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The RBR (RING-BetweenRING-RING) or TRIAD [two RING
fingers and a DRIL (double RING finger linked)] E3 ubiquitin
ligases comprise a group of 12 complex multidomain enzymes.
This unique family of E3 ligases includes parkin, whose
dysfunction is linked to the pathogenesis of early-onset
Parkinson’s disease, and HOIP (HOIL-1-interacting protein) and
HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of
the LUBAC (linear ubiquitin chain assembly complex). The RBR
E3 ligases share common features with both the larger RING
and HECT (homologous with E6-associated protein C-terminus)
E3 ligase families, directly catalysing ubiquitin transfer from
an intrinsic catalytic cysteine housed in the C-terminal domain,
as well as recruiting thioester-bound E2 enzymes via a RING
domain. Recent three-dimensional structures and biochemical

findings of the RBRs have revealed novel protein domain folds not
previously envisioned and some surprising modes of regulation
that have raised many questions. This has required renaming two
of the domains in the RBR E3 ligases to more accurately reflect
their structures and functions: the C-terminal Rcat (required-for-
catalysis) domain, essential for catalytic activity, and a central
BRcat (benign-catalytic) domain that adopts the same fold as the
Rcat, but lacks a catalytic cysteine residue and ubiquitination
activity. The present review discusses how three-dimensional
structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided
new insights into our understanding of the biochemical
mechanisms of these important enzymes in ubiquitin biology.
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INTRODUCTION

The post-translational modification of proteins with the covalent
attachment of the 76-residue protein ubiquitin is a critical event
that ultimately determines the fate of many proteins in the cell.
This process, known as ubiquitination, is involved in a multitude
of processes including cell-cycle progression, transcriptional
regulation, DNA repair, signal transduction and protein turnover
by the proteasome [1]. Ubiquitination involves the sequential
transfer of an ubiquitin molecule through an enzyme cascade
consisting of an ubiquitin-activating enzyme (E1), an ubiquitin-
conjugating enzyme (E2) and an ubiquitin ligase (E3), until an
isopeptide bond is formed between the C-terminus of ubiquitin
and the ε-amino group of a lysine residue on a substrate protein.
The E2–E3 combination controls the specificity of the target
protein selected for modification, the site of attachment to the
substrate protein, the length of the ubiquitin chain and the type of
lysine linkage (i.e. Lys11, Lys48 and Lys63) made between the
attached ubiquitin molecules [2].

There are different classes of E3 ubiquitin ligases that have
been identified including RING, U-box and HECT (homologous
with E6-associated protein C-terminus) E3 ligases (Figure 1).
The RING and U-box E3 ligases function as scaffolds thought

to orient the E2∼ubiquitin thioester complex with respect to
the target protein allowing for efficient ubiquitin transfer [2,3].
All RING E3 ligases co-ordinate two zinc ions via eight
cysteine and histidine residues in a cross-brace formation [4],
as exemplified from three-dimensional structures of c-Cbl [5],
TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) [6]
and cIAP2 (cellular inhibitor of apoptosis 2) [7]. This fold
positions conserved residues required for RING E3 ligases to
engage with their cognate E2∼ubiquitin and promote the transfer
of the cargo ubiquitin to a target protein [8–11]. By contrast,
HECT E3 ligases possess a common bilobal C-terminal HECT
domain, and comprises an N-terminal lobe that retains the binding
site for the E2 enzyme and a smaller C-terminal lobe that contains
a conserved catalytic cysteine residue [12,13]. The HECT E3
ligases play a direct role in substrate ubiquitination by forming
a catalytic intermediate thioester between the C-lobe cysteine
residue and the C-terminus of ubiquitin [14–16]. Advances in our
understanding of RING and HECT structures and mechanisms
have been previously and excellently reviewed [2,3,17–19].

There is also an important group of E3 ligases known as the
RBR (RING-BetweenRING-RING) or TRIAD [two RING fin-
gers and a DRIL (double RING finger linked)] E3 ligases [20]. The
best known of the RBR enzymes are parkin, which has a prominent

Abbreviations: ANKIB1, ankyrin repeat- and IBR domain-containing 1; BRcat, benign-catalytic; CCCP, carbonyl cyanide m-chlorophenylhydrazone;
Cdk5, cyclin-dependent kinase 5; cIAP2, cellular inhibitor of apoptosis 2; CK1, casein kinase 1; CPH, Cul7, Parc and HERC2 proteins; CRL, Cul-
RING-ligase; Cul, cullin; Eps15, epidermal growth factor receptor pathway substrate 15; FANCL, Fanconi anaemia, complementation group L; HDAC,
histone deacetylase; HECT, homologous with E6-associated protein C-terminus; HOIL-1, haem-oxidized IRP2 ubiquitin ligase 1; HOIP, HOIL-1-interacting
protein; IBR, InBetweenRING; LUBAC, linear ubiquitin chain assembly complex; MDM2, murine double minute 2; MIRO, mitochondrial Rho GTPase;
NEDD, neural-precursor-cell-expressed developmentally down-regulated; NEMO, NF-κB essential modulator; NF-κB, nuclear factor κB; NZF, Npl4 ZNF;
Parc, parkin-like cytoplasmic p53-binding protein; PINK1, PTEN-induced putative kinase 1; PKC, protein kinase C; RanBP2, RAN-binding protein 2;
RBR, RING-BetweenRING-RING/RING1-BRcat-Rcat; Rcat, required-for-catalysis; RNF, RING finger protein; RWD, RING finger and WD repeat-containing;
SH3, Src homology 3; SHARPIN, SHANK-associated RH domain interactor; SILAC, stable isotope labelling by amino acids in cell culture; SUMO, small
ubiquitin-related modifier; TOMM70A, translocase of outer mitochondrial membrane 70 homologue A; TRAF6, tumour-necrosis-factor-receptor-associated
factor 6; TRIAD, two RING fingers and a DRIL (double RING finger linked); UBA, ubiquitin-associated; UBE2L, ubiquitin-conjugating enzyme E2L; UIM,
ubiquitin-interacting motif; Ubl, ubiquitin-like; ZNF, zinc finger.
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Figure 1 Proposed pathways for ubiquitination by different E3 ubiquitin ligases

The ubiquitin activating enzyme (E1) activates ubiquitin through an ATP-dependent mechanism to form a thioester bond between the C-terminal carboxyl of ubiquitin and the catalytic cysteine in the
E1. The ubiquitin is then transferred to an ubiquitin conjugating enzyme (E2) via a transthiolation reaction to form a thioester bond between the C-terminus of ubiquitin and the conserved catalytic
cysteine residue of the E2. For the RING E3 ligases, the E2∼ubiquitin complex engages with the RING domain of the E3 which optimally positions the ubiquitin in preparation for its transfer to a
substrate protein. The HECT E3 ligases engage the E2∼ubiquitin complex via their N-terminal lobe and perform another transthiolation reaction to form a thioester bond between the C-terminus of
ubiquitin and the conserved catalytic cysteine residue in the C-terminal lobe of the HECT E3s. This HECT∼ubiquitin intermediate is then poised for the subsequent transfer of ubiquitin to a substrate.
The RBR E3 ligases use a combination of the RING and HECT mechanisms (termed a ‘RING–HECT’ hybrid mechanism [29]). In this mechanism, the RING1 engages with the E2∼ubiquitin complex
in a similar manner to the RING E3s, whereas the Rcat acts in a similar fashion to the C-terminal lobe of the HECT E3s by performing a transthiolation reaction to form a thiolester bond between the
C-terminus of ubiquitin and the catalytic cysteine of the Rcat domain of RBR E3s.

role in the manifestation of early-onset Parkinson’s disease, and
HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized
IRP2 ubiquitin ligase 1), both of which are components of the
multiprotein LUBAC (linear ubiquitin chain assembly complex).
Unlike traditional RING- or HECT-style E3 ligases, all RBR
E3 ligases identified to date are complex multidomain proteins.
Initial sequence alignment methods suggested that two of the RBR
domains contained multiple cysteine residues used to co-ordinate
zinc ions that roughly conformed to the RING E3 ligase consensus
sequence (RING1 and RING2) [20–22]. A third domain that lay
between the proposed RING sequences, and again heavily pop-
ulated by cysteine residues, was identified by multiple sequence
alignment methods and aptly named an IBR (InBetweenRING)
domain [23]. Thus the RBR nomenclature was born.

