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ABSTRACT Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded
beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest
is the first-passage time for making a transition from one molecular configuration (a) to another (b) and conditional first-pas-
sage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the tran-
sition region intervening between a and b. Another experimentally accessible (but not yet studied experimentally) observable is
the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times
contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if
desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental
observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition
path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always
less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases dis-
playing long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also
allows one to characterize the temporal scales of failed barrier crossing attempts.
WHY IT MATTERS Single-molecule measurements directly visualize dynamics of proteins, DNA, and molecular motors
as they cross activation barriers and carry out their biological functions, but, in contrast to the complexity of the molecular
motion involving many atoms, single-molecule signals are inherently low dimensional, reporting only on a few degrees of
freedom. Toward solving the inverse problem of learning about the underlying dynamics from single-molecule signals, this
work discusses distributions of barrier crossing timescales expected for the important model in which the time evolution
of the single-molecule signal can be described as Brownian dynamics.
INTRODUCTION

Learning about dynamics of molecules from experi-
mental data is a difficult inverse problem. Molecular
trajectories occur in a 3N-dimensional space, where N
is the number of participating atoms (including those
of the solvent in the case of biomolecular processes).
Experimental measurements, in contrast, typically
provide a low-dimensional signal. In single-molecule
studies, this signal is the time dependence xðtÞ of a sin-
gle variable x (or, in some of the state-of-the-art studies,
two variables), such as the distance between two mo-
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lecular groups, or it is a list of photon arrival times.
For several decades, the common approach to this
inverse problem has been to postulate a specific
phenomenological model—that the trajectory xðtÞ is
described as one-dimensional diffusion in a potential
of mean force—and to deduce the parameters of this
model (such as the diffusivity D) by fitting experimental
observations. But recent improvements in the spatial
and temporal resolution of single-molecule experi-
ments offer an opportunity to both refine such models
(e.g., by deducing more accurate potentials or by allow-
ing for coordinate-dependent diffusivity) and to move
beyond phenomenological models toward more accu-
rate, data-driven ones (1,2). Importantly, recent theoret-
ical advances (to be discussed below) show that
certain details about the underlying multidimensional
dynamics are encoded in the low-dimensional signal
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xðtÞ, thereby suggesting that progress toward solving
the above-mentioned inverse problem is possible.

A phenomenon of particular significance for the field
of biomolecular dynamics is that of large conforma-
tional transitions attained via the crossing of a free
energy barrier (Fig. 1). More precisely, suppose that
the experimentally determined potential of mean force
UðxÞ (defined through the requirement that the equilib-
rium distribution peqðxÞ of the coordinate x is the
Boltzmann distribution in this potential, peqðxÞN
exp

��
� UðxÞ

kBT

��
has a double-well shape with two

wells separated by a barrier, each well corresponding
to a distinct molecular species. The experimental
observable then provides a natural (albeit not neces-
sarily optimal) choice of the reaction coordinate for
the inter-well transitions, or “chemical reactions.” Bio-
molecular folding is a common example of such a pro-
cess. With a more general potential UðxÞ, this picture
can also be extended to such phenomena as biomole-
cular binding (3,4) or even to nonequilibrium processes
such as the stroke of a molecular motor (5,6).

Although the theory presented below is general and
does not rely on any assumptions about the shape of
UðxÞ, for concreteness let us assume that we are
dealing with biomolecular folding. The coordinate x,
then, may correspond to the molecule's extension, as
in single-molecule force spectroscopy (7) or may be
related to the distance between two dyes as in fluores-
cence resonance energy transfer studies (8). The
potential UðxÞ then typically has two wells correspond-
ing to the molecule's unfolded and folded states.

There are several timescales of interest in this case.
If the barrier height is much greater than the thermal
energy kBT then the typical time for a transition be-
tween the two wells is much longer than the equilibra-
tion time within each well, and it is meaningful to define
such equilibration timescales, tA and tB, for each well.
FIGURE 1 Barrier crossing dynamics: a first-passage path from a to
b consists of “internal loops” entering and exiting the transition region
through the same boundary (22) (red), “external loops” in which the
system dwells inside the well region ð�N; aÞ (black), and a “transition
path” in which the system traverses the transition region from one
boundary to the other (green). Typical one-dimensional free energy
landscape of folding is shown on the right.
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In the field of protein folding, the latter timescales, usu-
ally referred to as the “reconfiguration” times (8–12),
have attracted considerable experimental attention,
particularly for the unfolded state. They can be
measured, e.g., using single-molecule fluorescence
correlation spectroscopy (13–18).

Reconfiguration timescale is a dynamical character-
istic of thermal fluctuations around in a (meta)stable
thermodynamic state. To understand the kinetics of
transitions between such states, one needs informa-
tion about the dynamics of barrier crossing. If we
choose some point awithin the folded state and a point
b within the unfolded state, then the first-passage time
tFPða/bÞ to go from a to b provides a measure of the
overall time required to accomplish the transition. In
general, this time of course will depend on the choice
of the points a and b, but if these points are separated
by a barrier that is much higher than kBT then the
average value of this time is insensitive to the
choice of the initial and final points. Indeed, typical
trajectories originating from a or b will relax into
the adjacent free energy well on a timescale that is
much shorter than the escape time from the well,
and the much longer escape time from the well will
provide a dominant contribution to the mean first-pas-
sage time. In this limit, the inverse mean first-passage
time defines the rate (coefficient) k for the transition
(see, e.g., (19,20)). Moreover, for a double-well free
energy landscape the distribution of this time is close
to exponential, as expected for first-order chemical
kinetics.

To obtain further mechanistic insight into the dy-
namics of interwell transitions, one can dissect a tra-
jectory that takes the system from a to b into pieces
in which the system dwells in the initial state and where
it is caught midway between the initial and the final
state. The latter are arguably most interesting as they
determine the transition “mechanism.” To make this
idea precise, we call the interval ða; bÞ the “transition re-
gion.” Typically, its boundaries are chosen to contain
the free energy barrier (Fig. 1). Consider now a typical
trajectory that crosses a at t ¼ 0 and eventually arrives,
for the first time, at b (Fig. 1). In most cases, it will not
stay continuously within the interval ða; bÞ but rather
escape it to the left well region ð �N;aÞ. It may further
reenter the transition region and loop back into the left
well multiple times. Finally, it will enter the transition re-
gion for the last time and proceed to cross the point b
thereby exiting the transition region toward the right
well region ðb; þ NÞ. Thus, the first-passage path
from a to b generally consists of “internal loops”
entering and exiting the transition region through the
same boundary (red in Fig. 1), “external loops” in which
the system dwells inside the well region ð�N; aÞ (black
in Fig. 1), and a “transition path” in which the system



traverses the transition region from one boundary to
the other (21,22) (green in Fig. 1).

The dynamics in the transition region, then, can be
characterized by the following:

1) The return time tRða/aÞ, which is the temporal
duration of failed attempts to cross the transition re-
gion (the red trajectory pieces in Fig. 1). This is the
time that the system starting at the boundary a
will take to return to this boundary conditional
upon staying within the barrier region for 0< t<
tRða/aÞ.

2) The transition path time tTPða/bÞ, which is the tem-
poral duration of successful attempts to cross the
barrier (the green trajectory piece in Fig. 1). It is
the time that the system starting at the boundary
a will take to reach the other boundary b conditional
upon staying within the barrier region for 0< t<
tTPða/bÞ.
The transition path time has received considerable

theoretical (2,20–37) and experimental (3,38–44)
attention in the last decade, whereas the return time,
to our knowledge, has not yet been studied experimen-
tally. As will be seen below, both of these times, as well
as the first-passage time, are limiting cases of themore
general conditional exit time (45,46), which is the time
to exit the transition region through a given boundary (a
or b) having started from a given point x0 within the
transition region.

