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ABSTRACT: For inverse QSAR/QSPR in conventional molecular design, several chemical structures must be generated and their
molecular descriptors must be calculated. However, there is no one-to-one correspondence between the generated chemical
structures and molecular descriptors. In this paper, molecular descriptors, structure generation, and inverse QSAR/QSPR based on
self-referencing embedded strings (SELFIES), a 100% robust molecular string representation, are proposed. A one-hot vector is
converted from SELFIES to SELFIES descriptors x, and an inverse analysis of the QSAR/QSPR model y = f(x) with the objective
variable y and molecular descriptor x is conducted. Thus, x values that achieve a target y value are obtained. Based on these values,
SELFIES strings or molecules are generated, meaning that inverse QSAR/QSPR is performed successfully. The SELFIES descriptors
and SELFIES-based structure generation are verified using datasets of actual compounds. The successful construction of SELFIES-
descriptor-based QSAR/QSPR models with predictive abilities comparable to those of models based on other fingerprints is
confirmed. A large number of molecules with one-to-one relationships with the values of the SELFIES descriptors are generated.
Furthermore, as a case study of inverse QSAR/QSPR, molecules with target y values are generated successfully. The Python code for
the proposed method is available at https://github.com/hkaneko1985/dcekit.

1. INTRODUCTION
To develop compounds with specific activities and properties,
artificial intelligence and machine learning are commonly
applied to design molecules or chemical structures. A
mathematical model y = f(x) with the objective variable y and
molecular descriptor x was constructed using a dataset of
compounds with measured activities and properties. Here, the
objective variable y represents activities and properties, and the
molecular descriptor x represents the structural features of
molecules. The model can predict the y values for new molecules
based on an input of the x values of the chemical structures of the
molecules. Furthermore, the x values at which y values have the
desired values can be predicted by conducting an inverse
analysis of the model. By generating numerous chemical
structures or molecules, predicting y from x, and selecting
molecules based on the predicted y values, molecules with the
desired y values can be designed.

In molecular design, constructing a model with high
predictive ability, where the x values appropriately represent

the characteristics of the chemical structures, is crucial. To this
end, RDKit,1 Mordreds,2 MOE,3 and AlvaDesc4 are used to
calculate x. In addition, fingerprints such as extended-
connectivity fingerprints (ECFPs),5 functional connectivity
fingerprints (FCFPs),6 and MACCS keys7 are used to quantify
chemical structures and are considered as x.

Various structure generators have been developed to generate
chemical structures as inputs for a model that is constructed
between x and y. Further information on the structure of the
generators can be found in refs 8−91011. In addition, inverse
analysis of such a model and inverse QSAR/QSPR are effective

Received: February 27, 2023
Accepted: May 29, 2023
Published: June 5, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Author. Published by
American Chemical Society

21781
https://doi.org/10.1021/acsomega.3c01332

ACS Omega 2023, 8, 21781−21786

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hiromasa+Kaneko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c01332&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01332?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01332?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01332?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01332?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01332?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01332?fig=abs1&ref=pdf
https://github.com/hkaneko1985/dcekit
https://pubs.acs.org/doi/10.1021/acsomega.3c01332?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/24?ref=pdf
https://pubs.acs.org/toc/acsodf/8/24?ref=pdf
https://pubs.acs.org/toc/acsodf/8/24?ref=pdf
https://pubs.acs.org/toc/acsodf/8/24?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c01332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


for molecular design with target y values.12−14 To design
molecules with target y values, it is necessary not only to find the
x values corresponding to each y value but also to ensure a one-
to-one relationship between the x values and the chemical
structures. Even if a y value predicted from an x value is
promising, it is futile if the chemical structure corresponding to
the x value cannot be generated.

In this study, based on self-referencing embedded strings
(SELFIES),15 a 100% robust molecular string representation,
SELFIES-based molecular descriptors, structure generation, and
inverse QSAR/QSPR are proposed. The SELFIES can be
converted into a one-hot vector, which is a data representation
method that converts a categorical variable into a numeric
vector. Specifically, for each element in a category, a vector is
created, where the length of the vector represents the number of
elements in that category; the value of the corresponding
element position is set to one, and the values of all other
positions are set to zero. The one-hot vector converted from the
SELFIES is proposed as a SELFIES descriptor and is used as x.
By appropriately selecting the vectors from randomly generated
one-hot vectors, a one-to-one relationship between the
SELFIES, and the one-hot vector can be established.
Furthermore, owing to the characteristics of the SELFIES,
chemical structures can be generated from all the SELFIES, and
the relationship between the chemical structures and the
SELFIES is one-to-one. Therefore, the SELFIES, the one-hot
vector, and the chemical structure exhibit a one-to-one
relationship. This implies that the x values determined by the
inverse analysis of the model correspond to chemical structures.