Initial experiments with several RBR E3 ligases including
parkin and HHARI [also known as ARIH1 (Ariadne RBR E3
ubiquitin protein ligase 1)] were conducted on the basis that the
RBR E3 ligases were in fact unusual E3 ligases that contained
multiple RING domains and facilitated ubiquitination in a
similar manner to the RING E3 enzymes [24–27]. However,
recent advances in our understanding of the structural biology
of RBR ligases, which are the focus of the present review,
render the RING1-BetweenRING-RING2 nomenclature invalid.
First, the ‘RING2’ domain of the RBR ligases does not conform
to the canonical RING E3 structure; secondly, RBRs use an
auto-inhibitory mechanism, first identified for parkin [28], that
modulates ubiquitination activity; and thirdly, RBRs use a hybrid
mechanism, first identified in HHARI [29], that combines aspects
from both RING and HECT E3 ligase function to facilitate the ubi-
quitination reaction (Figure 1). Therefore we propose renaming
the RBR domains while retaining the familiar RBR abbreviation
as follows. The RING2 is not a RING, and possesses a single
catalytic cysteine residue that allows it to accept an ubiquitin
molecule from the E2 enzyme, form a thioester linkage with
ubiquitin and transfer it to a substrate. As this domain is essential

for RBR E3 ligase activity, a more appropriate naming should be
a Rcat (required-for-catalysis) domain. The IBR domain, which
we now know is actually not physically between two separate
RING domains, adopts the same fold as the Rcat domain while
lacking the catalytic cysteine residue and ubiquitination activity.
Therefore this region can be more fittingly called a BRcat (benign-
catalytic) domain. The present review will describe how new
three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 li-
gases have provided new insights into their ubiquitination biology
and at the same time revealed many new unanswered questions.

DOMAIN ARCHITECTURE OF THE RBR E3 UBIQUITIN LIGASES

The overall domain architectures of the 12 RBR E3 ligases found
in humans are illustrated in Figure 2. Intriguingly, to date no
obvious examples of proteins have been identified that contain
an isolated BRcat or Rcat suggesting that this triad of RING1,
BRcat and Rcat domains are always found together in Nature.
Furthermore, the RBR domains are invariably found in a particular
order with the RING1 being sequentially followed by BRcat
then Rcat [20,22], indicative that all three domains, including the
BRcat, are required for RBR-mediated ubiquitination. However,
the mechanism underlying ubiquitination is still unclear. In
general, the RBR namesake of all human proteins is found
near the C-termini of the E3 ligases, except for ANKIB1
(ankyrin repeat- and IBR domain-containing 1) and Dorfin
where the RBR is located near the centre and N-terminus
respectively. Interestingly, most RBR ligases contain a variety of
different protein–protein interaction motifs near their N-termini.
For example, both parkin and HOIL-1 contain N-terminal Ubl
(ubiquitin-like) domains (Figure 2). The Ubl of parkin acts as
an intramolecular auto-inhibitory domain by interacting with the
RBR domain to attenuate ubiquitination [28] and has also been
shown to bind to many other molecules including S5a [also known
as PSMD4 (proteasome 26S subunit, non-ATPase, 4)] [30] and
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Figure 2 Domain architecture of the RBR E3 ubiquitin ligases

Domains found in each RBR E3 ligase are RING1 (orange) BRcat (previously known as IBR; hot pink), and Rcat, (previously known as RING2; warm pink). Other domains listed include the Ubl (light
pink), RING0 (wheat) and Npl4 NZF (wheat), acidic/Gly N-terminal extension (Acidic/Gly or Acidic; dark green), UBA-like (lime green), Ariadne domain (cyan), UIM (olive), ankyrin repeats (dark
grey), docking domain (DOC; teal), Cullin (pale yellow), RWD (dark salmon), PUB (deep blue), ZnF (pale green), helical base (light grey) and Dorfin domain (deep purple). A conserved domain found
in Cul7, Parc, and HERC2 proteins (CPH) is located in the N-terminal extension of Parc (not shown).

Eps15 (epidermal growth factor receptor pathway substrate 15)
[30,31]. Likewise, the Ubl of HOIL-1 acts as a recruitment factor
for HOIP through its N-terminal UBA (ubiquitin-associated)
domain [32] to aid in the formation of the linear ubiquitin
chain assembly complex, LUBAC. Parkin also has a unique
cysteine-rich domain that was termed ‘RING0’ to fall in line
with other domain nomenclature that is located immediately N-
terminal to the RBR domain [33] and acts as a second inhibitory
module by occluding the catalytic cysteine site in the Rcat
domain [34–36]. Extended stretches of acidic residues are found
near the N-termini of HHARI, TRIAD1 and TRIAD3 that were
recently suggested to bind modified CRL [Cul (cullin)-RING-
ligases] and cause RBR activation [37]. Other confirmed protein–
protein interaction domain examples in RBRs include HOIP
which has two NZF [Npl4 ZNF (zinc finger); NZF1 and NZF2)
domains, where NZF1 binds to ubiquitin and NZF2 is required

for SHARPIN (SHANK-associated RH domain interactor) Ubl
recruitment [38], whereas HOIL-1 has one NZF domain that binds
to linear ubiquitin chains with low micromolar affinity [38,39].
Numerous additional protein–protein interaction domains in the
RBRs have been predicted including a PUB (PNGase/UBA-
or UBX-containing domain; for binding to ATPase domain-
containing proteins [40]), two ankyrin repeats in ANKIB1, an N-
terminal RWD (RING finger and WD repeat-containing) domain
in ARA54 [also known as RNF14 (RING finger protein 14)], as
well as a conserved CPH [Cul7, Parc (parkin-like cytoplasmic
p53-binding protein) and HERC2 proteins] domain involved in
p53 binding [41] and a DOC (docking) domain in Parc.

In general, it appears that the C-termini of some of the RBRs are
exclusively involved in auto-inhibitory interactions or controlling
linkage specificity during ubiquitin chain assembly. For example,
HHARI, TRIAD1 and ANKIB1 all contain Ariadne domains
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adjacent to their respective RBR domains that are involved in an
intramolecular auto-inhibition mechanism whereby the Ariadne
domain blocks access to the catalytic cysteine residue in the
Rcat module [42], reminiscent of the mode of action used by
the RING0 domain of parkin [34–36]. Interestingly, HOIP has a
C-terminal extension of its RBR domain called a helical base that
is responsible for the linear ubiquitin chain activity of the LUBAC
[also known as the LDD (linear ubiquitin chain determining
domain)] [43,44]. Furthermore, another unique feature of HOIP is
the presence of two separate ZnF-like domains, with one in each
of the Rcat and helical base domains, that are involved in forming
a ubiquitin-binding platform required for linear ubiquitin chain
building [43]. Finally, Dorfin has a unique namesake ‘Dorfin’
domain immediately C-terminal to its RBR domain [20]. This is
suggestive that the Dorfin domain may be involved in modulating
Dorfin’s activity in a manner analogous to the inhibitory Ariadne
domain in the Ariadne-containing RBRs [42]. Alternatively, it
may possibly be involved in guiding ubiquitin chain linkage
specificity like the helical base of HOIP [43–45].

PROPOSED PROTEIN INTERACTIONS FOR RBR E3 UBIQUITIN
LIGASES

Despite the identification of a large number of substrates,
specifically in the case of parkin, we still know very little
about RBR-mediated substrate recognition, how a substrate is
ubiquitinated by an RBR E3 ligase and/or how the RBRs are
regulated to control their ubiquitination mechanism. Furthermore,
there are now several examples of previously identified RBR
substrates and/or interacting proteins that cannot be reconciled
with the recent structures of parkin and HHARI. A prime example
is UbcH8 [UBE2L6 (ubiquitin-conjugating enzyme E2L 6)] that
was originally shown to interact with the Rcat domain [26,46,47].
However, we now know that the Rcat is not a RING domain and
that it lacks the conserved residues required for E2 recruitment
[48]. Owing to its association with Parkinson’s disease, parkin has
been the most extensively studied of the RBRs and consequently
the literature is biased towards proposed interacting proteins
and substrates of parkin. In contrast, only a few interacting
proteins/substrates have been observed for the other RBRs and
the sites of interaction are not well defined.