The purpose of this study is twofold. First, we propose
that the more general yet experimentally accessible
conditional exit timeoffers additional information about
barrier crossing dynamics, particularly about failed bar-
rier crossing attempts not captured by the transition
path time. Second, we would like to explore the shape
of the distribution of the conditional exit time (and its
limiting cases such as the return and transition path
time). In particular, the distribution width can be charac-
terized by the ratio of the distribution variance to its
mean (known as the coefficient of variation), which,
for the case of diffusive dynamics in a potential of
mean force, can be calculated analytically. Experimen-
tally, the coefficient of variation, which only requires
the first and the second moments of the distribution,
is a more robust statistical measure than the distribu-
tion itself. Note that in the context of chemical kinetics
and molecular biophysics, the first-passage-time distri-
bution, particularly for the model of one-dimensional
diffusive motion, is well studied (20,45,47,48), and the
expression for the first moment of the transition-path-
time distribution has also been derived more recently
(25,49). In contrast, higher moments of the distribution
of the transition path time,whichare required to quantify
the distribution's width, have only received attention
over the past year (35,37,50).
The importance of the distribution shape and width
is exemplified by several recent developments: first, it
was shown that the short-time behavior of the first-pas-
sage-time distribution contains information about the
number of kinetic intermediates of a process (51,52).
Second, the shape of the distribution of the transition
path time measured in a fluorescence resonance en-
ergy transfer study of protein binding suggested the ex-
istence of an intermediate encounter complex (i.e.,
potential well in the transition region) that could
not be observed directly (3). Third, it was shown
(35,37,50) that the relative width of the distribution of
the transition path time, as quantified by its coefficient
of variation, cannot be too large if the system's dy-
namics along the coordinate x is diffusive; thus, obser-
vation of broad distributions of transition path times
can only be explained by a higher-dimensional free en-
ergy landscape allowing for parallel pathways. If transi-
tion-path-time distributions for diffusive dynamics are
always narrow, what can we say about the distributions
of other characteristic times of interest? In all of these
cases, distributions of the observed times inform one
about global features of the underlying free energy
landscapes. Our hope, then, is that studying the distri-
butions of various characteristic barrier crossing times
is a viable step toward solving the inverse problem of
learning about underlying multidimensional land-
scapes from low-dimensional signals.

We will further show here that these distributions
display interesting (and sometimes pathological)
behavior in some limiting cases. In particular, the
mean return time tRða/aÞ is identically zero in the
case of diffusive dynamics. This result has an impor-
tant experimental implication; because of the finite
spatial and temporal resolution of any experiment,
the precise crossing of a boundary cannot be detected.
As a result, an attempt to measure tRða/aÞwill lead to
a finite time that depends on, e.g., experimental resolu-
tion, data sampling rate, and/or the smoothing proced-
ure used to reduce the noise in the experimental signal.
We propose that such artifacts can be avoided
if, instead, one considers the conditional exit time
tEðx0 /aÞ, where the system starts from a point
x0 ˛ða; bÞ rather than from a. This resulting time has a
well-defined distribution for any x0>a, and its behavior
as x0 approaches the left boundary a (i.e., when it be-
comes the return time) is quite interesting, as the distri-
bution becomes “arbitrarily broad” for a sufficiently
small distance ðx0 �aÞ from the boundary in the sense
that its mean becomes infinitely smaller than the stan-
dard deviation from the mean (note, however, that
when inertial effects are neglected as in the Smolu-
chowski equation model, the absolute values of the
standard deviation and the mean both approach 0 as
x0/a). In this regard, the distribution of the return
Biophysical Reports 1, 100029, December 8, 2021 3



time is drastically different from that of the transition
path time. The physical origins of this behavior will
be explained.

Likewise, we will show that distributions of first-pas-
sage times can be broad, with a coefficient of variation
that can be arbitrarily large. In contrast, distributions of
the transition path time are always narrow, with a coef-
ficient of variation below 1.
MATERIALS AND METHODS

General formalism

Distributions of conditional exit times and first-passage times

To determine the statistical properties of conditional exit times, we
envisage a large ensemble of particles, each starting, at t ¼ 0, from
a point x0 that belongs to the transition region ða;bÞ. The stochastic
trajectories of each particle may be described by the usual over-
damped Langevin equation (20), in which the force acting on the par-
ticle includes, in addition to the deterministic component �U0ðxÞ, a
friction force as well as a random noise component. We monitor
each particle until it reaches either boundary a or boundary b,
record the time it took to reach this boundary (and which boundary
was reached), and then discard it from the ensemble. We seek
the conditional probability density raðbÞðtjx0Þ, which describes the dis-
tribution of the time to exit the transition region for particles exiting
through the boundary aðbÞ. Note that raðbÞðtjx0Þ can be thought of as
the probability density of the first-passage time from x0 to aðbÞ con-
ditional upon not crossing the point bðaÞ. Further note that

pTPa/bðtÞ ¼ pTPb/aðtÞ ¼ lim
x0/a

rbðtjx0Þ ¼ lim
x0/b

raðtjx0Þ (1)

is the distribution of the transition path time for the transition paths
starting in a and ending in b, which is the same as the distribution
of the transition path time for paths going from b to a because of
the time-reversal symmetry of Brownian dynamics (19,26,27). More-
over, the limit

pRa/aðtÞ ¼ lim
x0/a

raðtjx0Þ (2)

gives the distribution of the return time for recrossing the boundary a.
We will, however, show that this limit is pathological for the model of
diffusive dynamics.

The ensemble of trajectories originating from x0 and terminating
at the transition region boundaries can be described by the Smolu-
chowski equation. Specifically, the (conditional) probability density
Gðx; tjx0Þ of finding the particle at point x ˛ða; bÞ at time t (Green's
function) obeys the equation

vG

vt
¼ v

vx
DðxÞe�bUðxÞ v

vx
ebUðxÞG; (3)

with the initial condition

Gðx; 0jx0Þ ¼ dðx� x0Þ (4)

and the absorbing boundary conditions at the boundaries

Gða; tjx0Þ ¼ Gðb; tjx0Þ ¼ 0: (5)
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The probability density raðbÞðtjx0Þ is proportional to the flux of parti-
cles jða; tjx0Þ or jðb; tjx0Þ exiting through the boundary a or b:

raðtjx0Þ ¼ � jða; tjx0Þ
fðx0/aÞ

¼ 1

fðx0/aÞDðaÞ
vGðx; tjx0Þ

vx

����
x¼ a

(6)

and

rbðtjx0Þ ¼
jðb; tjx0Þ
fðx0/bÞ ¼ � 1

fðx0/bÞDðbÞ
vGðx; tjx0Þ

vx

����
x¼ b

:

(7)

Here, fðx0 /aÞ ¼ �RN
0

dtjða; tjx0Þ and fðx0 /bÞ ¼ 1� fðx0 /aÞ ¼RN
0

dtjðb; tjx0Þ are the fractions of particles in the ensemble exiting
through a and b:; those are known as the splitting probabilities (i.e.,
the probabilities to exit through the boundaries a and b) (48).

The probability distribution of the first-passage time from x0 to b is
calculated analogously, with the only difference being that no
absorbing boundary condition is imposed at x ¼ a, as the trajectory
xðtÞ can cross the point a any number of times before being termi-
nated at x ¼ b (see Fig. 1). In this case, we have

pFPx0/bðtÞ ¼ � DðbÞvGðx; tjx0Þ
vx

����
x¼ b

(8)

for any starting point x0<b. We note that for a potential that has the
property UðxÞ/N for x/� N, this first-passage-time distribution
can be obtained as the a/�N limit of the conditional exit time dis-
tribution rbðtjx0Þ. In other words, because the absorbing boundary at
a/�N is never reached, the first-passage times from x0 to b are
identical to the exit times. Thus, first-passage times can be viewed
as a limiting case of conditional exit times.