Datasets comprising the boiling point (BP), aqueous
solubility, and toxicity of compounds were used to generate
chemical structures from the one-hot vector of the SELFIES and
to test the predictive performance of the model by setting the
SELFIES descriptors as x. In addition, a case study of inverse
QSAR/QSPR was performed to generate molecules such that
the target y values were attained.

2. METHOD
2.1. SELFIES. SELFIES is a string-based molecular graph

representation that is 100% robust, even when randomly
generated. Each set of SELFIES corresponds to a valid molecule,
and it is possible to convert all molecules to SELFIES.
Information on the length and size of the ring is stored with
the corresponding identifiers, namely “Branch” and “Ring.” The
symbols after Branch and Ring represent numbers that are
interpreted as lengths, preventing the possibility of strings with
an invalid syntax. In addition, each molecule is represented by
one-hot encoding in SELFIES.

2.2. Molecular Descriptors, Structure Generation, and
Inverse QSAR/QSPR Based on SELFIES. A one-hot vector
encoding SELFIES was used as the SELFIES descriptor. The
one-hot vector contains information on the presence or absence
and position of SELFIES symbols, and the SELFIES descriptors
represent the features of the chemical structures of the
molecules. Furthermore, because the one-hot vector can be
directly converted into SELFIES, that is, chemical structures or
molecules, molecules can be generated directly from the values
of the SELFIES descriptors, resulting from the inverse analysis of
the model y = f(x) using the SELFIES descriptors x.

Molecular generation can be achieved by randomly generating
zero or unit vectors as SELFIES descriptors (one-hot vectors)
and converting them into SELFIES as follows:

• A: A randomly generated set of SELFIES descriptors.
• B: Sets of SELFIES descriptors converted from the

SELFIES from A.
However, A and B do not always match.
If A and B do not match, generating molecules from the x

values resulting from the inverse analysis of the model y = f(x)
using the SELFIES descriptors as x does not make sense.
Therefore, the identities of A and B are checked, and if A and B
do not match, the generated set of SELFIES descriptors is
deleted.

Figure 1 shows the inverse QSAR/QSPR based on the
SELFIES descriptors. First, the chemical structures of the
compounds are represented by SELFIES, and the SELFIES
descriptors are calculated by one-hot encoding and denoted as x.
Activities and properties are denoted as y, and the model y = f(x)
is constructed between x and y based on a dataset of compounds.

Each 0 or 1 vector randomly generated as the SELFIES
descriptor is converted to SELFIES; the SELFIES are then
converted to SELFIES descriptors, their identity is checked, and
if they are different, the vector is deleted. Thus, only valid sets of
the SELFIES descriptor values are obtained. These sets are then
input into the y = f(x) model to predict the y values. Only sets of
SELFIES descriptor values, that is, molecules that have
promising y values and predicted y values close to the target y
values, are selected. This allows the design of molecules that
achieve the target y values. Additionally, the predicted y values
and their variance can be considered when selecting the sets of
SELFIES descriptor values or molecules. Alternatively, the
selection can be based on the acquisition function in Bayesian
optimization.16

The greater the number of 0 or 1 vectors generated in the
inverse QSAR/QSPR process, the greater the amount of time
and memory required. However, instead of generating a large
number of vectors simultaneously, it is possible to iteratively
conduct the process of generating vectors and performing

Figure 1. Schematic of the proposed method.
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predictions and inverse QSAR/QSPR, which requires only a
small amount of memory.

Python codes for the proposed method are available in ref 17.

3. RESULTS AND DISCUSSION
Datasets of the BP,18 solubility in water (log S, S = solubility at
20−25 °C in moles per liter),19 and environmental toxicity
(Tox)20 were used to verify the effectiveness of the proposed
method. The Tox dataset was sourced from an online challenge
inviting researchers to estimate the toxicity of molecules against
Tetrahymena pyriformis and contained entries corresponding to
the logarithm of the 50% growth inhibitory concentration.