Nevertheless, numerous proteins have been observed to interact
with the RBR E3 ligases with some of these shown or predicted
to be substrates for RBR-mediated ubiquitination. To help
consolidate the literature and determine if there are any similarities
between the RBRs and their interaction partners, we have
assembled a comprehensive table of RBR interacting proteins that
have been identified using direct experimental methods (Table 1).
In general the predominant methods used to observe these
interactions have been immunoprecipitation, yeast two-hybrid or
pull-down experiments using N-terminal GST or His6 affinity tags.
Many researchers have also used a variety of truncated proteins
or protein fragments of the RBRs to further pinpoint the specific
regions responsible for the observed interaction. Quantitative
measurements have been sparse and are probably the next step
in elucidating the molecular mechanisms employed by the RBRs
to ubiquitinate their substrates.

RBR interactions with receptors and other membrane-associated
proteins

Currently, the widely held view of parkin’s role in the cell
is to regulate mitochondrial clearance and mitophagy [49,50].
Consistent with this role, identified substrates for parkin include
the transmembrane GTPase mitofusins 1 and 2 [49,51–57],

TOMM70A (translocase of outer mitochondrial membrane 70
homologue A) [58,59] and O-glycosylated α-synuclein [60–62].
Parkin is also a candidate for dopaminergic signalling through
interaction with the GPCR (G-protein-coupled receptor) Pael-R
(parkin-associated endothelin receptor) [46,63] and the dopamine
receptor [64] further underpinning its role in Parkinson’s disease.
The LUBAC, made up of a pair of heterodimeric RBR proteins
HOIP and HOIL-1 along with SHARPIN, is involved in the
innate immune and inflammatory responses [65]. These processes
are controlled by the LUBAC interaction with the tumour
necrosis factor receptor-signalling complex [66] to synthesize
linear ubiquitin chains, which ultimately causes the recruitment
of NEMO (NF-κB essential modulator) to activate the NF-κB
(nuclear factor κB) signalling pathway [65,67].

RBR involvement in DNA repair and RNA processes

There is increasing evidence that the RBR E3 ligases target
DNA–protein complexes upon DNA breakage and DNA packing.
For example, parkin interacts with PCNA (proliferating-cell
nuclear antigen) [68,69] in damaged DNA as well as HDAC6
(histone deacetylase 6) [70] and TDP-43 (TAR DNA-binding
protein 43) [71] involved in DNA packing. Parkin, HHARI and
ARA54 also appear to be involved in transcription and translation.
Interestingly, the transcription factor SIM2 (single-minded family
bHLH transcription factor 2) can be ubiquitinated by parkin and
HHARI [72]; however, the molecular basis for this processing by
these RBR proteins is not known. Given the lack of conservation
between parkin and HHARI outside of the RBR domains, is
there a commonality between HHARI and parkin that enables
two distinct RBRs to ubiquitinate the same substrate? Another
example of an RNA-mediated process controlled by an RBR
is ARA54 and its interaction with the transcription regulator
androgen receptor, which is governed by the androgen receptor co-
regulator signature FXXL(F/Y) motif found near the C-terminus
of ARA54 [73,74]. However, the question of how ARA54
and ubiquitin directly regulate the androgen receptor is still
unanswered. Likewise, the transcription factor 4EHP [also known
as EIF4E2 (eukaryotic translation initiation factor 4E family
member 2)], an mRNA cap-binding protein that contributes to the
inhibition of 5′→3′ mRNA tethering [75], can be ubiquitinated
by HHARI [76]. Perhaps the ubiquitination of 4EHP by HHARI
causes an allosteric change or leads to the cellular turnover of
4EHP to allow for efficient protein translation? Future studies
clarifying and expanding on the role of RBRs in DNA repair and
RNA processes are needed.

RBRs interacting with other ubiquitination machinery

There are numerous reports of RBR interactions with other
ubiquitination pathway members. For example, parkin interacts
with SUMO-1 (small ubiquitin-related modifier 1) and this
association appears to modulate the activity of parkin as well
as enhancing the import of parkin into the nucleus [77].
Likewise, parkin associates with and ubiquitinates the SUMO E3
ligase RanBP2 (RAN-binding protein 2) [78]. Parkin-mediated
turnover of RanBP2 directly affects the intracellular levels of
the SUMOylated histone deacetylase HDAC4 [78], an enzyme
involved in DNA packing and transcriptional regulation. Taken
together, these observed parkin interactions with SUMO-1 and
RanBP2 further support a role for parkin in DNA and RNA
processes. Parkin can also interact with 26S proteasomal subunits
through its Ubl domain [30,79–82] and 20S proteasomal
subunits through its BRcat and Rcat domains [83], suggesting
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Table 1 Observed protein–protein interactions with RBR E3 ubiquitin ligases

Detection methods: 2H, yeast or mammalian-two hybrid; AUbA, autoubiquitination assay; CE, co-elution during chromatography purification; FRET, FRET in vivo; IF, immunofluorescence;
IP, immunoprecipitation; ITC, isothermal calorimetry; LCMS, liquid chromatographyMS/MS; NMR, nuclear magnetic resonance; PD, pulldown using GST, His or MBP tag; Phos, in vitro
phosphorylation; SPR, surface plasmon resonance; UbA, ubiquitination assay; UbSu, ubiquitin suicide inhibitor; X-ray, X-ray crystallography.

RBR E3 ligase Interacting protein Detection method(s) RBR-interaction site Reference(s)

Parkin UbcH7 (UBE2L3) IP, 2H, AUbA, UbA, SPR RING1 [24,25,29,46,47,51,60,78,80,82,
91–94,127,132,137–144]

UbcH5c (UBE2D3)/Ubc7 (UBE2G1)/UbcH6 (UBE2E1) IP, UbA [93,140,144,145]
UbcH8 (UBE2L6)/UbcH13 (UBE2N) IP, PD, UbA Rcat [24,26,47,61]
Ubiquitin-conjugating enzyme Variant 1a (Uev1a) PD RING1 [61]
14-3-3η IP, PD, UbA RING0 [143]
20S proteasome subunit α4 (PSMA7/XAPC7, subunit α type7) 2H, IP BRcat–Rcat [83]
26S proteasome non-ATPase reg. subunit4 (Rpn10/S5a) UbA, PD, NMR Ubl [30,79–82]
α-Synuclein-interacting protein (Synphylin-1, Sph1) IP, UbA, PD Rcat [94,141,143,145,146]
All 1-fused gene from chromosome 6 (Afadin/AF-6) IP, PD Rcat [147]
Aminoacyl tRNA synthase complex coactivator (p38/JTV-1/AIMP2) IP, PD Ubl, RING1 [82,91,94,146,148–150]
Apoptosis regulator Bcl-2 IP, PD [151]
Bcl-2-associated athanogene 5 (BAG5) IP, PD, UbA [152,153]
Calcium/calmodulin dependent serine kinase (CASK/Lin2) IP, PD, UbA Rcat [92]
Carboxy terminus of Hsp70-interacting protein (CHIP) IP, PD [63]
Casein kinase 1 (CK1) IP, PD, Phos Ser101, Ser378 [95,98]
Catenin β-1 (β-catenin) PD [154]
Chondroitin-polymerizing factor (ChPF/Klokin1) IP, 2H [155]
Cul IP, PD [132]
Cdk5 IP, PD Ser131 [94,95]
Cyclin E IP, PD, UbA [132,142,156]
DJ-1 peptidase IP, PD, UbA [47,145,157,158]
Dopamine transporter (DAT) IP, PD [64]
E3 SUMO-protein ligase RanBP2 IP, 2H, UbA [78]
Endophillin-A1 PD, UbA, NMR Ubl [111]
Eps15 PD, UbA, NMR, ITC Ubl [30,31]
F-box/WD repeat-containing protein 7 (FBX30/SEL-10) IP, PD �Ubl [132]
Heat-shock 70 kDa protein (Hsp70/chaperone protein DnaK) IP �Ubl [63,82,127]
HDAC6 IP, PD RING0, RING1, Rcat [70,71]
Leu-rich PPR motif-containing protein (LRPPRC, LRP130) IP [59]
Leu-rich repeat kinase 2 (LRRK2) IP Rcat [90]
LIM kinase-1 (LIMK1) IP, UbA BRcat–Rcat [91]
Machado–Joseph disease protein 1 (Ataxin-3) IP, UbA, PD, NMR Ubl, BRcat–Rcat [110,127,139,140]
Mitochondrial Rho GTPase (Miro) IP [159,160]
Mitofusin-1 & 2 (MFN1, MFN2) IP, UbA [49,51–57]
Mortalin (HSPA9, GRP75, PBP74) IP [161]
Neuronal DnaJ/Hsp40 chaperone HSJ1a (DNAJB2a) IP [162]
O-glycosylated α-synuclein (αSp22) IP, UbA [60–62]
Parkin-associated endothelin receptor (Pael-R) IP, UbA [46,63]
Parkin co-regulated gene protein (PACRG/Glup) IP [163]
Parkin-interacting substrate (PARIS/ZNF476) IP, PD, UbA RING1, Rcat [144]
Prolierating cell nuclear antigen (PCNA) IP RING1 [68,69]
Protein interacting with C kinase 1 (PICK1/PRKCA BP) IP, PD, UbA Rcat [93]
Protein kinase A (PKA) Phos Ser101, Ser131,

