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Abstract

Success of invasive non-native plant species management is usually measured as changes

in the abundance of the invasive plant species or native plant species following invader man-

agement, but more complex trophic responses to invader removal are often ignored or

assumed. Moreover, the effects of invader removal at different stages of the invasion pro-

cess is rarely evaluated, despite a growing recognition that invader impacts are density or

stage-dependent. Therefore, the effectiveness of invasive species management for restor-

ing community structure and function across trophic levels remains poorly understood. We

determined how soil nematode diversity and community composition respond to removal of

the globally invasive tree species Pinus contorta at different stages of invasion by reanalys-

ing and expanding an earlier study including uninvaded vegetation (seedlings removed con-

tinuously), early invader removal (saplings removed), late removal (trees removed), and no

removal (invaded). These treatments allowed us to evaluate the stage-dependent below-

ground trophic responses to biological invasion and removal. We found that invaded plots

had half the nematode taxa richness compared to uninvaded plots, and that tree invasion

altered the overall composition of the nematode community. Differences in nematode com-

munity composition between uninvaded nematode communities and those under the tree

removal strategy tended to dilute higher up the food chain, whereas the composition of unin-

vaded vs. sapling removal strategies did not differ significantly. Conversely, the composition

of invaded compared to uninvaded nematode communities differed across all trophic levels,

altering the community structure and function. Specifically, invaded communities were

structurally simplified compared to uninvaded communities, and had a higher proportion of

short life cycle nematodes, characteristic of disturbed environments. We demonstrate that a

shift in management strategies for a globally invasive tree species from removing trees to

earlier removal of saplings is needed for maintaining the composition and structure of soil

nematode communities to resemble uninvaded conditions.
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Introduction

Invasive species management programs are widely pursued to prevent or mitigate the impacts

that invaders have on native communities (e.g., [1,2]). Despite these efforts, many invasive

plant eradication programs either fail to meet their stated management goals or do not rigor-

ously evaluate success (e.g., [3–5]). Those plant invasive removal programs that do measure

effectiveness typically focus on responses of the targeted invasive plant species to management

per se [6], even though assessing the recovery of ecosystems should represent an important

part of the evaluation of success, as it is usually an implicit goal of management (e.g., [7]).

Some successful invasive eradication programs that have measured ecosystem responses have

shown an increase in species richness within a trophic level (e.g., plants) following invasive

plant removal [8], whereas others have found that the removal of plant invaders has no net

effects, or even negative effects, on native species [9,10].

Because the outcomes of invasive plant species removal, in terms of ecosystem impacts, are

variable [11,12], it is essential to evaluate the performance of different management strategies

within a system. Previous studies have largely assessed the effectiveness of physical and chemi-

cal removal techniques [8,9,12,13], but few have compared removal strategies at different

stages of the invasion process, which is needed to determine the best timing for management.

Furthermore, most studies that assess the effectiveness of invasive plant eradication programs

have considered only the response of plant communities [13–15], with only a few examining

changes across trophic levels [6,16,17], even though multitrophic level approaches are neces-

sary to provide management guidance [18]. In addition, invader impacts are usually measured

in terms of effects on species numbers [15,19], although more holistic approaches, like the use

of ordination techniques, can help to capture community-level effects by quantifying shifts in

the composition of species assemblages [20,21].

Among the few studies assessing the effects of invasive plant species removal strategies at

different stages of the invasion process, Dickie et al. [16] showed that removing invasive plants

at later stages of the invasion process generates a plant community composition that does not

resemble communities from either earlier invaded nor uninvaded areas. Conversely, removing

saplings allows plant community composition to more closely resemble that of uninvaded

areas. Furthermore, Dickie et al. demonstrated that different management strategies can cause

changes in soil chemistry, soil microbial composition, and the abundance of different inverte-

brate feeding groups. Despite these significant findings, whether different stage-dependent

invasive removal strategies also alter the diversity and composition of soil invertebrate com-

munities remains unknown. Moreover, understanding whether removal strategies at later

stages of the invasion process also have a stronger impact on the soil food-web structure and

function could be useful for informing management decisions. We therefore, took advantage

of the soil biota data collected by Dickie et al. [16] to perform an in-depth assessment of soil

biota responses to the removal of an invasive plant at different invasion stages.