Recursive equations for the distribution moments

Similarly to an approach known in the literature (see, e.g., (48)),
we now outline a general procedure for the calculation of the mo-
ments of the distributions of the conditional exit times introduced
above. For concreteness, let us focus on the distribution raðtjx0Þ
of the exit time to the boundary a. We are interested in its n-th
moment,

htnðx0 / aÞi ¼
Z N

0

dttnraðtjx0Þ

¼ 1

fðx0/aÞ
Z N

0

dttnjða; tjx0Þ

h
1

fðx0/aÞ ht
nðx0 / aÞi;

(9)

where we have introduced the moments of an unnormalized
distribution

htnðx0 / aÞi ¼
ZN
0

dttnjða; tjx0Þ

¼
ZN
0

dttnDðaÞvGðx; tjx0Þ
vx

����
x¼ a

:

(10)



To find such moments, we start with the adjoint Smoluchowski
equation (see, e.g., (20,53)), which considers Gðx; tjx0Þ as a function
of the starting point x0:

vG

vt
¼ ebUðx0Þ v

vx0
Dðx0Þe�bUðx0ÞvG

vx0
; (11)

with the initial condition of Eq. 4 and the boundary conditions

Gðx; tjaÞ ¼ Gðx; tjbÞ ¼ 0: (12)

Multiplying both sides of this equation by tn and integrating over time,
we obtain

ebUðx0Þ v
vx0

Dðx0Þe�bUðx0ÞvFn

vx0
¼ � nFn�1; n>0 (13)

and

ebUðx0Þ v
vx0

Dðx0Þe�bUðx0ÞvF0

vx0
¼ � dðx� x0Þ; (14)

where we have introduced the auxiliary functions

Fnðxjx0Þ ¼
Z N

0

dttnGðx; tjx0Þ; (15)

which satisfy the boundary condition

FnðxjaÞ ¼ FnðxjbÞ ¼ 0: (16)

From Eq. 10, the moments htnðx0 /aÞi now can be written as

htnðx0 / aÞi ¼ DðaÞvFnðxjx0Þ
vx

����
x¼ a

: (17)

Using Eqs. 13 and 17, we find that these moments satisfy the
following equation:

ebUðx0Þ
v

vx0
Dðx0Þe�bUðx0Þvhtnðx0/aÞi

vx0
¼

� n
�
tn�1ðx0 / aÞ�; n>0; (18)

which should be supplemented with the boundary conditions

htnðx0/aÞijx¼ a ¼ htnðx0/aÞijx¼ b ¼ 0: (19)

Thus, if the (n � 1)-th moment, htn�1ðx0 /aÞi, is known, then the
next moment htnðx0 /aÞi can be obtained by integrating Eq. 18
twice.

To obtain the n-th moment of interest, htnðx0 /aÞi, the moment
htnðx0 /aÞi needs to be divided by the splitting probability
(Eq. 9). As this probability is the zeroth-order moment of the
unnormalized distribution, it can be obtained by solving Eq. 14
with the boundary conditions of Eq. 16, resulting in the known
result (48)
fðx0 / aÞ ¼ DðaÞ v

vx

24ZN
0

dtGðx; tjx0Þ
35

x¼ a

¼ DðaÞvF0ðxjx0Þ
vx

����
x¼ a

¼
R b

x0
dxebUðxÞ

.
DðxÞR b

a
dxebUðxÞ

.
DðxÞ

:

(20)

Note that although the equation hierarchy, Eq. 18, is similar to that
derived in the literature for first-passage times (37,48), there is an
important difference: because raðbÞðtjx0Þ is a conditional distribution,
Eq. 18 is satisfied by the moments htnðx0 /aÞi and not by
htnðx0 /aÞi.
RESULTS

Exit times

We now give the general analytical solutions for the
first and second moments of the exit times. Starting
with the unnormalized distribution's “zeroth moment”
(which is the splitting probability), integrating Eq. 18
twice, and dividing by the splitting probability (Eq. 9),
we find the first moment

htðx0/aÞiE ¼ 1R b

x0
dxebUðxÞ

.
DðxÞ

Zx0
a

dxebUðxÞ

DðxÞ

�
Zb
a

dyebUðyÞ

DðyÞ
Zy
x

dzfðz/ aÞe�bUðzÞ;

(21)

where the splitting probability fðz/aÞ is defined in Eq.
20. (Note that here we use the notation h.iE to indicate
averaging over the distribution of conditional exit
times.) Similarly, the second moment now can be ex-
pressed in terms of the first moment by integrating
Eq.18 twice. This gives

�
t2ðx0/aÞ�

E
¼ 2R b

x0
dxebUðxÞ

.
DðxÞ

Zx0
a

dxebUðxÞ

DðxÞ
Zb
a

dyebUðyÞ

DðyÞ

�
Zy
x

dzfðz/ aÞhtðz/aÞiEe�bUðzÞ:

(22)

The expression for the n-th moment, htnðx0/aÞiE, n¼ 3,
4., is obtained by replacing 2htðz/aÞiE in Eq. 22 by
nhtn�1ðz/aÞiE.

We are particularly interested in the distribution's
relative width, which is conventionally quantified by
Biophysical Reports 1, 100029, December 8, 2021 5



its coefficient of variation equal to the ratio of the stan-
dard deviation to the distribution's mean:

C ¼ ½ht2i � hti2�12
hti : (23)

Narrower distributions have smaller values of the coef-
FIGURE 3 Coefficient of variation for the exit time distribution
raðtjx0Þ as a function of the starting point x0. The transition region
boundaries are shown as dashed lines. Inset shows the mean exit
time as a function of x0. This time is measured in dimensionless
units, with L2=D (where 2L is the distance between the two potential
minima and D the diffusivity) being the unit of time. The unit of dis-
tance is L.
ficient of variation, and the coefficient of variation for
an exponential distribution is 1. The value of the coeffi-
cient of variation encodes important information about
the underlying dynamics and energy landscape. For
example, in the case of barrier crossing by transition
paths, lower values of this coefficient correspond to
higher barriers (35), whereas a value of 1 (correspond-
ing to a single-exponential distribution) suggests (inas-
much as the model of diffusive dynamics is applicable)
that transition paths cross a potential well (intermedi-
ate) that traps the system (3). Even more interestingly,
regardless of the underlying potential of mean force,
this coefficient cannot possibly exceed 1 for the model
of one-dimensional diffusive dynamics (35,37); thus,
experimental observation of C exceeding one automat-
ically invalidates such a model. But what about coeffi-
cients of variation for the more general exit time?

For the double-well potential shown in Fig. 2, Fig. 3
shows how the coefficient of variation of the exit
time through the left boundary depends on the starting
point x0. For x0 approaching the right boundary, x0/ b,
the exit time approaches the transition path time
tTPðb/aÞ; it has been shown previously (35,37) that
the coefficient of variation for this time is always less
than 1 (assuming the validity of the diffusive dynamics
model).

In the opposite limit, x0/a, the exit time becomes the
return time tRða/aÞ, andweobserve that the coefficient
of variation diverges. Mathematically, this divergence
arises because both the first and the second moments
grow linearly with x0 � a in the limit x0 � a/0.
FIGURE 2 Double-well potential UðxÞ ¼ 2kBTðx2 � 1Þ2 used to
illustrate the results here. The transition region boundaries, a ¼ � 1;

b ¼ 1, are shown as dashed lines.
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Broadening of the exit time distribution as the start-
ing point x0 approaches the absorbing boundary a is
also observed directly in the distribution's shape
shown, for three values of x0, in Fig. 4. These distribu-
tions were obtained using Eq. 6, from a numerical solu-
tion of the Smoluchowski equation that uses the
spectral expansion method (see 27 for further details).
Note that because both the first and the second mo-
ments of this distribution increase with increasing x0
(see the inset of Fig. 3, in which the first moment of
the distribution is plotted as a function of x0), the
time in each distribution is rescaled by its mean value.
In other words, the first moments of each distribution
as plotted in Fig. 4 are the same and equal to one.