Ser236, Ser378
[98]

Protein kinase C (PKC) Phos Ser296, Ser378 [98]
PINK1 IP, UbA, Phos, PD, LCMS Ser65, Thr175 [49,99–102,145,164–168]
RNF41/NRDP1/FLRF IP, 2H, PD, UbA Ubl [150,169]
Septin4 (ARTS/CDCrel-2)/Septin5 (CDCrel-1/PNUTL1) IP, 2H, PD RBR [26,82,83,138,170]
Small ubiquitin-related modifer-1 (SUMO-1) IP, PD [77]
Synaptotagmin XI (Syt11) 2H, IP, UbA RING1 [171]
TDP-43 IP, PD [71]
Transcription factor single-minded 2 (SIM2) IP BRcat–Rcat [72]
TOMM70A IP, PD [58,59]
Tubulin (α, β & γ ) IP, PD, CE RING0, RING1, Rcat [82,172–174]
Tyrosine protein kinase ABL1 (c-Abl) IP, PD Tyr143 [96,97]

HHARI (Ariadne 1) UbcH7 (UBE2L3) IP, 2H, IF, CE, ITC, PD,
UbA

RING1 [27,29,37,42,114,175]

UbcH8 (UBE2L6) IP Rcat [27]
α-Synuclein IF [176]
α-Synuclein interacting protein (Synphilin-1, Sph1) IF [176]
Cul-1,2,3,4A (NEDD8-dependent) IP, UbSu Acidic/Gly [37]
Transcription factor single-minded (SIM2) IP [72]
Translation initiation factor 4F homologous protein (4EHP) IP, 2H RING1 [76]
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Table 1 Continued

RBR E3 ligase Interacting protein Detection method(s) RBR-interaction site Reference(s)

TRIAD1 (Ariadne-2) UbcH7 (UBE2L3) IP, 2H, PD, PD, UbA RING1 [37,177–179]
UbcH6 (UBE2E1 /UbcH8 (UBE2L6)/UbcH13 (UBE2N) IP, 2H, PD Rcat [177–179]
Cul-5 (NEDD8-dependent) IP, UbA [37]
Growth factor independence 1 & 1B (Gfi1, Gfi1B) IP, 2H, PD Rcat [180]
MDM2 UbA [84]
Nuclear Inhibitor of NF-κB β (IκBβ) IP [181]
p53 IP, PD [182,183]
Promyelocytic leukaemia-retinoic acid receptor α (PML-RARα) IP, IF [179]

Parc (CUL9) UbcH7 (UBE2L3) UbA [131]
Cul-7 IP [88,184]
NEDD8 IP, LCMS Cullin at Lys1881 [88,89]
p53 IP, PD, IF, CE, NMR CPH [41,88,131,185]
Ring box protein-1 (Rbx1) IP [88]

ARA54 (RNF14, HRIHFB2038,
HFB30 and TRIAD2)

UbcH6 (UBE2E1)/UbcH8 (UBE2L6)/UbcH9 (UBE2E3) 2H, AUbA RING1 [186]

Androgen receptor IP, 2H, PD, SPR, FRET,
X-ray

C-term FXXL(F/Y) [73,74,187–194]

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) 2H, M2H, PD [195]
p300/CBP-associated factor 2H [188]
T-cell factors 1 & 4 (TCF1, TCF4) IP, PD [196]

TRIAD3 (RNF216, ZIN) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP [197]
Killer cell Ig-like receptor (KIR) 2DL4 IP, 2H RBR [198]
Receptor interacting serine/threonine-protein kinase-1 (RIP1) IP [103]
TNF receptor-associated factor 3 (TRAF3) IP N-term PXQX(T/S) [199]
Toll/interleukin-1 receptor adaptor protein (TIRAP) IP [103]
Toll-like receptors 3,4,5, and 9 (TLR3,4,5,9) 2H [197]
Virion infectivity factor (Vif) of HIV-1 IP, PD [200]

HOIP (PAUL, RNF31) HOIL-1 IP, PD, CE, UbA, SPR,
X-ray, NMR

UBA (via HOIL-1 Ubl) [32,38,43–45,134,201–203]

Sharpin (Sipl1) IP, CE, UbA NZF2 [38,43,45,133,134,202–205]
UbcH7 (UBE2L3) UbA RING1–BRcat [38,44,45,201,206]
UbcH5A (UBE2D1)/UbcH5B (UBE2D2)/UbcH5C (UBE2D3) UbA RING1–BRcat [39,43–45,65,85,105,134,201]
E2-25K (UBE2K) UbA [201]
NEMO IP, PD, UbA [39,65,67,133,134,205–207]
B-cell surface antigen CD40 (CD40) IP [207]
Muscle-Specific receptor tyrosine Kinase (MuSK) 2H [104]
Nucleotide-binding oligomerization domain protein 2 (NOD2) IP [208,209]
OTU domain deubiquitinase with linear link specificity (Gumby) IP [87]
Polyubiquitin chains (Lys63>linear>Lys48) IP, PD, ITC NZF1 [38,66,210]
Tumour necrosis factor receptor 1 signalling complex (TNF-RSC) IP [66,85,211]

HOIL-1 cIAP1/2 IP [66]
Nucleotide-binding oligomerization domain protein 2 (NOD2) IP [208,209]
Polyubiquitin chains (linear>Lys63) PD, SPR, X-ray, ITC Ubl, NZF [38,39,66,210]
Protein kinase C (PKC) 2H, UbA Ubl [105]
Retinoic acid-inducible gene 1 protein (RIG-1) PD NZF [85]
Suppressor of cytokine signalling 6 (SOCS-6) IP, 2H Ubl [212]
Tumour necrosis factor α-induced protein 3 (A20) IP [211]
Tumour receptor-associated factor 2 (TRAF2) IP [66]

RNF144A UbcH7 (UBE2L3) 2H [213]
RNF144B (p53RFP/IBRDC2/PIR2) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP RBR [214]

Bcl-2 associated protein X (BAX) IP [215]
CDK-interacting protein 1 (p21WAF1) IP [216]
Leukaemic nucleophosmin protein (NPMc) IP [217]
p53, p63, p73 IP [216,218–220]

Dorfin (RNF19) UbcH7 (UBE2L3)/UbcH8 (UBE2L6) IP RBR [221]
α-Synuclein interacting protein (Synphillin-1, Sph1) IP, UbA [222]
Calcium-sensing receptor IP, 2H C-terminal extension [223]
Cu/Zn SOD1 (ALS mutants; G37R/H46R/G85R/G93A) IP, UbA C-terminal extension [224–228]
Ubiquitinated-substrates (not defined) IP RBR and C-terminal

extension
[221]

Valosin-containing protein (p97/Cdc48 homologue) IP, IF, LCMS [223,226]
Vimentin IF [221]

different modes of interaction and/or recruitment can occur
between the RBRs and the proteasome. TRIAD1 is another
example, as it can interact with the E3 ligase MDM2 (murine
double minute 2); however, in this instance, TRIAD1 is actually a
substrate of MDM2 [84]. A suggested reason for TRIAD1 being

ubiquitinated by MDM2 is to control p53 apoptosis signalling
through balancing TRIAD1-dependent activation of p53 and
MDM2-mediated destabilization of p53 [84]. HOIP has also been
shown to interact with the ISG15 (interferon-induced 15 kDa
protein) E3 ligase TRIM25 (tripartite motif-containing 25) [85],
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an enzyme implicated in the innate immune response against
viral infection [86], and Gumby, a linear deubiquitinase involved
in modulating the Wnt signalling pathway [87]. Clearly, the RBR
E3 ligases are proposed to regulate, or be regulated, by other
ubiquitination pathway proteins involved in a multitude of cellular
processes.