Within the soil biota, nematodes dominate soil food webs and their functioning [22], pro-

viding important information on the structure and complexity of the soil food web. Nema-

todes are also useful bioindicators of ecosystem processes, resource availability and

disturbance of the soil environment [23,24]. Furthermore, because nematodes are intrinsically

affected by changes in plant communities [25], they can be greatly affected by plant invasions

and plant removal strategies. For example, bacterial feeding nematodes are more abundant in

both invaded areas and in areas where invasive trees have been removed, compared to unin-

vaded areas [16]. Moreover, nematode communities dominated by bacterial feeders are also

associated with higher rates of litter decomposition, suggesting that changes in the composi-

tion of nematode communities are strongly linked to ecosystem processes such as nutrient
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cycling. Despite these changes in the abundance of particular nematode feeding groups [16], it

remains unknown how invasive plants affect the diversity, composition, structure and function

of nematode communities and whether invasive removal strategies can reverse such impacts.

Furthermore, because nematodes are present in different trophic levels, they could be useful

indicators of bottom-up cascading effects of invasive plants and invasive removal strategies.

We evaluated the effectiveness of different management strategies of a globally invasive tree

species, Pinus contorta [26], by using nematode abundance data previously reported in Dickie

et al. [16], and additional data on taxa identity and life strategies. We determined whether the

diversity and composition of soil nematodes differ amongst invaded (i.e., no removal), early

invader removal (i.e., sapling removal), late removal (i.e., tree removal) or uninvaded (i.e.,

seedling removal) treatments to resolve three hypotheses. (1) Because plant invasions strongly

reduce the abundance, and alter the composition of, native plant communities that nematodes

largely rely on [14,16], nematode taxa richness will decrease in invaded compared to unin-

vaded sites, and the nematode community composition will strongly differ between these two

treatments. In addition, we expect invaded plots to present a higher proportion of nematode

taxa with short life cycles, because these taxa are better adapted to disturbances [27]. (2) After

removal of the invasive plant and recolonization by grasses, which represent an important

food resource and habitat for nematodes, the richness and composition of the nematode com-

munity will recover to resemble uninvaded communities. The removal of the invasive plant

should also help to restore the nematode-based soil food web structure and function. There-

fore, we expect uninvaded communities, as well as those communities where the invasive plant

species was removed, to have a more complex structure, with higher abundance of long life

cycle nematode taxa characteristic of undisturbed habitats [27] compared to invaded areas.

Furthermore, (3) we expect changes in nematode composition should be observed across all

trophic levels of the nematode-based food web due to bottom-up regulation by resource avail-

ability [28,29]. Nevertheless, if more advanced stages of the invasion process have stronger leg-

acy effects, the removal of invasive trees might not allow nematode communities to recover

and resemble those of uninvaded plots, whereas the removal of saplings would. Finally, we aim

to identify which nematode taxa have the greatest contribution to the compositional changes

observed, and which removal strategy would be the most appropriate to adopt to restore the

soil nematode community after P. contorta invasion.

Methods

Our research was covered under the global concession for research sampling and analysis

issued by the New Zealand Department of Conservation to Manaaki Whenua Landcare

Research (Permit Number CA-31615-OTH).