At first glance, the distribution raðtjx0Þ obtained for a
value x0 that is closest to the left boundary seem more
FIGURE 4 Probability distribution raðtjx0Þ of the exit time to the left
boundary (Eq. 6) for different values of the initial position x0 , as indi-
cated in the legend. The time in each case is normalized by the dis-
tribution's mean. The potential UðxÞ and the transition region
boundaries are the same as in Figures. 2 and 3. Of the three distribu-
tions shown here, the one corresponding to the point x0 closest to the
left boundary is the broadest (i.e., has the largest coefficient of vari-
ation) because of its long tail. This tail is easy to see when the same
data are plotted on a logarithmic scale (inset).



FIGURE 5 Eq. 27 versus the probability distribution for the exit time
to the left boundary, raðtjx0Þ, in the double-well potential of Fig. 2. In
both cases, the distance x0 � a is much shorter than the length
b� a of the transition region and is equal to 0.1. The time is
measured in dimensionless units, with L2=D (where 2L is the distance
between the two potential minima and D the diffusivity) being the unit
of time. The distance L provides a unit of distance.
“narrow” than the other two, showing a sharper rise at
short times. But this is not so (inasmuch as the coeffi-
cient of variation is a good measure of width) because
of the long tail exhibited by this distribution. This tail is
more readily observed when the same distribution is
plotted on a logarithmic scale (Fig. 4, inset).

To further understand the distribution broadening as
x0 approaches the boundary a, it is instructive to
consider the case of zero potential, UðxÞ ¼ 0, with a co-
ordinate-independent diffusion coefficient DðxÞ ¼ D.
Setting, without loss of generality, a ¼ 0; the integrals
of Eqs. 21 and 22 can be evaluated analytically to give

htðx0/0ÞiE ¼ ð2b� x0Þx0
6D

(24)

and�
t2ðx0/0Þ�

E
¼ x0

	
8b3 þ 8b2x0 � 12bx20 þ 3x30



180D2

: (25)

Both functions are proportional to x0 in the limit x0/ 0,
thus leading to x

�1=2
0 divergence of the coefficient of

variation (Eq. 23).
Moreover, the distribution of the exit time for the

case of zero potential can be calculated analytically.
Although this problem of free diffusion on an interval
with absorbing boundaries was studied in the litera-
ture—see, e.g., (45)—we provide a derivation for
r0ðtjx0Þ in Appendix A for completeness and as a sim-
ple illustration of the approach here. Specifically, the
Laplace transform of r0ðtjx0Þ is given by

~r0ðsjx0Þ ¼
sinh

�
ðb� x0Þ

ffiffiffi
s
D

p 

ðb� x0Þsinh

�
b

ffiffiffi
s
D

p 
: (26)

Consider now the case x0 � b; b
ffiffiffi
s
D

p
[1. In the time

domain, the second inequality implies that we are
considering timescales much shorter than the charac-
teristic diffusion time on the segment (0, b), i.e.,

t � b2

D. In this limit, we obtain ~r0ðsjx0Þz 1
b�x0

e�x0
ffiffi
s
D

p
, and

taking the inverse Laplace transform, we find

r0ðtjx0Þz
x0

2
ffiffiffiffiffiffiffiffiffiffi
pDt3

p e�
x2
0

4Dt: (27)

In fact, Eq. 27 provides an accurate description of the
exit time distribution even in the presence of a nonzero
potential UðxÞ as long as the time t is not too long; see
Fig. 5. This is because, at short enough timescales,
diffusion dominates over the drift, and the presence
of the potential is immaterial. At longer times, however,
the exit-time distribution exhibits an exponential tail, in
contrast to a power-law tail predicted by Eq. 27. A true
power-law tail will be observed in the absence of a po-
tential when the right boundary is removed to infinity
(see First-passage times).

Returning to the case of zero potential, when
x20 � Dt, the exponential in Eq. 27 can be replaced by
1. On the other hand, when Dt � b2, the particle
originating from x0 does not have time to reach the
right boundary b. When both of these conditions are

satisfied, x2
0

D � t � b2

D , Eq. 27 predicts a power law

r0ðtjx0Þft�
3
2, a behavior characteristic of a “broad” dis-

tribution displaying multiple timescales. Note, however,
that the absolute width of the distribution, as opposed
to the relative width quantified by the coefficient of vari-
ation, decreases as x0/0. Indeed, at x0 ¼ 0, the Lap-
lace transform of this distribution is constant, and the
distribution is the d function, r0ðtjx0Þ ¼ dðtÞ, indicating
that a particle cannot leave the absorbing boundary
x0 ¼ 0. In other words, the return time is identically
zero in this case.

This d-function distribution of the return time should
be expected of diffusive dynamics (or equivalently, of
the overdamped Langevin equation in which the inertial
term containing acceleration is omitted). It is patholog-
ical: if inertial effects are taken into account, the sys-
tem crossing the left boundary a with a positive
velocity will travel to the right over some finite time.
Thus, it will take a finite time to return to the boundary.
The typical return time, then, would be comparable to
the velocity correlation time, which is typically very
short and thus unresolvable by current single-molecule
techniques (54). This conclusion has important experi-
mental implications: an attempt to measure the return
time will likely be confounded by experimental artifacts
such as the limited spatial and temporal resolution or
the smoothing of the trajectory (which introduces an
artificial “velocity” that would be absent in true diffusive
Biophysical Reports 1, 100029, December 8, 2021 7



dynamics). These difficulties can be avoided by
measuring the exit-time distribution raðtjx0Þ instead,
with the initial point x0 being within the limits allowed
by the experiment's spatial resolution.
First-passage times

We now consider the distribution of the first-passage
time pFPx0/bðtÞ to arrive at the (target) boundary b start-
ing from x ¼ x0<b. The first moment of this distribution
is given by the known expression (20,45,47)

htðx0/bÞiFP ¼
Zb
x0

dxebUðxÞ

DðxÞ
Zx
�N

dye�bUðyÞ; (28)

and the second moment can be obtained similarly to

the approach of Exit times by integrating Eq. 18:

�
t2ðx0/bÞ�

FP
¼ 2

Zb
x0

dxebUðxÞ

DðxÞ
Zx
�N

dye�bUðyÞhtðy/bÞiFP:

(29)

The dependence of the coefficient of variation on the

initial position x0 for the double-well potential shown
in Fig. 2 and for a coordinate-independent DðxÞ is illus-
trated in Fig. 6. For x0 located not too far from the left
potential minimum (located at x ¼ � 1), we observe
that its value is close to 1. This is easy to understand:
thermally activated escape from a potential well sepa-
rated from the target boundary b by a sufficiently high
barrier is governed by first-order kinetics, resulting in
an exponential distribution of escape times whose co-
efficient of variation is 1. Even though the barrier in this
case is only 2kBT, the coefficient of variation is only
slightly below 1.
FIGURE 6 Coefficient of variation C for the first-passage time from
x0 to b (solid line) and for the transition path time from x0 to b (dashed-
dotted line) as a function of the starting point x0. Inset: same data for
the transition path time.
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When the initial position x0 moves toward b, however,
the coefficient of variation increases, and it diverges as
the starting point approaches the target, x0/b. This
behavior is similar to that of the exit time discussed
in Exit times and illustrated in Fig. 3. The physical ori-
gins of this behavior will be further discussed below.
Mathematically, the divergent behavior of the coeffi-
cient of variation follows from Eqs. 28 and 29 (and
from the definition of the coefficient of variation, Eq.
23). Indeed, based on these equations, both the first
and the second moments of the distribution, to lowest
order in the distance to the target ðb � x0Þ, are propor-
tional to ðb � x0Þ, and thus, the coefficient of variation
scales as C f ðb� x0Þ�

1
2 .