Another interesting and recent development is the observation
that HHARI and TRIAD1 can interact with CRLs in a
NEDD8 (neural-precursor-cell-expressed developmentally down-
regulated 8)-dependent manner [37]. The RBR E3 enzyme Parc
(also known as Cul9) also contains a Cul7-like domain that can
bind to the typical CRL partners including Rbx1 (RING-box 1,
E3 ubiquitin protein ligase) and NEDD8 [88,89]. Parc appears
to have originated from a gene fusion event between an RBR
Ariadne gene and Cul7 gene [20,22].

RBR regulation by kinases

Parkin, TRIAD3, HOIP and HOIL-1 are the only RBRs to date
that have been proposed as potential targets of protein kinases.
For example, parkin can be phosphorylated by numerous kinases
including LRRK2 (leucine-rich repeat kinase 2) [90], LIM kinase-
1 [91], CASK (Ca2 + /calmodulin-activated serine kinase) [92],
PICK1 (protein interacting with PRKCA 1) [93], Cdk5 (cyclin-
dependent kinase 5) [94,95], c-Abl (tyrosine protein kinase
ABL1) [96,97], CK1 (casein kinase 1) [95,98], PKA (protein
kinase A) [98], PKC (protein kinase C) [98], and PINK1 (PTEN-
induced putative kinase 1) [99], with each having preferential
phosphorylation sites in the Ubl, RING0, RING1 and BRcat
domains. With the exception of PINK1, where phosphorylation
of Ser65 in the Ubl causes an increase in parkin activity [100–
102], the aforementioned kinases generally appear to attenuate
the activity of parkin, possibly though protein aggregation as
demonstrated with Cdk5 and CK1 [95]; however, the molecular
basis of this activity loss is still unclear. In the case of TRIAD3 and
the LUBAC, the kinases identified {RIP-1 (receptor-interacting
serine/threonine-protein kinase-1) for TRIAD3 [103], MuSK
(muscle, skeletal, receptor tyrosine kinase) for HOIP [104]
and PKC for HOIL-1 [105]} have only been observed by
immunoprecipitation and yeast-two hybrid experiments, and, to
date, the sites of phosphorylation have not been identified and their
downstream effects are still unknown. Does the phosphorylation
of other RBRs also cause the loss of RBR ubiquitination activity
due to aggregation? Future studies will hopefully further clarify
the role of kinases in RBR regulation.

In search of RBR substrates using MS

Recent MS studies have reported numerous parkin-binding
proteins and substrates [59,106,107]. In one of these studies, MS
in combination with SILAC (stable isotope labelling by amino
acids in cell culture) and mitochondrial depolarization with CCCP
(carbonyl cyanide m-chlorophenylhydrazone) was used to induce
parkin recruitment to the mitochondria. As a result, ∼90 different
proteins with modified concentration levels were identified [106].
These included increased concentrations of proteins related to
autophagy and the ubiquitin proteasome system, as well as de-
creased concentrations of outer mitochondrial membrane proteins
of known parkin substrates involved in mitophagy including
mitofusins 1 and 2, TOMM70A, and MIRO1 (mitochondrial
Rho GTPase 1) and MIRO2 [106]. Remarkably, another study
used SILAC in combination with quantitative diGly capture
proteomics to identify parkin-dependent ubiquitination targets
and astoundingly found ∼4800 non-redundant ubiquitination

sites in ∼1700 proteins [107]. Surprisingly, this observation
is orders of magnitude greater in terms of potential parkin
substrates and ubiquitination sites than the previous 15 years
of research combined. These researchers also found that parkin
predominantly associated with the proteasome and mitochondrial
proteins in response to CCCP-induced depolarization. Finally,
another group identified 203 possible parkin-binding proteins
using TAP (tandem affinity purification) interaction screens
with MS and confirmed two of their hits [LRPPRC (leucine-
rich pentatricopeptide repeat-containing) and TOMM70A] by
immunoprecipitation [59]. Taken together, there are some
commonalities that can be drawn from these studies that further
support the role of parkin in mitochondrial mitophagy. For
example, numerous proteins involved in mitochondrial clearance
including mitofusin 1/2, MIRO1/2, mitochondrial fission 1 protein
[106,107] and TOMM70A [59,106,107] are all identified as
parkin interactors/substrates. What is perplexing is how similar
methods can come up with such large differences in the number of
possible substrates for parkin; however, these exciting results do
provide a possible roadmap for further investigations into parkin
and its interacting partners in the cell.

With the advent of high-throughput MS studies to identify
protein–protein interactions and their interaction networks, it will
be important to verify these parkin interactors and substrates by
other methods as well to increase the confidence that the screens
are reliable and reproducible under different conditions. This also
raises an interesting question: would a similar strategy using MS
be appropriate to identify interacting partners and/or substrates
for the other RBR E3 ligases?

NEW STRUCTURES OF RBR E3 LIGASES

A wealth of three-dimensional structural information now exists
for the RBR E3 ligases including multidomain and individual
domain structures determined from X-ray crystallographic or
NMR spectroscopic data. Multidomain structures include the
RBR regions from parkin [34–36] and HHARI [42], and the C-
terminal region from HOIP [43] (Figure 3). These structures have
allowed for the juxtaposition of different regions to be assessed
in terms of E3 ligase activity and have uncovered unique regions
of each protein that alter catalysis (i.e. RING0 of parkin, Ariadne
of HHARI and helical base of HOIP). In addition individual
structures of many of the domains depicted in Figure 2 have
been determined including the Ubl (parkin and HHARI), PUB
(HOIP), UBA or UBA-like (HHARI and HOIP), NZF or NZF-like
(HOIL-1 and parkin), RING1 (parkin, HHARI and RNF144A),
BRcat (parkin, HHARI and HOIP), and Rcat (parkin, HHARI and
HOIP) domains (Figure 3). Furthermore, the structure of the RWD
domain present in ARA54 is expected to be similar in structure to
that determined in other E3 ligases such as FANCL (Fanconi an-
aemia, complementation group L) [108] and RNF25 (PDB codes
2DAY and 2DMF). As described in the Introduction section, the
structures of some RBR domains did not conform to expectations
and, therefore, have provided new insights into their functions.

Although some of the domains are particular to an individual
RBR protein, such as the PUB and RWD domains found in
HOIP and ARA54 respectively, in general most of the domain
structures are found in multiple RBR E3 ligases. Both parkin and
HOIL-1 have an N-terminal Ubl domain and represent one of the
earliest structures determined for the RBR ligases [79,109]. This
domain shows the typical β-grasp fold for ubiquitin-type proteins
and is expected to act as a protein-recruiting module. Multiple
observations have shown the Ubl domain is able to interact with
small motifs [UIMs (ubiquitin-interacting motifs), UBA domains

c© The Authors Journal compilation c© 2014 Biochemical Society© 2014 The Author(s)

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/)
which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.



