression of non-canonical Wnt pathway overcomes enzalutamide resistance in CRPC. A study reported 
that enzalutamide-resistant cells show upregulation of β-catenin and AR which may be partially due to 
the reduction of β-TrCP mediated-ubiquitination. The study also demonstrates the correlation between 
AR and β-catenin playing a critical role not only in prostate cancer initiation but also in chemotherapy 
resistance progression[120]. In various models, synergistic combination of β-catenin inhibitor (ICG001) with 
enzalutamide inhibit cell proliferation, tumor growth, and stem-like markers expression. However, the 
role of Wnt/βcatenin signaling in promoting enzalutamide resistance in prostate cancer has not yet been 
reported. Reports suggests that cellular signaling pathways like PI3K-Akt, Wnt, glucocorticoid, NF-kB, 
FOXO, and in others like ONECUT2 are involved in second-generation antiandrogen resistance in AR-
independent pathways.

Cytokine signaling
The Janus kinase and signal transducer and activator of transcription (STAT) 3, and its downstream effector 
IL-6 lead to AR activation[121]. Human and murine prostate cancer models have exhibited varying effects 
of IL-6 and/or STAT3 on tumor cell growth. Experimental treatments have been proposed that block 
the IL-6/STAT3 signaling pathway. The anti-IL-6 antibody siltuximab (CNTO 328) has been shown to 
delay development of castrate resistance in prostate cancer in vitro and in vivo[122]. However, the anti-IL-6 
antibody has not been validated clinically as a monotherapy in phase II clinical trials[121]. IL-6 is postulated 
to be involved in regulation of cellular stemness via phosphorylation of STAT3 and it is also thought to 
play a role in the development of resistance to enzalutamide[122]. Endogenous inhibitors of IL-6 suppress 
cytokine signaling and inhibit activated STAT. While they inhibit signal transduction through STAT3, they 
may also exert anti-apoptotic effects[122]. Given the complexity of IL-6 interactions in prostate cancer, a 
customized approach is required to identify patients who will benefit from anti-IL-6 therapy in conjunction 
with standard treatments.

OTHER RESISTANCE MECHANISMS
Autophagy
The other mechanism by which CRPC develops resistance to enzalutamide treatment includes autophagy. 
Autophagy is an adaptive[33] and catabolic process to maintain cellular homeostasis through degradation 
and recycling of cellular components[123]. It is constitutively active at a low basal rate and is activated 
in response to stressors. This process allows cells to degrade cellular proteins and organelles through 
lysosomes to generate energy[124]. Also, the physiological balance between autophagy and apoptosis are 
supposed to be lost in cancer[125]. Conditions such as metabolic stress and hypoxia leads to consequent 
upregulation of autophagy which forms a good source of nourishment for highly proliferative tumor 
cells[126]. Androgen deprivation has shown to induce autophagy, but the exact mechanism remains 
unknown. An RB1 study demonstrated that the autophagy inhibitors clomipramine and metformin 
significantly increased the cytotoxicity of enzalutamide in vitro[127]. An in vivo study on enzalutamide/
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clomipramine found that the drug combination reduced prostate tumor size by 91% as compared to 
enzalutamide/metformin combination which reduced the tumor size by 78%[127]. Heat shock chaperone like 
protein-clusterin is also known to mediate autophagy induced by AR antagonists such as enzalutamide[33]. 
Synergistic administration of enzalutamide and clusterin inhibitor (OXG-011) enhanced apoptosis and 
delayed progression in both in vitro and in vivo prostate cancer models[128].

Epithelial-mesenchymal transition
The epithelial-to-mesenchymal transition (EMT) is induced by ADT in metastatic prostate cancer, and 
studies demonstrate that this process promotes tumor progression and drug resistance[33]. Activation of 
pathways such as TGF-β and SMAD alters the activity of some transcriptional factors such as Snail and 
Twist, reducing the expression of E-cadherin, a key event in EMT[129]. Post-enzalutamide treatment and 
ADT result in upregulation of Twist and this alteration, together with protein kinase C (PKC) activation, 
facilitates drug resistance. A study found that using a combination of Ro318220 (PKC inhibitor) with 
enzalutamide altered resistance in prostate cancer[130]. Snail, another transcriptional factor, can promote 
resistance to enzalutamide and increase migration and invasion of prostate cancer cells[131].