Study site

We studied tree invasions and their management at Craigieburn Forest Park (43˚9’04”S, 171˚

43’52”E), Canterbury, New Zealand, as described previously in [16]. This area is dominated by

southern beech (Nothofagus solandri var cliffortioides) and open native shrubland and tussock

grassland. Parts of this site were previously used from the 1950s until 1970s as an experimental

forest area in which several species of non-native trees were introduced including Pinus con-
torta Loudon (lodgepole pine) [30]. In recent years there have been several different manage-

ment approaches applied to prevent further spread or local impacts of invasive trees. Within

this site, twenty-four 0.04 ha (20 x 20 m) plots with different management histories of the non-

native invasive tree species P. contorta were selected. From these plots, six had continuous

removal of P. contorta seedlings (< 2 cm basal diameter) where invasion was prevented by
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PLOS ONE | https://doi.org/10.1371/journal.pone.0227130 January 10, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0227130


removing new seedlings at least twice annually (‘seedling-removal’ plots, i.e., the closest

approximation to uninvaded areas); seven plots had P. contorta sapling-removal (ca. 10 cm

basal diameter and 3–5 m height), which represents the removal of the invader at an early

stage (‘sapling-removal’); five plots where tree-removal (closed canopy ca. 10 m height stands)

was carried out, i.e., invasion was allowed and then later removed (‘tree-removal’); and six

plots where P. contorta trees (closed canopy ca. 10 m height stands) have not been removed

(‘no-removal’, i.e., invaded plots). Removals were done as part of operational management by

contractors rather than imposed as an experimental treatment to plot per se. Aboveground bio-

mass was not removed, which has the advantages of avoiding any export of mineral nutrients

as well as being a realistic scenario for either management or natural disturbance, but does

result in a temporary increase in organic matter. Furthermore, any attempt at biomass removal

would have been inherently incomplete as there is no practical method to remove root bio-

mass. Treatments were spatially interspersed and sampling occurred ca. three years after sap-

ling- and tree-removal treatments, with some reinvasion occurring at the time of sampling.

Reinvasion was most extensive in the sapling removal treatment, with all new invasion < 1 m

height and not forming a closed canopy. Additional information about the site and plot selec-

tion is provided in Dickie et al. [16].

Sampling

Soil samples were collected and homogenised from five locations within each plot (the centre

and at four orthogonal points 7.07 m from the centre) using a 65 mm diameter metal coring

device to sample the top 100 mm of mineral soil. Litter was not included in our samples

because it was generally sparse, and even when present under the densest pine in the no-

removal (invaded) treatment, there was an abrupt transition between litter and mineral soil

(i.e., there was no appreciable development of an O soil horizon).

We extracted soil nematodes using the tray method [31] from c. 80 g (dry mass) of each soil

sample. We then identified approximately 100 individuals from each sample to nominal genus

level and, when further identification was possible, we classified genera into morphospecies.

Hereafter we use the term taxa to refer to nematodes ids (i.e., genus and morphospecies). We

used the proportion of each taxa as an estimate of the taxa abundance of each sample. After

taxonomic identification, we assigned individual nematode taxa to one of six feeding catego-

ries according to their feeding habits (plant feeders, plant associated, bacterial feeders, fungal

feeders, predators or omnivores) [32]. We designated plant feeder and plant associated nema-

todes to the first trophic level of the nematode-based soil food web (TL 1), bacterial and fungal

feeders to the second trophic level (TL 2), and predators and omnivores to the third trophic

level (TL 3) [33]. Nematodes from TL 2 are microbial feeders and therefore indirectly affected

by plant changes, as root exudates influence the microbial community [34]. Similarly, nema-

todes from TL 3 can also be indirectly affected by changes in plant composition, as well as

directly by changes in nematodes from TL 1 and TL 2, from which they feed.

Nematode-based ecological indicators

To estimate changes in the structure and function of the nematode-based soil food web, we

used three commonly used nematode community level indices. First, we calculated sigma

maturity index (SMI) [27,35], which is based on the abundance of nematodes’ functional

guilds [36]. To this end, nematodes were classified according to their life strategies along a

coloniser-persister (cp) gradient, where colonisers and persisters are extremes of the cp scale

from 1–5 respectively [27]. Briefly, coloniser nematodes are those typically having short life

cycles, and under favourable conditions, can rapidly increase in abundance. In contrast,
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persister nematodes have long life cycles, low colonisation ability, low reproduction rate, and

are more sensitive to habitat disturbances. The ecological indicator SMI reflects the propor-

tion of the different cp groups in the community, with higher SMI values representing higher

proportions of persister nematodes and hence indicating less disturbed environments.