To gain further insight into the shapes of the first-
passage-time distributions, consider the analytically
tractable case of a linear potential,

UðxÞ ¼ � Fx; (30)

describing a particle subjected to a constant force
FR0. Using Eqs. 28 and 29, we find, for x0<b,

htðx0/bÞiFP ¼ b� x0
bFD

(31)

and

�
t2ðx0/bÞ�

FP
¼ 2

ðbFÞ3D2

"
ðb� x0Þþ bFðb� x0Þ2

2

#
; (32)

from which, using Eq. 23, we find

C ¼
�

2

bFðb� x0Þ

1=2

(33)

showing divergent behavior as x0/b.
A particularly interesting case is that of free diffu-

sion, which is obtained by setting the force F to zero.
Formally, Eq. 33 predicts that the coefficient of varia-
tion should diverge for any initial position x0, but of
course, both the first and the second moments of the
distribution diverge in this case, so the coefficient of
variation is not well defined at exactly zero force (see
Eq. 23). Nevertheless, the distribution of the first-pas-
sage time itself is well defined for free diffusion. It is
given by (see, e.g., (45); Appendix B provides a deriva-
tion for completeness)

pFPx0/bðtÞ ¼
b� x0

2
ffiffiffiffiffiffiffiffiffiffi
pDt3

p e�
ðb�x0Þ2

4Dt : (34)

Equation 34 is identical to Eq. 27 (provided that x0 is re-
placed by b� x0; both of these quantities are the dis-
tances to the absorbing boundary in each case).



However, unlike Eq. 27, which only holds at intermedi-
ate timescales, Eq. 34 has a power-law tail decaying
as t�3=2 at arbitrarily long times. This difference is
due to the fact that diffusion on an infinitely long
segment, unlike diffusion within a transition region of
finite length, does not possess a longest characteristic
timescale. More specifically, as noted above, the power
law in Eq. 27 holds only at times short enough that the
particle does not have enough time to reach the right
boundary b. In contrast, no such boundary exists in
this case, diffusion takes place on a semi-infinite
segment, and arbitrarily long excursions from the point
x0 are possible. Although the distribution of Eq. 34 is it-
self normalized, all of its moments diverge.

These findings show that first-passage time distribu-
tions can be broad, with a coefficient of variation
exceeding 1, or even with its moments being infinite.
This is different from the distribution of the transition
path time, which, for one-dimensional diffusive dy-
namics, is always below 1, as further discussed below.
Transition path times

The first and second moments of the distribution of the
transition path time can be found from Eqs. 21 and 22
as the limiting case in which the starting point x0 coin-
cides with the absorbing boundary b. Note that this
gives moments of the transition path time from b to
a, but given the time-reversal symmetry of transition
paths, they are the same as those for transition paths
from a to b. The result for the first moment has been
derived previously (25,49,55):

htða/bÞiTP ¼ htðb/aÞiTP ¼
0@Zb

a

dxebUðxÞ

DðxÞ

1A
�

Zb
a

dzfðz/ x0Þfðz/ bÞe�bUðzÞ:

(35)

For the second moment, we arrive at

�
t2ða/bÞ�

TP
¼ �

t2ðb/aÞ�
TP

¼ 2

0@Zb
a

dxebUðxÞ

DðxÞ

1A
�
Zb
a

dzfðz/ x0Þfðz/ bÞhtðz/bÞiEe�bUðzÞ;

(36)

where htðx0/bÞiE is the mean exit time through bound-
ary b conditional upon not crossing the boundary a:
This result was reported earlier in (35) for coordinate-
independent diffusivity and in (37).
As proven in (35,37), the coefficient of variation of
the transition-path-time distribution (Eq. 23) always re-
mains below 1 (Fig. 6). For the potential shown in Fig. 2
and for initial points x0<� 1 located to the left of the
potential minimum at x ¼ � 1, the coefficients of vari-
ation for both transition-path-time and first-passage-
time distributions are close to each other and to the
value C ¼ 1 expected for an exponential distribution
(Fig. 6). This is not surprising; if the starting point
x0<� 1 is located on a steep left wall of a potential
well, a trajectory originating from x0 will likely proceed
toward the right of the starting point, and thus, a first-
passage and a transition path time should be nearly
the same. Moreover, their distributions should be close
to exponential, with Cz1, as these times should be
close to the time of thermally activated escape from
the left potential well.

As the initial point x0 approaches the target b, the co-
efficient of variation for the transition-path-time distri-
bution stays below 1, whereas the coefficient of
variation for the first-passage-time distribution in-
creases and diverges for x0/b, a behavior explained
in First-passage times.
DISCUSSION

Our findings show that the distribution of the transition
path time is special in that, in the case of purely diffu-
sive dynamics, its coefficient of variation cannot
exceed 1, in contrast to the distributions of the first-
passage and conditional exit times. In other words,
transition-path-time distributions are narrow (narrower
than exponential), whereas first-passage-time and exit-
time distributions may be arbitrarily broad, with their
coefficients of variations being arbitrarily large.

What is the physical origin of this difference? It is
instructive to consider the free diffusion case dis-
cussed in First-passage times. Consider a Brownian
particle starting to the left of the target at x0<b. It
may proceed directly toward the target b, in which
case its trajectory will be a transition path from x0 to
b, or it may exercise an arbitrarily long detour to the
left of the starting point before finally finding the target
at x ¼ b (note that in one dimension, the particle will
eventually find the target with certainty). In a sense,
these two scenarios may be considered as two parallel
pathways contributing to the first-passage-time distri-
bution, but only with the first scenario contributing to
the transition-path-time distribution. As shown in
(35,50), it is the existence of such parallel pathways
with disparate characteristic timescales that leads to
broad distributions, and indeed, Eq. 34 exhibits a po-
wer-law tail describing long-lasting events.

Exit times (Eqs. 21 and 22) provide a more general
description of barrier crossing dynamics than the
Biophysical Reports 1, 100029, December 8, 2021 9



better-studied transition path time. Exit times have
been discussed previously in the context of finding
practical reaction coordinates (46). It is widely believed
that the splitting probability (committor) has attractive
mathematical properties that makes it in a certain
sense an optimal reaction coordinate (25,53,56–62).
The splitting probability answers the following ques-
tion: starting from a certain point in phase or configura-
tion space, what is the probability to get to the reaction
product before getting to the reactant? In our one-
dimensional model, the function fðx0 /bÞ (x0 being
the starting point) gives the answer to this question,
provided that the segment ð�N; aÞ is regarded as the
reactant and ðb;þNÞ as the product. The conditional
exit time is a complementary quantity that answers a
question that is concerned with the transition time-
scale: starting from a certain point in phase or configu-
ration space, what is the (mean) time to get to the
product conditional upon reaching the product before
getting to the reactant? In our case, this question is
answered by the mean exit time htðx0/bÞiE. The exit
time generalizes the notion of the transition path
time: in the limit in which the initial point x0 coincides
with the boundary a, this time becomes the transition
path time tTPða/bÞ. Another limiting case of the
conditional exit time is the (mean) return time
htðx0/aÞiE

��
x0/a

¼ htða/aÞiR, which is the mean time
it takes to return to the boundary a starting from this
boundary and conditional upon not exiting through
the boundary b. For the case of diffusive dynamics
considered here, however, this time is identically equal
to 0.

This work has focused on the model of diffusive dy-
namics along a one-dimensional reaction coordinate.
Given the many successes of this model in application
to biomolecular folding (see, e.g., (63–65)), we view
elaboration on further consequences of this model
for the dynamics in the transition region a worthy pur-
suit, but it also gives us an opportunity to delineate po-
tential limitations of this model in application to
experimental data. Indeed, the following three proper-
ties are strictly satisfied by this model, yet they may
be violated when the dynamics along the reaction coor-
dinate are influenced by memory effects and/or when
multidimensionality is essential (66,67):

1) Locality of exit times: Distributions of exit times
(and transition path times in particular) are indepen-
dent of the potential UðxÞ outside the transition re-
gion ða; bÞ. This is obvious from the derivation
outline described in Distributions of conditional
exit times and first-passage times, as the properties
of the potential outside the transition interval do not
enter into the picture (of course, Markovianity of
diffusion, allowing one to disregard any knowledge
10 Biophysical Reports 1, 100029, December 8, 2021
of the system's past before its arrival at the point
x0 is key here). Note that this local property is not
true for first-passage times from a to b, which
depend on the properties of the potential UðxÞ for
x<a.