Neuroendocrine differentiation
Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer that may arise in patients 
who underwent treatment like hormonal therapies for prostate adenocarcinoma[132]. It is characterized 
by the loss of AR signaling during neuroendocrine trans-differentiation which results in resistance to 
enzalutamide therapy[133]. Reports suggest that 30% of metastatic CRPC belongs to NEPC and 1% of 
primary prostate cancers are diagnosed as NEPC[134]. Several reports suggest that N-Myc is a driver of 
NEPC. Genomic amplification and overexpression of N-Myc and Aurora kinase A are also associated with 
differentiation of prostate cancer to NEPC[135]. A preclinical study reported that overexpression of N-Myc 
abrogated AR signaling and developed features similar to NEPC[136]. Knockdown or inhibition of Aurora 
kinase A with inhibitor alisertib (formerly MLN8237) resulted in decreased N-Myc target gene expression 
and cell viability and destabilizes N-Myc protein levels[136,137]. In another preclinical study, CD532, 
another Aurora kinase A inhibitor, was shown to reduce N-Myc protein levels indicating viable treatment 
options for patients with NEPC[137]. Guo et al.[138] demonstrated that ectopic expression of ONECUT2 
(transcription factor) in prostate adenocarcinoma in combination with hypoxia suppresses androgen 
signaling. ONECUT2 drives neuroendocrine prostate cancer by regulating hypoxia signaling. It activates 
SMAD3 which regulates hypoxia signaling through modulating HIF-1α chromatin-binding[139]. It is also 
reported that treatment with hypoxia-activated prodrug TH-302 potentially reduces NEPC tumor growth. 
A study reported that both tumor suppressor proteins TP53 and RB1 are important factors in NEPC 
differentiation[140]. Another study reported that TP53 and RB1 androgen-dependent prostate cancer shift to 
androgen-independent NEPC after enzalutamide treatment[16]. Loss of TP53 and RB1 and the phenotypic 
switch of prostate cancer is mediated by the expression of a transcription factor SOX2. Mu et al.[141] showed 
that inhibition of SOX2 restored TP53 and RB1 function. Tan et al.[142] observed that approximately 90% 
of NEPC cases was associated with loss of RB1 and 85% of cases with RB1 deletions. It has been suggested 
that another factor involved in the development of NEPC is the enhancer of zeste homolog 2 (EZH2), an 
epigenetic reprogramming gene which represses androgen and drives neuroendocrine prostate cancer[143]. 
In preclinical studies, various EZH2 inhibitors like GSK-126/343/503 that targets EZH2 enzyme activity 
demonstrated growth inhibition in prostate cancer cell lines[144]. Ku et al.[144]’s study on double knockout 
mice demonstrated that blocking of EZH2 may re-sensitize to enzalutamide PTEN and RB.

Immune resistance
Several studies demonstrated that PD-L1 is considerably expressed in enzalutamide-resistant cell lines 
and enzalutamide-resistant tumors in animal models[145]. These results suggest that CRPC progression and 
resistance to AR signaling pathways is facilitated by PD-L1 and PD-1[33]. Mechanisms of primary resistance 
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can be further elucidated through phase II clinical trials investigating the role of immunotherapy in CRPC, 
involving treatment with ipilimumab in combination with abiraterone acetate in treatment-naïve CRPC 
(NCT01848067). The second phase II clinical trial is currently evaluating combination immune checkpoint 
blockade with ipilimumab and the PD-1 inhibitor nivolumab in mCRPC patients positive for AR-V7 
(NCT02601014).