The second ecological indicator we used was the enrichment index (EI), which measures

the resource status, i.e., soil fertility, of the ecosystem [23]. Finally, to assess the level of com-

plexity of the community we used the structure index (SI). SI indicates the prevalence of tro-

phic links in the soil food web, where higher SI values indicate higher number of trophic links,

i.e., enhanced trophic structure and redundancy [23]. All indices were calculated using the

Nematode Indicator Joint Analysis program [37].

Analyses

To determine whether nematode taxa richness differed across management strategies (seed-

ling-removal, sapling-removal, tree-removal, or no-removal), we used the total number of taxa

of the entire community as the response variable in a generalised linear model (GLM). We

entered management strategies as a fixed factor (factor with four levels) in the model and used

the Poisson error distribution. We also used Tukey’s tests to estimate differences between

management strategies.

In addition, we tested whether the taxa composition of the entire nematode community dif-

fered between management strategies using Permutational Analyses of Variance (PERMA-

NOVA) [38]. To accomplish this, we used two dissimilarity metrics that differ in the emphasis

they give to taxa composition vs. relative abundance of each taxon. We used the Jaccard dis-

similarity metric, which only uses taxa presence-absence, and the Bray-Curtis dissimilarity

metric which also incorporates differences in the relative abundances of taxa. We performed

two PERMANOVAs, one with the dissimilarity among plots for the entire nematode commu-

nity estimated with the Jaccard index as the response variable and management strategies as

the predictor. The second PERMANOVA included the dissimilarity among plots for the entire

nematode community estimated with the Bray-Curtis index as the response variable, and man-

agement strategies as the predictor. We also conducted pairwise multilevel comparisons (with

both dissimilarity metrics) to assess differences between individual management strategies.

Furthermore, as a way to assess functional changes related to nematodes across management

strategies, we compared the nematode-based ecological indicators (SMI, EI, SI) across man-

agement strategies using ANOVAs and Tukey’s tests for comparisons across management

strategies.

To evaluate whether different invasive management strategies affected taxa richness and

composition of each trophic level (TL), we used GLMs and PERMANOVAs, respectively. Spe-

cifically, we performed one GLM (with Poisson error distribution) for each TL, to assess differ-

ences in taxa richness across management strategies, and two PERMANOVAs for each TL

(one with each dissimilarity metric) to test for differences in taxa composition across manage-

ment strategies. Finally, we used indicator species analyses to determine which specific nema-

tode taxa mostly drove community composition changes at each trophic level.

All analyses were performed in the R environment [39]. We tested for the overdispersion of

residuals assumption of all the Poisson models. We used the ‘adonis’ and ‘betadisper’ functions

of the vegan package [40] for the PERMANOVAs (9999 permutations), and the ‘pairwise.ado-

nis’ function [41] for the pairwise multilevel comparisons. We tested for the PERMANOVA

homogeneity of multivariate dispersions assumption [42], and used Principal coordinate anal-

ysis (PCoA) to illustrate differences between management strategies. We also used the ‘multi-

patt’ function from the indicspecies package [43] to perform the indicator species analyses.
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Results

Across all management strategies we identified 46 nematode taxa (S1 Table), with an average

of 16 ± 4 [mean ± SD] taxa per plot. Across all taxa, 8 belonged to trophic level 1 (TL 1, i.e.,

plant feeder and plant associated nematodes), 22 to TL 2 (bacterial and fungal feeders) and 16

to TL 3 (predators and omnivores) (S1 Table).