2) The distribution of the transition path time has a co-
efficient of variation that cannot exceed 1, regard-
less of the potential and the transition region
boundaries. This property is a direct consequence
of Eqs. 23, 35, and 36 (see 35).

3) Transition path times exhibit forward and backward
symmetry, pTPa/bðtÞ ¼ pTPb/aðtÞ, as already stated in
Eq. 1. Note that this property is true even for sys-
tems that are not in equilibrium (68) because of
property 1.

Although strictly true for diffusive dynamics, some
(or all) of these properties may not be true if the dy-
namics along x is not diffusive. For example, property
1 cannot be generally true for non-Markovian dynamics,
property 2 has already been found to be violated for the
dynamics of reaction coordinates in protein folding
(35), and property 3, although true for any equilibrium
system, was found to be violated for systems that
are simultaneously nonequilibrium and non-Markovian
(68). Violation of any of the above exact predictions
would invalidate, with certainty, the diffusive picture
of the dynamics along a reaction coordinate and call
for a more accurate model.

We conclude this work with comments on how
experimental time resolution may affect information
that can be deduced from the distributions of the
various times discussed here. Generally, limited time
resolution may result in missing short-time events,
thereby skewing the apparent distribution toward
longer times while simultaneously making it narrower.
More formally, we may write the true distribution pðtÞ
of the time of interest as

pðtÞ ¼ fpunðtÞ þ ð1� f ÞpobsðtÞ; (37)

where f is the fraction of unobserved short-time events
with a normalized distribution punðtÞ, and 1� f the frac-
tion of observed events with a normalized distribution
pobsðtÞ. The latter distribution is the one observed exper-
imentally. Thus, we have

C2 þ 1 ¼ ht2i
hti2 ¼ f ht2iun þ ð1� f Þht2iobs

½f htiun þ ð1� f Þhtiobs�2
; (38)

where htiun, htiobs and ht2iun, ht2iobs are the first and sec-
ond moment of the unobserved and observed distribu-
tions, as indicated by the subscripts. Given that
unobserved events are shorter than the observed
ones, we have htiun<htiobs, and it is obvious that the



true distribution mean hti ¼ f htiun þ ð1�f Þhtiobs is al-
ways shorter than the observed value htiobs.

Let us now focus on the case of measuring transition
path times. Given that higher barriers (for the same
transition region boundaries) correspond to shorter
mean transition path times (19,25), this longer
observed value of the transition path time could lead
the experimentalist to deduce a lower transition barrier.
On the other hand, as follows from Eq. 38, the true co-
efficient of variation C is greater than the observed one,

Cobs ¼ ½ht2iobs�hti2obs�
1
2

htiobs , and a narrower observed distribution

of the transition path time, with a greater coefficient of
variation, corresponds to a higher barrier. Thus, anal-
ysis of experimental distribution widths may reveal
experimental artifacts.
APPENDIX A: EXIT TIME DISTRIBUTION FOR FREE
DIFFUSION

Following the approach outlined in Distributions of conditional exit
times and first-passage times, we write the diffusion equation
describing the time evolution of Green's function Gðx; tjx0Þ of a free
particle (i.e., Eq. 3 with constant diffusivity D and with UðxÞ ¼ 0)

vG

vt
¼ D

v2G

vx2
; (A1)

with the initial condition

Gðx; 0jx0Þ ¼ dðx� x0Þ (A2)

and with absorbing boundary conditions (cf. Eq. 5)

Gða ¼ 0; tjx0Þ ¼ Gðb; tjx0Þ ¼ 0: (A3)

To solve Eq. A1, we rewrite it in Laplace space:

sbG� dðx� x0Þ ¼ D
v2 bG
vx2

; (A4)

where

bGðx; sjx0Þ ¼
Z N

0

dte�stGðx; tjx0Þ: (A5)

The solution of Eq. A4 satisfying the absorbing boundary conditions
can be written in the form

bGðx; sjx0Þ ¼

8>>><>>>:
A sinh

�
x

ffiffiffiffi
s

D

r 

; 0%x<x0

B sinh

�
ðb� xÞ

ffiffiffiffi
s

D

r 

; x0<x%b

: (A6)

The coefficients A and B can be determined from the continuity of the
Green's function at x ¼ x0,
bGðx0 þ 0; sjx0Þ ¼ bGðx0 � 0; sjx0Þ; (A7)

and from the condition

D
vbG
vx

����x0þ0

x0�0

¼ � 1; (A8)

which is obtained by integrating Eq. A4 over an infinitesimal interval
from x0 � 0 to x0 þ 0.

The exit time distribution can now be found from Eq. 6 rewritten in
Laplace space:

br0ðtjx0Þ ¼
1

fðx0/0ÞD
vbGðx; tjx0Þ

vx

����
x¼ 0

; (A9)

where the splitting probability fðx0 /0Þ is the integral of the flux ex-
iting through the left boundary,

fðx0 / 0Þ ¼ D

ZN
0

dt
vGðx; tjx0Þ

vx

����
x¼ 0

¼ D
vbGðx; tjx0Þ

vx

����
x¼ 0

(A10)

The expression in Eq. 26 is then obtained using Eqs. A6, A7, A8, A9,
and A10.
APPENDIX B: FIRST-PASSAGE TIME DISTRIBUTION
FOR FREE DIFFUSION

Following the approach outlined in Distributions of conditional exit
times and first-passage times, we seek the solution Gðx; tjx0Þ of the
diffusion equation

vG

vt
¼ D

v2G

vx2
; (B1)

with the initial condition

Gðx; 0jx0Þ ¼ dðx� x0Þ (B2)

and with absorbing boundary condition at x ¼ b:

Gðb; tjx0Þ ¼ 0: (B3)

We assume that x0<b. The solution for x<b is easily constructed from
Green's function of the freely diffusing particle using the method of
images:

Gðx; tjx0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p
�
e�

ðx�x0Þ2
4Dt � e�

ðx�2bþx0Þ2
4Dt



: (B4)

The probability distribution of the first-passage time from x0 to the
boundary b is equal to the flux at the target boundary,
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pFPx0/bðtÞ ¼ � D
vGðx; tjx0Þ

vx

����
x¼ b

¼ b� x0

2
ffiffiffiffiffiffiffi
pD

p t�
3
2e�

ðb�x0Þ2
4Dt ;

(B5)

which is the expression in Eq. 34. Note that this distribution is auto-
matically normalized because the integral of the flux over time, equal
to the probability of crossing x ¼ b at any time, is 1.
DECLARATION OF INTERESTS

The authors declare no competing interests.
ACKNOWLEDGMENTS

A.M.B. was supported by the Intramural Research Program of the Na-
tional Institutes of Health, Center for Information Technology. D.E.M.
was supported by the Robert A. Welch Foundation (grant no. F- 1514)
and the National Science Foundation (grant no. CHE 1955552).
REFERENCES

1. Kilic, Z., I. Sgouralis, and S. Press�e. 2021. Generalizing HMMs to
continuous time for fast kinetics: hidden Markov jump pro-
cesses. Biophys. J. 120:409–423.

2. Makarov, D. E. 2021. Barrier crossing dynamics from single-mole-
cule measurements. J. Phys. Chem. B. 125:2467–2476.

3. Sturzenegger, F., F. Zosel, ., B. Schuler. 2018. Transition path
times of coupled folding and binding reveal the formation of an
encounter complex. Nat. Commun. 9:4708.

4. Schreiber, G., G. Haran, and H. X. Zhou. 2009. Fundamental as-
pects of protein-protein association kinetics. Chem. Rev.
109:839–860.

5. Kolomeisky, A. B. 2015. Motor Proteins and Molecular Motors,
First Edition. CRC Press, Boca Raton, FL.

6. Berezhkovskii, A. M., and D. E. Makarov. 2020. From nonequilib-
rium single-molecule trajectories to underlying dynamics.
J. Phys. Chem. Lett. 11:1682–1688.