428 D. E. Spratt, H. Walden and G. S. Shaw

Figure 3 Catalogue of three-dimensional structures for RBR E3 ubiquitin ligases

The upper panels show cartoon representations of multi-domain structures for (A) RING0–RBR from human parkin (PDB code 4I1F [35]; also PDB code 4K7D [34] and PDB code 4BM9 [36]), (B)
human HHARI (PDB code 4KBL [42]) and (C) C-terminus of human HOIP (PDB code 4LJP [43]). The lower panels (D–L) show cartoon diagrams of three-dimensional structures of the individual
domains for (D) Ubl domains from parkin (PDB code 2ZEQ [136]) and HOIL-1 (PDB code 2LGY [81]), (E) PUB domain from HOIP (PDB code 4JUY), (F) UBA-like domains from HHARI (PDB code
4KBL [42]) and HOIP (PDB code 4DBG [32]), (G) RWD from the E3 ligase FANCL (PDB code 3K1L [108]), (H) NZF and double NZF-like domains from HOIL-1 (PDB code 3B0A [39]) and parkin
(PDB code 4I1F [35]), (I) RING1 domains from parkin (PDB code 4I1F [35]), HHARI (PDB code 4KBL [42]) and RNF144A (PDB code 1WIM), (J) BRcat domains from parkin (PDB code 4I1F [35]
and PDB 2JMO [116]), HHARI (PDB code 4KBL [42]) and HOIP (PDB code 2CT7), (K) Ariadne domain from HHARI (PDB code 4KBL [42]), and (L) Rcat domains from parkin (PDB code 4I1F
[35] and PDB code 2LWR [48]), HHARI (PDB code 4KBL [42] and PDB 2M9Y [117]) and HOIP (PDB code 4LJP [43]). The colour scheme for each individual domain and multidomain structures are
as shown in Figure 2. Representative secondary structures are also labelled.
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and SH3 (Src homology 3) domains] with moderate affinity (10–
400 μM). For example, parkin is able to interact with the UIM
regions in the S5a proteasomal subunit [30,80], Eps15 [30,31] and
ataxin-3 [110] as well as the SH3 domain of endophilin A1 [111].
Furthermore, the Ubl domain from parkin regulates E3 ligase
activity in an auto-inhibitory fashion through interaction with its
C-terminal RBR regions [28]. Structures and interaction studies
show parkin utilizes the Ile44 face located on β3 to interact with
all partners to date [30,110,111]. Interestingly, the HOIL-1 Ubl
possesses an insertion between β1–β2 that is expected to lend
specificity to this module [81]. This region and the C-terminus
of helix α1 are used to form a surface on the opposite side from
the Ile44 patch to recruit the UBA domain of HOIP, a requisite
for linear polyubiquitin chain formation [32,81]. Although HOIP
is also auto-inhibited for ubiquitination, these differences in Ubl
structure and modes of interaction indicate its auto-inhibitory
mechanism is not understood.

A common feature of the RBR E3 ligases is the presence
of regions (UBA, NZF and ZnF domains) important for the
recruitment of ubiquitin or polyubiquitin chains. Structures of
the UBA domains from HHARI [42] and HOIP [32] appear
very similar (RMSD = 2.5 Å) yet neither appears to participate
in interactions consistent with typical UBA domains (i.e. Dsk1
and PLIC [112]). For example, the HOIP UBA domain possesses
a conserved ‘GF sequence’ between helices α1 and α2 yet uses
an ‘extra’ α-helix to recruit the HOIL-1 Ubl domain [32]. Parkin,
HOIP and HOIL-1 all have Zn2 + -binding domains (NZF and
ZnF) on the N-terminal side of the RBR module. HOIL-1 has
been shown to have specificity for linear di-ubiquitin binding
(Kd ∼17 μM), whereby the distal ubiquitin interacts primarily
with side chains from the NZF domain whereas the proximal
ubiquitin utilizes an α-helix that lies C-terminal to the NZF
domain [39]. The structure of the NZF from HOIL-1 reveals this
domain co-ordinates a single Zn2 + ion via Cys4 co-ordination
groups and has conserved tryptophan and asparagine residues
that help maintain the protein fold as previously observed in the
RanBP2 and Npl4 NZF domains [39]. The HOIL-1 NZF domain
also follows the consensus sequence X4WXCX2CX3NX6CX2CX5

closely [113], as do the two NZF domains from HOIP, so these
would be expected to have similar structures. On the basis of
structural similarity with HOIL-1, it is not surprising that HOIP
NZFs can also interact with ubiquitin [38], although the structural
basis for this HOIP–ubiquitin interaction has not been shown
yet. Originally missed in sequence comparisons, the discovery of
the RING0 domain in parkin from limited proteolysis and MS
experiments showed this protein also contained an additional
Zn2 + -binding domain [33]. It was recognized that the parkin
RING0 domain would co-ordinate two Zn2 + ions in a linear
fashion and that the N-terminal portion of RING0 retained some
sequence similarity to the NZF domain in HOIL-1 [33]. Upon
closer inspection (Figure 3H), it appears that that the second
Zn2 + -binding region in RING0 adopts a similar fold as the HOIL-
1 NZF domain (RMSD = 1.7 Å) using valine/glutamine residues
in place of tryptophan/asparagine in the consensus and having a
two-residue insertion within the second zinc-co-ordinating pair of
cysteines. Furthermore, even though the first Zn2 + site in parkin is
non-contiguous, the arrangement of the metal ion-co-ordinating
residues also fits the NZF fold for HOIL-1 (RMSD = 1.7 Å),
although this site uses Cys3His co-ordination in parkin. On the
basis of this structural comparison, it appears as though the RING0
domain has an unusual double NZF-like fold. With these insights
it is perhaps not surprising that this double NZF-like structure
has been shown to interact with ubiquitin using peptide array
experiments [28]. However, the biological consequences of this
interaction and those for HOIL-1 require further investigation.

Figure 4 Comparison of RING domain structures for RBR and canonical
RING E3 ubiquitin ligases

(A) The structures of the RING1 domain from parkin (PDB code 4I1F [35]; orange) is
superimposed with the RING domain from c-Cbl (PDB code 1FBV [5]; grey). The superposition
was done using the Cα positions of the eight Zn2 + -co-ordinating residues in each protein.
The two regions (L1 and L2) in each protein and residues in parkin expected to be key for E2
interaction are indicated. (B) Sequence comparison for the RING1 domains of the RBR proteins
parkin, HHARI and HOIP with representative RING E3 ligases c-Cbl, TRAF6 and cIAP2 showing
important residues for E2 recruitment in L1 and L2 loops (red dot).

Based on the RING–HECT hybrid mechanism, the RING1
domain of RBR proteins is expected to be the E2-recruiting
module [29]. Indeed several studies show that deletion or mutation
of RING1 in parkin [26] and HHARI [114] leads to either
decreased ubiquitination or interaction with the E2 enzyme
UbcH7 (UBE2L3). These observations are consistent with
structures of the RING1 domains from parkin [34–36], HHARI
[42] and RNF144A which all show similar folds (RMSD = 0.54–
1.2 Å). Furthermore, the RING1 domains all adopt cross-brace
Zn2 + ion co-ordination for two sites typical of other RING E3
ligase proteins such as TRAF6 [6] and c-Cbl [5] (Figure 4). There
are some differences however between the RING1 domains in
some of the RBR proteins that suggest E2 recruitment is perhaps
not as straight-forward as in the canonical RING E3 ligases. For
example, both parkin and HHARI have one or two extra residues
within the L2 loop, a region shown to be important for interactions
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Figure 5 Similarity of catalytic sites for parkin and NEDD4

(A) The interface between the Rcat (pink ribbon) and RING0 (wheat surface) domains for parkin are shown highlighting important residues near the catalytic site. The three residues (Cys431, His433

and Glu444) important for ubiquitin transfer are shown in addition to several residues found at the Rcat (Trp462 and Phe463), RING0 (Lys162, Trp183, Pro180 and Val186) interface (PDB code 4I1F [35]).
(B) A portion of the interface between the N-lobe (grey surface) and the catalytic region of the C-lobe (green ribbon) in NEDD4 is shown (PDB code 4BBN [122]). The catalytic cysteine (Cys867)
resides between two β-strands similar to the position in parkin and HHARI. Two other residues important for catalysis (His865 and Asp900) are arranged in a mirror fashion compared to the Rcat
domain in parkin and HHARI although Asp900 is not visible in the X-ray structure. In both structures the two β-strands were superimposed to achieve similar protein orientations.

with E2 enzymes [17]. Furthermore, parkin contains a threonine
residue rather than the traditional isoleucine/valine residue in L1
and lacks the highly conserved proline in L2 of the canonical
RING E3 ligases [17]. It remains to be seen how these differences
affect ubiquitination activity.