Taxa richness of the overall nematode community was higher in seedling-removal plots

only compared to no-removal plots (Z = -2.441, P = 0.015) (Fig 1A; S2 Table). On the other

hand, the overall nematode community composition of seedling-removal plots differed signifi-

cantly from both no-removal (Pseudo-F = 9.098, P = 0.003) and tree-removal plots (Pseudo-

F = 2.234, P = 0.009), but not from sapling-removal plots (Pseudo-F = 0.843, P = 0.688) (Fig

1B; S3 and S4 Tables) when taking into account the relative abundance of taxa (Bray-Curtis

dissimilarity). However, when assessing community composition changes by only considering

the presence-absence of nematode taxa (Jaccard dissimilarity), only differences between seed-

ling-removal and no-removal plots were observed (Pseudo-F = 4.147, P = 0.002) (S1 Fig, S3

and S4 Tables).

When testing the effects of invasive removal strategies on the structure and function of the

nematode-based food web, we found that two of the three nematode-based ecological indica-

tors assessed differed between the no-removal plots and all other management strategies.

More specifically, SMI and structure index (SI) were lower in no-removal plots compared to

seedling-, sapling- and tree-removal plots (Fig 2A and 2C; SMI: F = 22.359, P< 0.001; SI:

F = 21.222, P< 0.001), but no differences were observed for enrichment index (EI) (F = 1.166,

P = 0.347; Fig 2B).

When considering different trophic levels (TLs) separately, we found that taxa richness was

at least two-fold higher in seedling-removal and in sapling-removal plots compared to no-

removal plots for TL 1 (Z = -2.404, P = 0.016) (Fig 3A), but did not vary among management

strategies for the other trophic levels (Fig 3C and 3E; S2 Table). In addition, the nematode

composition of TL 1 in the seedling-removal plots differed significantly from the composition

in no-removal plots (Jaccard dissimilarity: Pseudo-F = 7.487, P = 0.006; Bray-Curtis: Pseudo-

F = 10.123, P = 0.002), but not from the sapling-removal plots (Jaccard dissimilarity: Pseudo-

F = 1.241, P = 0.334; Bray-Curtis: Pseudo-F = 1.310, P = 0.209) both when using only pres-

ence-absence data (Jaccard dissimilarity) as well as when incorporating nematode abundance

(Bray-Curtis dissimilarity) (Fig 3B; S3 and S4 Tables). Differences in TL 1 taxa composition

between seedling-removal and tree-removal plots were only detected when incorporating the

abundance of nematode taxa (Bray-Curtis: Pseudo-F = 3.330, P = 0.006) (Fig 3B; S4 Table).

For both TL 2 and TL 3, the nematode composition of the seedling-removal plots differed

significantly only from that of the no-removal plots, both when considering the presence-

absence of nematode taxa (TL 2: Pseudo-F = 3.006, P = 0.007; TL 3: Pseudo-F = 3.519,

P = 0.013) as well as when incorporating their abundances (TL 2: Pseudo-F = 9.512, P = 0.007;

TL 3: Pseudo-F = 3.866, P = 0.009) (Figs 3D, 3F, S2B and S2C; S4 Table). The composition of

TL 2 from seedling-removal plots also differed from tree-removal plots only when considering

Fig 1. Responses of total nematode richness and community composition across each of four management

strategies for an invasive tree. Management strategies representing different stages of invasion process: seedling

removal, sapling removal, tree removal, no removal. (A) Taxa richness; (B) community composition. (A) Different

letters represent significant differences obtained from Tukey’s test (P< 0.05). In each box plot the middle line

indicates the median, bottom and top box limits are the first and third quartiles, respectively, whiskers indicate most

extreme points 1.5 times the interquartile range, and circles indicate outliers. (B) Principal Coordinate analyses were

based on the Bray-Curtis dissimilarity metric. Sites closer together in multivariate space have similar compositions.