7. Hoffer, N. Q., and M. T. Woodside. 2019. Probing microscopic
conformational dynamics in folding reactions by measuring tran-
sition paths. Curr. Opin. Chem. Biol. 53:68–74.

8. Schuler, B., and W. A. Eaton. 2008. Protein folding studied by sin-
gle-molecule FRET. Curr. Opin. Struct. Biol. 18:16–26.

9. Schuler, B., E. A. Lipman, and W. A. Eaton. 2002. Probing the free-
energy surface for protein folding with single-molecule fluores-
cence spectroscopy. Nature. 419:743–747.

10. Hagen, S. J., J. Hofrichter,., W. A. Eaton. 1996. Diffusion-limited
contact formation in unfolded cytochrome c: estimating the
maximum rate of protein folding. Proc. Natl. Acad. Sci. USA.
93:11615–11617.

11. Bieri, O., and T. Kiefhaber. 1999. Elementary steps in protein
folding. Biol. Chem. 380:923–929.

12. Bieri, O., J. Wirz,., T. Kiefhaber. 1999. The speed limit for protein
folding measured by triplet-triplet energy transfer. Proc. Natl.
Acad. Sci. USA. 96:9597–9601.

13. Wang, Z., and D. E. Makarov. 2003. Nanosecond dynamics of sin-
gle polypeptide molecules revealed by photoemission statistics
of fluorescence resonance energy transfer: a theoretical study.
J. Phys. Chem. B. 107:5617–5622.
12 Biophysical Reports 1, 100029, December 8, 2021
14. Gopich, I. V., D. Nettels, ., A. Szabo. 2009. Protein dynamics
from single-molecule fluorescence intensity correlation func-
tions. J. Chem. Phys. 131:095102.

15. Hoffmann, A., A. Kane, ., B. Schuler. 2007. Mapping protein
collapse with single-molecule fluorescence and kinetic synchro-
tron radiation circular dichroism spectroscopy. Proc. Natl.
Acad. Sci. USA. 104:105–110.

16. Nettels, D., I. V. Gopich, ., B. Schuler. 2007. Ultrafast dynamics
of protein collapse from single-molecule photon statistics. Proc.
Natl. Acad. Sci. USA. 104:2655–2660.

17. Soranno, A., B. Buchli, ., B. Schuler. 2012. Quantifying internal
friction in unfolded and intrinsically disordered proteins with
single-molecule spectroscopy. Proc. Natl. Acad. Sci. USA.
109:17800–17806.

18. Haas, E., and I. Z. Steinberg. 1984. Intramolecular dynamics of
chain molecules monitored by fluctuations in efficiency of excita-
tion energy transfer. A theoretical study. Biophys. J. 46:429–437.

19. Makarov, D. E. 2015. Single Molecule Science: Physical Principles
and Models. CRC Press, Boca Raton, FL.

20. Elber, R., D. E. Makarov, and H. Orland. 2020. Molecular Kinetics
in Condensed Phases: Theory, Simulation, and Analysis, First Edi-
tion. Wiley and Sons, Hoboken, NJ.

21. Berezhkovskii, A. M., L. Dagdug, and S. M. Bezrukov. 2017. First
passage, looping, and direct transition in expanding and narrow-
ing tubes: effects of the entropy potential. J. Chem. Phys.
147:134104.

22. Berezhkovskii, A. M., L. Dagdug, and S. M. Bezrukov. 2017. Mean
direct-transit and looping times as functions of the potential
shape. J. Phys. Chem. B. 121:5455–5460.

23. Zhang, B. W., D. Jasnow, and D. M. Zuckerman. 2007. Transition-
event durations in one-dimensional activated processes.
J. Chem. Phys. 126:074504.

24. Zuckerman, D. M., and T. B. Woolf. 2002. Transition events in
butane simulations: similarities across models. J. Chem. Phys.
116:2586–2591.

25. Hummer, G. 2004. From transition paths to transition states and
rate coefficients. J. Chem. Phys. 120:516–523.

26. Berezhkovskii, A. M., G. Hummer, and S. M. Bezrukov. 2006. Iden-
tity of distributions of direct uphill and downhill translocation
times for particles traversing membrane channels. Phys. Rev.
Lett. 97:020601.

27. Chaudhury, S., and D. E. Makarov. 2010. A harmonic transition
state approximation for the duration of reactive events in com-
plex molecular rearrangements. J. Chem. Phys. 133:034118.

28. Pollak, E. 2016. Transition path time distribution and the transi-
tion path free energy barrier. Phys. Chem. Chem. Phys.
18:28872–28882.

29. Pollak, E. 2017. Transition path time distribution, tunneling times,
friction, and uncertainty. Phys. Rev. Lett. 118:070401.

30. Carlon, E., H. Orland,., C. Vanderzande. 2018. Effect of memory
and active forces on transition path time distributions. J. Phys.
Chem. B. 122:11186–11194.

31. Laleman, M., E. Carlon, and H. Orland. 2017. Transition path time
distributions. J. Chem. Phys. 147:214103.

32. Cossio, P., G. Hummer, and A. Szabo. 2018. Transition paths in
single-molecule force spectroscopy. J. Chem. Phys. 148:123309.

33. Malinin, S. V., and V. Y. Chernyak. 2010. Transition times in the
low-noise limit of stochastic dynamics. J. Chem. Phys.
132:014504.

34. Medina, E., R. Satija, and D. E. Makarov. 2018. Transition path
times in non-markovian activated rate processes. J. Phys.
Chem. B. 122:11400–11413.

35. Satija, R., A. M. Berezhkovskii, and D. E. Makarov. 2020. Broad
distributions of transition-path times are fingerprints of multidi-
mensionality of the underlying free energy landscapes. Proc.
Natl. Acad. Sci. USA. 117:27116–27123.

http://refhub.elsevier.com/S2667-0747(21)00029-X/sref1
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref1
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref1
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref1
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref2
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref2
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref3
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref3
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref3
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref4
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref4
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref4
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref5
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref5
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref6
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref6
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref6
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref7
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref7
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref7
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref8
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref8
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref9
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref9
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref9
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref10
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref10
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref10
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref10
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref11
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref11
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref12
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref12
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref12
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref13
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref13
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref13
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref13
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref13
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref14
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref14
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref14
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref15
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref15
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref15
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref15
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref16
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref16
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref16
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref17
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref17
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref17
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref17
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref18
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref18
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref18
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref19
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref19
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref20
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref20
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref20
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref21
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref21
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref21
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref21
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref22
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref22
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref22
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref23
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref23
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref23
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref24
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref24
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref24
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref25
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref25
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref26
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref26
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref26
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref26
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref27
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref27
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref27
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref28
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref28
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref28
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref29
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref29
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref30
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref30
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref30
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref31
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref31
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref32
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref32
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref33
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref33
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref33
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref34
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref34
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref34
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref35
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref35
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref35
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref35


36. Satija, R., A. Das, and D. E. Makarov. 2017. Transition path times
reveal memory effects and anomalous diffusion in the dynamics
of protein folding. J. Chem. Phys. 147:152707.

37. Hartich, D., and A. Godec. 2021. Emergent memory and kinetic
hysteresis in strongly driven networks. Phys. Rev. X https://
journals.aps.org/prx/accepted/ac07cK82Qa412f0474b779c61ec
66ed07c08303b2.

38. Chung, H. S., and W. A. Eaton. 2018. Protein folding transition
path times from single molecule FRET. Curr. Opin. Struct. Biol.
48:30–39.