A low resolution structure (6.5 Å) of the C-terminus of parkin in
complex with the Ubl domain has been modelled that shows that
the Ubl domain interacts at a site near the L1/L2 region of RING1
[34]. Furthermore, structures of parkin also show the tether region
(Figure 3A, shown in yellow) sits between these two loops and
may interfere with E2 recruitment [34–36]. Perhaps as a result
of this tether interaction with RING1, NMR studies showed poor
affinity for parkin with UbcH7 that could be partly enhanced using
mutations in the tether to disrupt its association with RING1 [34].
In contrast, direct binding experiments using surface plasmon
resonance show much tighter binding of UbcH7 to both full-length
parkin and parkin lacking the Ubl domain (Kd ∼4–7 μM) [115].
It is interesting that despite very similar overall folds between the
parkin and HHARI RING1 domains, HHARI shows affinity for
UbcH7 between 200 and 500 nM using isothermal calorimetry
[42], nearly an order of magnitude tighter than parkin.

The structure of the parkin BRcat domain shows a novel fold
compared with other zinc-binding motifs where one Zn2 + ion is
sandwiched between two pairs of β-strands and the second Zn2 +

ion forms a gag-knuckle-type fold [116]. This linear zinc-binding
arrangement is also found in HHARI [42] and HOIP (PDB code
2CT7). Although comparison of BRcat structures from multiple
crystal and NMR structures provides a 0.8–2.0 Å RMSD between
structures, the BRcat appears to be the most plastic of the three
domains. In particular the β3–β4 loop appears to adopt multiple
conformations in the NMR structure [116] and was poorly
resolved in two of the three parkin crystal structures [35,36].
In HHARI and HOIP, this loop is 5–6 residues shorter, lacking
several glycine residues found in parkin. Although first predicted
to be a conduit between the RING1 and Rcat domains [116],
the structures of parkin and HHARI show the BRcat occupies
very different spatial locations in these two proteins - isolated
in parkin and more central in HHARI (Figure 3). Thus although
the conservation of the BRcat domain suggests it is more than a
linker, the exact function of the BRcat domain remains a mystery.

Thought to form a canonical RING domain for many years,
structures of the Rcat domain in parkin [34–36,48], HHARI
[42,117] and HOIP [43] show that it adopts the same fold
as the BRcat domain, an observation that was not originally
predicted from sequence analyses. A significant difference is
the presence of a conserved cysteine residue (Cys431 in parkin,
Cys359 in HHARI and Cys885 in HOIP) in the Rcat domain
that is required for ubiquitin transfer from the E2∼ubiquitin
conjugate to a substrate [29,35,44,45,48]. The Rcat domains
show good agreement between multiple structures of parkin
(RMSD = 0.9–1.3 Å) and between different proteins (parkin–
HHARI, RMSD = 0.9 Å; parkin–HOIP, RMSD = 1.6 Å). In the
parkin, HHARI and HOIP structures, the catalytic cysteine is
buried against the RING0 [34–36], Ariadne [42] and helical base
[43] domains respectively, rendering the E3 ligases inactive. In all
three cases hydrophobic residues at the extreme C-termini of the
Rcat domains (Trp462 and Phe463 in parkin, Val374, Arg391 and Tyr392

in HHARI, and Met886 and Tyr902 in HOIP) mediate this interaction
(Figure 5). It is interesting that NMR structures of the isolated Rcat
domains from parkin [48] and HHARI [117] show some deviation
in the position of this C-terminal region compared with the X-ray
structures. Since it is expected that the Rcat interaction with the
RING0 or Ariadne domains must be relieved in order to activate
the E3 ligase, it is tempting to speculate that the position of the
C-terminal helix and adjoining regions in the activated E3 ligase
might take on the appearance of the position observed in the NMR
structures of parkin and HHARI Rcat domains [48,117].

All structures show evidence of a catalytic triad comprising
Cys431, His433 and Glu444 in parkin [34–36,48], Cys359, His361

and Glu370 in HHARI [42, 117] and Cys885, His887 and Gln895

in HOIP [43]. In vitro experiments show that ubiquitin can be
conjugated to the catalytic cysteine or the serine analogue and
that substitution of any one of these residues renders the E3 ligase
inactive [29,34–36,42,44,45,48], although cellular experiments
show that Glu444 in parkin seems less important [35]. This would
indicate that these residues are required for the loading and
unloading of ubiquitin during a catalytic cycle. One proposal is
that the histidine imidazole ring is polarized by the glutamate
acidic side chain allowing the thiol group of the cysteine to
become more nucleophilic towards the thioester linkage of the
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Figure 6 Evidence for flexibility in the RBR E3 ubiquitin ligases

(A) The three-dimensional structures of parkin (PDB code 4I1F [35]) and HHARI (PDB code 4KBL [42]) are shown following superposition of their RING1 domains. This presentation shows the Rcat
domains for the two proteins are found at opposite ends of the respective structures with respect to the location of the RING1 domain with large distances between the RING1 and Rcat domains (∼32
Å in parkin and ∼67 Å in HHARI) that must somehow be bridged for ubiquitin transfer. Regions not modelled in the parkin structure, probably due to flexibility, are indicated by broken lines. For
clarity the UBA-like and Ariadne domains from HHARI are not shown. (B) The position of the BRcat domains in parkin and HHARI are shown after superposition of the RING1 domains. The position
of the BRcat domain deviates ∼22 Å between the parkin and HHARI structures due to an approximate 90◦ difference in the tilt of the RING1–BRcat interdomain helix. Only the RING1 domain from
parkin is shown for clarity. The colour schemes used in (A) and (B) are as described previously in Figures 2 and 3.

E2∼ubiquitin donor [35,36]. For HHARI, this appears to have
the largest effect on the unloading of the ubiquitin from the Rcat
catalytic cysteine residue [42]. The structures partly support this
idea whereby the imidazole ring is tipped towards the glutamate
carboxylate and NMR data shows ND1 of His433 in parkin and
His359 in HHARI are deprotonated [48,117], a requirement to
hydrogen bond with the cysteine thiol side chain. Oddly however
the cysteine side chain is pointed opposite to the histidine side
chain (Figure 5) in a misaligned configuration similar to that
observed in deubiquitinase enzymes [118–121]. Furthermore, in
this configuration it is difficult to see how the cysteine side chain
pKa value would be altered to allow for thioester formation with
the incoming ubiquitin protein. This indicates that binding of
either the E2∼ubiquitin, substrate or ubiquitinated substrate may
have a role in the realignment and activation of the catalytic
cysteine residue of the RBR E3 ligases.

The fact that the RBR E3 ligases are able to accept an
ubiquitin from an E2∼ubiquitin conjugate and form a short-
lived Rcat∼ubiquitin thioester prior to ubiquitin transfer to a
substrate [29,35,44,45,48] parallels that for the HECT E3 ligases
[12,13,15,16,122] (Figure 1). Intriguingly a comparison of the
catalytic sites for parkin and HHARI show the arrangements
of their catalytic residues are similar to that observed for
a typical HECT E3 ligase. For example, the catalytic triads
for both the RBR E3 ligase parkin and the HECT E3 ligase
NEDD4 reside on anti-parallel β-strands and the intervening
loop (Figure 5). Furthermore, the arrangement of the catalytic
cysteine and histidine residues in parkin and HHARI appear
to be a mirror image of that observed in NEDD4. The residue
corresponding to Glu444 in parkin (Asp900 in NEDD4) is not
observed in crystallographic data, but is required for catalysis
[122]. Another interesting observation is the close presence of the
N-lobe in NEDD4 to the catalytic site, a similarity to the RING0
domain in parkin (or Ariadne in HHARI).