Dashed lines represent convex hulls in ordination space.

https://doi.org/10.1371/journal.pone.0227130.g001

Invasive tree removal strategies impacts on nematode communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0227130 January 10, 2020 7 / 17

https://doi.org/10.1371/journal.pone.0227130.g001
https://doi.org/10.1371/journal.pone.0227130


Invasive tree removal strategies impacts on nematode communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0227130 January 10, 2020 8 / 17

https://doi.org/10.1371/journal.pone.0227130


the presence-absence of taxa (Pseudo-F = 2.110, P = 0.048) (S4 Table). Nevertheless, the com-

position of TL 2 did not differ between seedling-removal plots and sapling-removal plots, both

when excluding (Pseudo-F = 0.980, P = 0.466) and including (Pseudo-F = 0.730, P = 0.726)

taxa abundance (Figs 3D and S2B; S4 Table).

The indicator species analyses allowed us to identify taxa that were most strongly associated

with a management strategy or a group of management strategies (S5 Table). For instance,

Doryllaimellus (TL 1), Tylencholaimus sp 2 (TL 2) and Aporcelaimidae (TL 3) were signifi-

cantly associated with seedling-, sapling- and tree-removal management strategies (Fig 4). In

addition, Doryllium (TL 2) was a good indicator of seedling-removal plots, whereas Plectus
robus (TL 2) was strongly associated with sapling-, tree- and no-removal plots (Fig 4).

Discussion

Multiple management strategies are often deployed in an attempt to reduce the abundance or

distribution of invasive species, but with an ultimate goal of avoiding or mitigating negative

impacts on native ecosystems (e.g., [44]). Thus, selection of different management strategies

should consider both reduction of the invader abundance and the response of native commu-

nities [45]. Despite the high relevance of assessing the effects of invasive species removal at dif-

ferent stages in the invasion process, most studies on invasive species impacts consider only

the effects of the invader as invasion progresses, but not the effects of invader removal as inva-

sion proceeds [46]. As a contribution to fill this gap in our knowledge, our study demonstrates

that both invasion and removal strategies alter the taxonomic composition of the soil nema-

tode community and that invasion also alters community structure and function.

The decrease in the number of nematode taxa with invasion, with lower richness in invaded

(no-removal treatment) compared to uninvaded (seedling-removal treatment) plots, is consis-

tent with the decrease in diversity of nematodes and other invertebrates caused by other inva-

sive species [47,48], including other pine species [24], although the opposite pattern has also

been observed [49]. In addition, nematode communities from invaded plots differed in taxa

composition, suggesting that P. contorta exerts a selective pressure over the soil nematode taxa

that can inhabit the soil. Furthermore, nematode taxa that were most abundant in invaded

plots were those that proliferate under disturbances or stressful conditions, as identified by the

decrease in SMI. Similar proliferation of nematodes having short life cycles, as well as similar

reductions in complexity and redundancy of nematode communities in invaded plots (SI

decrease), have also been observed in areas invaded by other tree species [50,51].

An unresolved issue is when invasive species management should be deployed to avoid or

reverse negative impacts on communities or ecosystems [20,46]. Our findings demonstrate

that relatively early management is needed to avoid impacts of an invasive tree species on the

composition of belowground nematode communities. For example, when considering the

entire nematode community composition we found that only the sapling-removal strategy

resembled uninvaded (seedling removal) plots. Even though sapling removal proved to be a

better management strategy for the preservation of the nematode community composition,

both sapling- and tree-removal management strategies seem to result in similar community

structure. In particular, both removal strategies had similar levels of the structure index (SI)

and sigma maturity index (SMI) to uninvaded areas, and both indices were higher compared

Fig 2. Nematode community level indices across four management strategies for an invasive tree. Nematode

community indices: (A) SMI = sigma maturity index, (B) EI = enrichment index and (C) SI = structure index.

Management strategies for an invasive tree representing different stages of the invasion process: seedling removal,

sapling removal, tree removal, no removal. Different letters represent significant differences obtained from Tukey’s test

(P< 0.05).

https://doi.org/10.1371/journal.pone.0227130.g002
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Fig 3. Nematode taxa richness and community composition of different trophic levels across management strategies.