39. Chung, H. S., J. M. Louis, and W. A. Eaton. 2009. Experimental
determination of upper bound for transition path times in protein
folding from single-molecule photon-by-photon trajectories.
Proc. Natl. Acad. Sci. USA. 106:11837–11844.

40. Chung, H. S., K. McHale, ., W. A. Eaton. 2012. Single-molecule
fluorescence experiments determine protein folding transition
path times. Science. 335:981–984.

41. Neupane, K., D. A. Foster,., M. T. Woodside. 2016. Direct obser-
vation of transition paths during the folding of proteins and nu-
cleic acids. Science. 352:239–242.

42. Neupane, K., D. B. Ritchie, ., M. T. Woodside. 2012. Transition
path times for nucleic Acid folding determined from energy-land-
scape analysis of single-molecule trajectories. Phys. Rev. Lett.
109:068102.

43. Yu, H., A. N. Gupta, ., M. T. Woodside. 2012. Energy landscape
analysis of native folding of the prion protein yields the diffusion
constant, transition path time, and rates. Proc. Natl. Acad. Sci.
USA. 109:14452–14457.

44. Kim, J. Y., and H. S. Chung. 2020. Disordered proteins follow
diverse transition paths as they fold and bind to a partner. Sci-
ence. 368:1253–1257.

45. Redner, S. 2001. A Guide to First Passage Processes, First Edi-
tion. Cambridge University Press, Cambridge, UK.

46. Ma, P., R. Elber, and D. E. Makarov. 2020. Value of temporal infor-
mation when analyzing reaction coordinates. J. Chem. Theory
Comput. 16:6077–6090.

47. Szabo, A., K. Schulten, and Z. Schulten. 1980. First passage time
approach to diffusion controlled reactions. J. Chem. Phys.
72:4350–4357.

48. Gardiner, C. W. 1983. Handbook of Stochastic Methods for Phys-
ics, Chemistry and the Natural Sciences. Springer-Verlag, Berlin,
Germany.

49. Chung, H. S., and I. V. Gopich. 2014. Fast single-molecule FRET
spectroscopy: theory and experiment. Phys. Chem. Chem. Phys.
16:18644–18657.

50. Berezhkovskii, A. M., S. M. Bezrukov, and D. E. Makarov. 2021.
Localized potential well vs binding site: mapping solute dy-
namics in a membrane channel onto one-dimensional descrip-
tion. J. Chem. Phys. 154:111101.

51. Li, X., and A. B. Kolomeisky. 2013. Mechanisms and topology
determination of complex chemical and biological network sys-
tems from first-passage theoretical approach. J. Chem. Phys.
139:144106.

52. Thorneywork, A. L., J. Gladrow, ., U. F. Keyser. 2020. Direct
detection of molecular intermediates from first-passage times.
Sci. Adv. 6:eaaz4642.

53. Peters, B. 2017. Reaction Theory and Rare Events, First Edition.
Elsevier, Amsterdam, the Netherlands.

54. Berezhkovskii, A. M., and D. E. Makarov. 2018. Communication:
transition-path velocity as an experimental measure of barrier
crossing dynamics. J. Chem. Phys. 148:201102.

55. Berezhkovskii, A. M., M. A. Pustovoit, and S. M. Bezrukov. 2002.
Channel-facilitated membrane transport: transit probability and
interaction with the channel. J. Chem. Phys. 116:9952–9956.

56. E, W. and E. Vanden-Eijnden. 2006. Towards a theory of transition
paths. J. Stat. Phys. 123:503–523.

57. Lu, J., and E. Vanden-Eijnden. 2014. Exact dynamical coarse-
graining without time-scale separation. J. Chem. Phys.
141:044109.

58. Vanden-Eijnden, E. 2006. Transition path theory. In Computer
Simulations in Condensed Matter: From Materials to Chemical
Biology. M. M. Ferrario, G. Ciccotti, and K. Binder, eds. Springer,
pp. 453–493.

59. Peters, B. 2016. Reaction coordinates and mechanistic hypothe-
sis tests. Annu. Rev. Phys. Chem. 67:669–690.

60. Berezhkovskii, A. M., and A. Szabo. 2013. Diffusion along the
splitting/commitment probability reaction coordinate. J. Phys.
Chem. B. 117:13115–13119.

61. Banushkina, P. V., and S. V. Krivov. 2015. Nonparametric varia-
tional optimization of reaction coordinates. J. Chem. Phys.
143:184108.

62. Banushkina, P. V., and S. V. Krivov. 2015. High-resolution free en-
ergy landscape analysis of protein folding. Biochem. Soc. Trans.
43:157–161.

63. Socci, N. D., J. N. Onuchic, and P. G. Wolynes. 1996. Diffusive dy-
namics of the reaction coordinate for protein folding funnels.
J. Chem. Phys. 104:5860–5868.

64. Klimov, D., and D. Thirumalai. 1997. Viscosity Dependence of the
Folding Rates of Proteins. Phys. Rev. Lett. 79:317–320.

65. Neupane, K., A. P. Manuel, and M. Woodside. 2016. Protein
folding trajectories can be described quantitatively by one-dimen-
sional diffusion over measured energy landscapes. Nat. Phys.
12:700–703.

66. Zhuravlev, P. I., M. Hinczewski, ., D. Thirumalai. 2016. Force-
dependent switch in protein unfolding pathways and transition-
state movements. Proc. Natl. Acad. Sci. USA. 113:E715–E724.

67. Avdoshenko, S. M., and D. E. Makarov. 2016. Reaction coordi-
nates and pathways of mechanochemical transformations.
J. Phys. Chem. B. 120:1537–1545.

68. Berezhkovskii, A. M., and D. E. Makarov. 2019. On the forward/
backward symmetry of transition path time distributions in
nonequilibrium systems. J. Chem. Phys. 151:065102.
Biophysical Reports 1, 100029, December 8, 2021 13

http://refhub.elsevier.com/S2667-0747(21)00029-X/sref36
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref36
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref36
https://journals.aps.org/prx/accepted/ac07cK82Qa412f0474b779c61ec66ed07c08303b2
https://journals.aps.org/prx/accepted/ac07cK82Qa412f0474b779c61ec66ed07c08303b2
https://journals.aps.org/prx/accepted/ac07cK82Qa412f0474b779c61ec66ed07c08303b2
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref38
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref38
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref38
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref39
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref39
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref39
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref39
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref40
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref40
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref40
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref41
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref41
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref41
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref42
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref42
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref42
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref42
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref43
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref43
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref43
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref43
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref44
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref44
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref44
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref45
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref45
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref46
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref46
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref46
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref47
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref47
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref47
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref48
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref48
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref48
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref49
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref49
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref49
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref50
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref50
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref50
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref50
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref51
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref51
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref51
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref51
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref52
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref52
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref52
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref53
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref53
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref54
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref54
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref54
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref55
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref55
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref55
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref56
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref56
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref57
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref57
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref57
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref58
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref58
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref58
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref58
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref59
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref59
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref60
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref60
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref60
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref61
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref61
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref61
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref62
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref62
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref62
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref63
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref63
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref63
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref64
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref64
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref65
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref65
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref65
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref65
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref66
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref66
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref66
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref67
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref67
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref67
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref68
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref68
http://refhub.elsevier.com/S2667-0747(21)00029-X/sref68

	On distributions of barrier crossing times as observed in single-molecule studies of biomolecules
	Introduction
	Materials and methods
	General formalism
	Distributions of conditional exit times and first-passage times
	Recursive equations for the distribution moments


	Results
	Exit times
	First-passage times
	Transition path times

	Discussion
	Appendix A: Exit time distribution for free diffusion
	Appendix B: First-passage time distribution for free diffusion
	Declaration of interests
	Acknowledgments
	References