FLEXIBILITY AND CONFORMATIONAL CHANGES NEEDED FOR
CATALYSIS

Structures of parkin, HHARI and HOIP show that the cysteine
residue (parkin Cys431, HHARI, Cys357 and HOIP Cys885) in

the Rcat domain essential for ubiquitin transfer is buried
against the RING0 [34–36], Ariadne [42] and helical base
[43] domains respectively. Multiple experiments have shown
that truncated forms of parkin lacking the Ubl, RING0,
or RING0–RING1 domains [34], or HHARI lacking the
Ariadne domain [42], support robust ubiquitination. Together
these observations support the initial experiments by Walden
and co-workers [28,123] that showed parkin, and now other
RBR E3 ligases, exist in an auto-inhibited state that must
undergo significant conformational change to relieve interactions
of the Ubl and RING0/Ariadne/helical base domains to
support ubiquitination. A need for conformational change
is also exhibited by the large distances (32 Å in parkin)
between the RING1 domain, where the E2 conjugate enzyme
is predicted to bind, and Rcat domain where the cata-
lytic cysteine resides, that must be traversed to transfer
the ubiquitin cargo in all RBR E3 ligases (Figure 6).

As described the structures of the individual domains within the
RBR regions appear remarkably similar (Figure 3). Yet upon fur-
ther inspection, there are remarkable differences for the proximity
and orientation of RING1, BRcat and Rcat domains between par-
kin and HHARI (Figure 6). This may reflect different mechanisms
of activation used during the ubiquitination cycle. Alternatively,
the structures may provide hints about the innate flexibility within
the RBR domain structure and offer a snapshot of the ensuing
conformational changes required for activation. For example, the
majority of the parkin structures have poor electron density or have
high thermal factors for connecting loop regions including Ser218–
Glu221 (RING0-RING1 linker), Gly355–Lys358 (BRcat), Ala379–
Gln389 and Ala406–Lys412 (BRcat–Rcat tether [34–36]). Further-
more, multiple parkin models from a single crystallographic data
set show an approximate 13–16 Å translation of the BRcat domain
between models [34]. Comparing parkin and HHARI structures
also shows large differences in the positions of the BRcat and
Rcat domain (Figure 6). In parkin, the BRcat and Rcat domains
are separated by approximately 65 Å (centre–centre), whereas
in HHARI these domains are nearly 30 Å closer to each other.
Indeed, it is remarkable that these two RBR proteins show com-
pletely different relationships between the three domains despite
the high similarities between individual like domains. A major
difference here is that the 145-residue Ariadne domain of HHARI
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forms a four-helix bundle that intercalates between the BRcat and
Rcat domains (Figure 3B). In parkin, the RING1, RING1–BRcat
helical linker and a portion of RING0 lie between the BRcat and
Rcat domains, thus pushing the BRcat and Rcat domains further
apart than in HHARI. The tilt of the RING1–BRcat helical linker,
found in both parkin and HHARI, could also account for these
observed orientation differences. In both cases, this helix is bent
near its centre, but is rotated ∼90◦ in HHARI compared with the
parkin structure, giving rise to a different spatial location of the
BRcat domain (22 Å centre–centre) with respect to the RING1 do-
mains in the two proteins (Figure 6). This observation and its effect
on the position of the BRcat domain suggest the RING1–BRcat
helical linker may be a key player in dictating the conformational
changes required for activating the RBR E3 ligases.

ACTIVATION OF RBR E3 LIGASES

It is clear from recent structural and biochemical work on parkin
[28, 34-36], HHARI [37, 42], TRIAD1 [37], and HOIP and HOIL-
1 [44, 45], that the RBRs are auto-inhibited by subtly different
mechanisms. Each RBR must presumably have several binding
partners to achieve their ultimate function of ubiquitinating a
lysine residue on a target substrate. They must have a productive
interaction with an E2 enzyme, and they must also come into
proximity with a substrate. In addition, there is evidence that
parkin [28,124] and HOIP [43,44] both interact non-covalently
with ubiquitin as part of their mechanism. Therefore it is possible
to imagine several modes by which auto-inhibition may be
achieved either through blocking an E2- or substrate-binding
site and/or some auxiliary protein-binding site. Recent advances
partially answer the question of how activation is achieved. In the
case of parkin, there are at least three forms of auto-inhibition:
the Ubl domain in its wild-type form interacts with the rest of
parkin and blocks self-ubiquitination [28,48]; a helical region
in the tether between the BRcat and Rcat domains contains a
tryptophan residue that docks into the proposed E2-binding site on
RING1 [34–36]; and the RING0 domain packs tightly against the
catalytic cysteine residue of the Rcat in at least one conformation
[34–36]. It is not yet understood how either the BRcat–Rcat
tether or RING0 domain will be prised from their binding slots
in parkin to allow for E2 binding and/or release the Rcat catalytic
cysteine residue to form a thioester with ubiquitin. Indeed,
removal of the key tryptophan residue in the BRcat–Rcat tether
activates parkin for auto-ubiquitination, yet the RING0–Rcat
interaction is presumably still intact [34–36]. This suggests that E2
binding to the RING1 domain may induce some conformational
change that influences the RING0–Rcat interaction. Similarly,
a BRcat–Rcat fragment that retains the tryptophan residue,
but has no RING0 or RING1 domain, is also highly active
[125,126]. However, the inhibition achieved by the Ubl domain
is relieved by pathogenic mutations within that domain [28], and
by phosphorylation of Ser65 by the mitophagy-specific kinase,
PINK1 [100–102]. In addition, several parkin-binding partners are
recruited through the Ubl domain, including endophilin A1 [111],
Eps15 [30,31], proteasomal subunits [30,80,127] and ataxin-3
[110,127], suggesting that parkin activation may be achieved via
a target or substrate-binding mechanism. There are also multiple
reported post-translational parkin modifications outside of the Ubl
domain, including S-nitrosylation [128,129] and NEDDylation
[130], which have been reviewed recently [123].

Although parkin may employ an E2-blocking mechanism
for regulation of activity, the same does not seem to be true for
HHARI. In its full-length context, HHARI interacts with UbcH7
with a dissociation constant of 540 nM [42], which is a

significantly higher affinity than typically displayed between E2s
and E3s in the micromolar range [2,3]. Meanwhile, the C-terminal
Ariadne domain, unique to the HHARI/TRIAD proteins [20],
sits in between the BRcat and Rcat domains blocking access
to the catalytic cysteine in the Rcat and lowers the activity
in full-length HHARI [42]. Removal of the Ariadne domain is
sufficient to release HHARI activity, and addition of the Ariadne
domain in trans restores inhibition [42]. How this domain is
released in a cellular environment is as yet unclear. However,
a recent study found that both HHARI and TRIAD1, both of
which contain an Ariadne domain, are activated by interaction
with the NEDDylated forms of the CRLs [37]. This interaction
may provide the means in cells to activate Ariadne RBR E3
ligases. Interestingly, there is also a cullin homology domain in
the RBR ligase Parc [131], and evidence to suggest parkin forms
a complex with CRLs [132]. Thus there is potential for an as-yet-
unappreciated general role for cullins in RBR ligase activation.

Unlike the other RBRs, the LUBAC uses a different mechanism
of auto-inhibition; however, the molecular basis of this auto-
inhibition is presently unclear and probably more complex.
LUBAC contains two RBR-containing proteins, HOIP and
HOIL-1 [38,65,133,134]. As with the other RBR ligases, the
RBR and helical base domain, which is unique to HOIP, are
sufficient to recapitulate HOIP activity [43–45]. However, full-
length HOIP is inactive [44,45] and, although removal of the
N-terminal 700 amino acids releases HOIP activity [44], it is
not yet clear what intramolecular arrangements are involved in
the auto-inhibition of HOIP. Nevertheless, in vivo data show
that HOIP activity is released through its interaction with the
other components of LUBAC, namely SHARPIN and HOIL-1
[38,133,134]. Interestingly, a recent study suggests that parkin
can team up with the LUBAC to enhance linear ubiquitination of
NEMO that is dependent on both parkin’s Ubl domain and its RBR
ligase activity [135]. Clearly, further structural and biochemical
details of the entire LUBAC are needed to better understand its
modes of regulation.

Differences in modes of RBR ligase auto-inhibition will
probably be reflected by differences in modes of RBR activation.
Understanding how these RBRs are activated, on a molecular
level, is a major challenge in our present understanding of their
function(s) and activity.
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