Trophic levels: TL1-TL3. Management strategies: seedling removal, sapling removal, tree removal, no removal. Principal
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to invaded (no-removal treatment) areas. This suggests that invader removal allows nematode

communities to increase their complexity and redundancy to a considerable extent, and also

favours nematodes having longer life cycles, which tend to survive only in more stable, less dis-

turbed, environments [23]. Nevertheless, to help restore and preserve the nematode diversity,

especially under the tree-removal strategy, further management interventions might be

required. To this end, restoration using planting seedlings or increasing the seedbank of

native species should be considered [52,53]. Furthermore, inoculation with taxa that were

completely eliminated could also be considered [54] to promote restoration of disturbed eco-

systems [55]. These interventions could help to restore relatively slow nutrient cycling pro-

cesses characteristic of uninvaded areas [16,56], and even steer the development of plant

communities [55,57].

Changes in the number of taxa is a widely used measure of the impacts and the effectiveness

of invasive species removal [9,10,19]. However, we found that the number of taxa (richness)

of nematodes failed to capture changes across the upper trophic levels of nematode commu-

nities caused by invasion and different removal strategies. Nevertheless, these differences

were detected when using multivariate analyses that incorporated only the identity or the

identity and abundance of species that are present at a specific place. Differences in nema-

tode community composition among management strategies were strongly influenced by a

few taxa. For instance, Doryllaimellus, Tylencholaimus sp 2 and Aporcelaimidae were indica-

tor taxa from seedling- (uninvaded), sapling- and tree-removal management strategies.

These three taxa belong to cp group 4 and 5, suggesting that their absence or scarcity in

invaded plots is driving the low values of SMI in invaded plots. Furthermore, the plant

feeder Doryllaimellus has also been recorded as absent in areas heavily invaded by Pinus
nigra [51], suggesting that this taxa could be highly vulnerable to pine invasions in general.

In addition, another indicator taxa from uninvaded plots was the fungal feeder Doryllium.

Uninvaded plots, compared to invaded and afforested areas, tend to have a higher propor-

tion of fungal feeders [24,50,58], which leads to slower decomposition rates compared to

bacterial dominated systems [59,60].

Overall, the composition of invaded and uninvaded soil nematode communities differed

across all trophic levels (including the highest trophic level, TL 3), suggesting that the impacts

of invasive species can cascade up the nematode-based food web. Because our study focuses on

a subset of soil organisms, future research should assess the extent to which these findings

apply to the entire soil food web, and in turn, feedback to aboveground communities [56].

Conclusions

Controlling invasive species is complex because it involves a de facto manipulation of complex

systems [61,62]. However, both the effectiveness of invasive species management and the lon-

ger-term recovery of more complex community structure and ecological processes are rarely

measured [9]. We demonstrate that a shift in management strategies for a globally invasive

tree species (Pinus contorta) from removing trees to earlier removal of saplings is needed for

maintaining the taxonomic composition of soil nematode communities to resemble unin-

vaded conditions. In addition, the community-level responses of nematodes to management

closely resemble those observed for shifts in plant composition found in the same experiment

[16]. Our findings support the early management of invasive species to prevent impacts and

Coordinate analyses were based on the Bray-Curtis dissimilarity metric. Sites closer together in multivariate space have

more similar compositions. Different letters in (A), (C), (E) represent significant differences obtained from Tukey’s test

(P< 0.05).

https://doi.org/10.1371/journal.pone.0227130.g003

Invasive tree removal strategies impacts on nematode communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0227130 January 10, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0227130.g003
https://doi.org/10.1371/journal.pone.0227130


Invasive tree removal strategies impacts on nematode communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0227130 January 10, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0227130


potentially strong belowground legacies that can undermine our ability to restore community

composition and ecosystem functions over the longer-term.
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