First, chemical structures or molecules were generated based
on the SELFIES data obtained for each dataset. The number of
one-hot vectors or sets of SELFIES descriptor values to be
generated was set to 10,000. Molecules were generated with the
number of SELFIES symbols as the maximum number of
SELFIES symbols in each dataset, 250, 500, 750, 1000, 2500,
5000, 7500, and 10,000, and the duplicated molecules were
removed. The number of molecules generated is listed in Table
1. For each dataset, approximately half of the generated

SELFIES were not identical to the original one-hot vector
when re-converted to the one-hot vector; however, approx-
imately 40−50% of the SELFIES or chemical structures
generated successfully were valid and unique. Hence, the results
confirm that the proposed structure-generation method based
on SELFIES can be used to effectively generate molecules.

Table 1 shows that increasing the number of SELFIES
symbols does not significantly change the number of molecules
generated. Considering x and the inverse QSAR/QSPR process,
a large number of SELFIES symbols indicates a large number of
descriptors. This reduces the prediction performance of the
QSAR/QSPR models. Therefore, it is preferable not to increase
the number of SELFIES symbols and use the maximum number
of actual SELFIES symbols in the training data.

Second, to test the performance of the SELFIES descriptors,
the predictive ability of the regression model based on the
SELFIES descriptors x was compared with that of regression
models based on x values calculated with the RDKit, ECFP,
FCFP, and MACCS keys. For each dataset, 70% of the
compounds were randomly selected as training data, and the
remaining 30% were used as test data. Subsequently, regression
models were constructed with the training data to predict the
test data. The following regression methods were used:

• Ordinary least squares regression (OLS).
• Partial least squares regression (PLS).
• Ridge regression (RR).

• Least absolute shrinkage and selection operator (LAS-
SO).

• Elastic net (EN).
• Support vector regression with a linear kernel (SVRL).
• Support vector regression with a Gaussian kernel

(SVRG).
• Decision tree (DT).
• Random forests (RF).
• Gaussian process regression (GPR).
• Gradient boosting decision tree (GBDT).
• XGBoost (XGB).
• LightGBM (LGB).
• Gaussian mixture regression (GMR).
• Variational Bayesian Gaussian mixture regression

(VBGMR).
• Deep neural networks (DNN).

For each set of x values, the regression method that could
construct the model with the highest predictive ability for the
test data was used.

The R2 and root-mean-squared error (RMSE) of the test data
for each set of x values are listed in Tables 2, 3, and 4 for BP, log

S, and Tox, respectively. The plots of the actual and estimated y
values for the test data are shown in Figures 2, 3, and 4 for BP, log
S, and Tox, respectively. The prediction results show that the
RDKit descriptors, which are continuous, have a higher R2 and
lower RMSE than the other fingerprint-type descriptor sets.
Furthermore, the RDKit descriptors imparted a high predictive
ability to the regression models on all datasets. Because y has
continuous values, continuous RDKit descriptors provided the
best prediction results in the regression analyses.

A comparison between the fingerprints demonstrates that the
SELFIES descriptors exhibit almost the same prediction

Table 1. Number of Valid and Unique Generated Molecules
Based on SELFIES for Each Number of SELFIES Symbols
Used for Each Dataset

BP log S Tox

max 3687 4685 4279
250 4199 4831 4380
500 4364 4948 4598
750 4418 4872 4543
1000 4439 4894 4674
2500 4505 5038 4641
5000 4564 4896 4543
7500 4535 4929 4696
10,000 4552 4937 4696

Table 2. R2 and RMSE for Each Descriptor Set in the BP Test
Data

R2 RMSE

RDKit (GPR) 0.98 10
ECFP (XGB) 0.74 37
FCFP (GBDT) 0.63 45
MACCS keys (EN) 0.81 32
SELFIES (GPR) 0.76 36

Table 3. R2 and RMSE for Each Descriptor Set in the Log S
Test Data

R2 RMSE

RDKit (GPR) 0.94 0.51
ECFP (LGB) 0.76 1.04
FCFP (GBDT) 0.76 1.04
MACCS keys (GPR) 0.82 0.90
SELFIES (GPR) 0.78 0.99

Table 4.R2 andRMSE for EachDescriptor Set in the Tox Test
Data

R2 RMSE

RDKit (GPR) 0.85 0.39
ECFP (GBDT) 0.65 0.60
FCFP (RF) 0.65 0.59
MACCS keys (XGB) 0.72 0.54
SELFIES (GPR) 0.62 0.62

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c01332
ACS Omega 2023, 8, 21781−21786

21783

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01332?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


performance as the other fingerprints. However, unlike the other
fingerprints, the SELFIES descriptors are interpretable because
the values 0 and 1 are directly related to the chemical structures.
Moreover, they can be directly transformed into chemical
structures, making them superior to the other fingerprints. For
example, the values of the SELFIES descriptors with promising y
values can be used to generate the corresponding molecules, as
predicted by the regression model.