TMPRSS2-ERG fusion
TMPRSS2-ERG gene fusion (T-E fusion) is the most common fusion event associated with CRPC. 
Two different studies reported the presence of T-E fusion in 9 out of 15 and 14 out of 19 CRPC tumor 
samples[22,146]. Moreover, tumor samples containing T-E gene fusion were reportedly more aggressive in 
comparison to T-E fusion negative samples, suggesting distinct molecular and perhaps clinical subtypes[147]. 
The first gene fusion in prostate cancer was reported was TMPRSS2-ETV1. Later on other fusion 
transcripts (TMPRSS2-ETV4 and TMPRSS2-ETV5) involving TMPRSS2 and ERG proteins have also been 
reported[148]. Different mechanisms are reported to be involved in the formation of these fusion transcripts. 
For example, the fusions of TMPRSS2-ERG and TMPRSS2-ETV4 are caused by intra-chromosomal 
deletion and fusion or intra-chromosomal translocation[147]. In CRPC, interstitial deletions are the most 
common cause of T-E fusion. This high frequency of T-E fusion at this part of chromosome 21 suggests that 
it is a hotspot for chromosomal rearrangements. T-E fusion results in androgen dependent upregulation 
of ERG as one of the most common genomic dysregulation in prostate cancer. Some studies have reported 
that improved response to abiraterone acetate is associated with the ERG gene rearrangement. ERG is also 
reported to guide the expression of steroidogenic enzyme AKR1C3, highly expressed in enzalutamide 
resistant cells[149]. Further investigation revealed the presence of the ERG/AKR1C3/AR feed-forward 
loop which confers androgen synthesis, AR signaling, and resistance to AR targeting agents in CRPC[150]. 
Estrogen receptor (ERα) is reported to upregulate the expression T-E fusion transcript. Based on this 
evidence, it can be postulated that ERα antagonists might offer better therapeutic outcome by lowering the 
expression level of T-E fusion transcripts. Attard et al.[151] tested this hypothesis using abiraterone acetate 
and results showed that five out of six patients responded to this therapy. HDACs inhibitors are reported to 
inhibit genes involved in the formation T-E fusion transcript.

CONCLUSION AND FUTURE PRESPECTIVES
The advent of new generation hormonal therapies set the stage for a new era in the treatment landscape 
of CRPC. Although these agents showed initial treatment benefit, a relevant proportion of patients do not 
benefit at all or acquire resistance during treatment. Increasing knowledge of the subject has provided 
information that prostate cancer is a heterogeneous disease with the coexistence of both AR-responsive and 
AR-refractory cancer cells responsible for antiandrogen resistance at various degrees. This heterogeneity 
might be a critical factor for different biological behaviors and particularly for different responses to new-
generation hormonal therapies among various prostate cancer. The current mechanisms of enzalutamide 
resistance, the mechanisms and pathways involved to design approaches for overcoming resistance, and the 
problems and solutions associated with these mechanisms are summarized in Figure 4. 

Intense ongoing research is needed to discern pathways and mechanisms to improve drug sensitivity. The 
more complete understanding of these mechanisms of resistance through approaches like next generation 
sequencing, single cell sequence, proteomics, and others will enable the development of improved treatment 
strategies to overcome this resistance. Moreover, development and validation of assays in identifying 
mechanisms of resistance and their clinical implementation will be useful in providing relevant predictive 
biomarkers and will become essential tools assisting clinicians for personalized treatment. Improving our 
understanding of these AR resistance mechanisms and translating them into the next generation of AR 
targeting agents will be key to designing more effective therapies for advanced-stage prostate cancer.
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Figure 4. Mechanisms of enzalutamide and abiraterone acetate resistance in prostate cancer cells. Aberrant activation of PI3K/Akt 
pathway overexpressing p110β with loss of PTEN  gene. Interaction of p85α subunits with Src kinase activates MAPK. Activated Akt 
overexpresses N-Myc, FOXO, ONECUT2 and EZH2 leads to activation of HIF1α, SMAD3, SOX2, and Nanog through suppressing 
TP53 and RB1. AR in the presence of hnRPA-1 forms AR-Vs and activates NF-kB signaling which in turn up-regulates IL-6 gene 
expression. Long-term exposure to antiandrogens significantly increases GR expression. Interaction of aberrant β-catenin of 
Wnt signaling to AR leads to expression target genes involved prostate cancer cell proliferation, tumor growth, stem cell marker 
expression, and chemotherapy drug resistance. Interaction of these genes with each other and with AR promotes enzalutamide/
abiraterone acetate mediated neuroendocrine prostate cancer (NEPC) and castration resistant prostate cancer (CRPC) formation. 
PI3K: phosphatidylinositol-3 kinase; PTEN: phosphatase and tensin homolog; MAPK: mitogen-activated protein kinase; EZH2: 
enhancer of zeste homolog 2; HIF1α: hypoxia-inducible factors- α; SOX2: SRY-box transcription factor 2; TP53: tumor protein 53; RB1: 
retinoblastoma1; hnRPA-1: heterogeneous nuclear ribonucleoprotein A1; IL-6: interleukin-6; AR-vs: Androgen receptor variants; AR: 
androgen receptor; GR: glucocorticoid receptor; CRPC: castration resistant prostate cancer; NEPC: neuroendocrine prostate cancer; 
BCAF: B-cell activating factor; LT: Lymphotoxin-β; AURKA: Aurora kinase A
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