Finally, a regression model was constructed between the
SELFIES descriptors and y, and inverse QSAR/QSPR was
performed based on the constructed model. Using the BP
dataset, the SELFIES descriptors were calculated as x, and the
molecular weight (MW), quantitative estimate of drug-likeness
(QED), and log P calculated by RDKit1 from SMILES were used
as y. QED is a quantitative representation of whether a structure
is drug-like. QED values close to 0 indicate that the chemical
structures are not drug-like, whereas QED values close to 1
indicate drug-like chemical structures. Log P is the logarithmi-
cally transformed octanol−water partition coefficient. It is

related to oral absorption and is an important index for drug
development.

GPR21 was used to calculate not only the predicted y values
but also their variance and prediction reliability. A total of 70% of
the compounds were randomly selected as training data, and the
remaining 30% were used as test data. The regression models
were constructed using the training data to predict the test data.
Plots of the actual and estimated y values for the test data are
shown in Figure 5. The plots show that each molecule is close to
the diagonal line, and the y values are accurately predicted from
the SELFIES descriptors MW, QED, and log P.

Subsequently, 100,000 one-hot vectors or sets of SELFIES
descriptors were generated as inputs for the constructed GPR
model. SELFIES were generated based on these vectors, and
26019 valid and unique molecules were generated. These
molecules were input into the GPR model to predict the y values.
Molecules with low variance in the predictions were selected,
and the actual y was calculated. The plots of the predicted y
values and target y values vs the actual y values are shown in

Figure 2. Actual y vs estimated y for the test BP data. (a) RDKit (GPR), (b) ECFP (XGB), (c) FCFP (GBDT), (d) MACCS keys (EN), and (e)
SELFIES (GPR).

Figure 3. Actual y vs estimated y for the test log S data. (a) RDKit (GPR), (b) ECFP (LGB), (c) FCFP (GBDT), (d) MACCS keys (GPR), and (e)
SELFIES (GPR).
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Figure 6. The molecules can be generated such that the actual y
falls within the range of the target y for MW, QED, and log P. In
contrast with the cases of the MW and log P, the molecules are
far from the diagonal line in the case of QED because of the
lower predictive ability of the QED prediction model compared
with the MW and log P prediction models, as shown in Figure 5.
However, it was confirmed that even if y is obtained with QED,
generating molecules close to the diagonal is possible.
Furthermore, inverse QSAR/QSPR can be appropriately
performed using the proposed method.

4. CONCLUSIONS
In this paper, SELFIES-based molecular descriptors, chemical
structure generators, and inverse QSAR/QSPR methods are
proposed. The SELFIES descriptor x, which is the one-hot
vector of SELFIES, does not have one-to-one correspondence

with chemical structures. Thus, chemical structures or molecules
can be generated from the x values obtained by inverse analysis
of the regression model y = f(x) constructed between x and
objective variables y, such as activities and properties. Hence,
chemical structure generation, where y has the target values (i.e.,
inverse QSAR/QSPR), is possible. The proposed method was
validated using compound datasets of BP, log S, and toxicity. It
was confirmed that important chemical structures could be
generated with the SELFIES descriptors or the one-hot vectors
of SELFIES. By setting the SELFIES descriptors as x, regression
models with the same prediction performance as that of models
based on other fingerprints were constructed. Furthermore, a
case study of inverse QSAR/QSPR was conducted. The results
demonstrate that the proposed method can be used to generate
molecules with MW, QED, and log P target values. It is expected

Figure 4. Actual y vs estimated y for the test Tox data. (a) RDKit (GPR), (b) ECFP (GBDT), (c) FCFP (RF), (d) MACCS keys (XGB), and (e)
SELFIES (GPR).

Figure 5. Actual y vs estimated y for the test data for MW, QED, and log P. (a) MW (GPR), (b) QED (GPR), and (c) log P (GPR).

Figure 6. Target y (predicted y) vs actual y for the inverse analysis with SELFIES. (a) MW, (b) QED, and (c) log P.
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that inverse QSAR/QSPR based on the proposed SELFIES
descriptors will improve the efficiency of molecular design.

Python codes for the proposed method are available at
https://github.com/hkaneko1985/dcekit.
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