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Abstract

RNA-binding proteins (RBPSs) play a crucial role in cellular physiology by regulating RNA
processing, translation, and turnover. In neoplasms, RBP support of cancer-relevant expression of
alternatively spliced, modified, and stabilized mRNA transcripts is essential to self-renewal,
proliferation, and adaptation to stress. In this review, we assess the impact of key families of RBPs
in leukemogenesis, review progress in targeting those proteins with small molecules, and discuss
how multilevel composition of posttranscriptional regulation of gene expression could be used for
potential therapies in acute and chronic leukemia.

Introduction

Leukemia is a blood cancer characterized by abnormal proliferation of myeloid or lymphoid
progenitors in the bone marrow and their compromised ability to produce fully functional
blood cells. Despite the relatively high effectiveness of current conventional and targeted
therapeutics, anti-leukemia drugs are facing a number of challenges related to rapidly
acquired resistance and intolerable toxicity - critical treatment factors for elderly and
physically fragile patients. Mortalities associated with refractory and relapse leukemia
indicate a need to optimize risk group stratification and the development of new remedies
capable of overcoming resistance to therapeutics.

While alterations in protein-coding genes are considered a driving force of cancer, multiple
posttranscriptional events occurring between RNA synthesis and protein production are in
control of gene expression and influence cell fate. RNA processing, transport, and
translation are orchestrated by various cis- and frans-acting regulatory elements. Cis-acting
RNA regulatory elements are the internal RNA motifs recognized by the external frans-
acting factors, such as non-coding RNAs and RNA-binding proteins (RBPS).
Ribonucleoprotein (RNP) complexes are formed when RNA binds at conventional RBP
RNA-binding domains, or through unconventional RNA-protein interactions!. Of the 1,914
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RBPs comprising Homo sapiens’ RNA interactome, relatively few have been associated with
aberrant development and cancer.

This review provides a snapshot of key families of RBPs involved in leukemogenesis,
focusing on their role in messenger RNA (mMRNA) fate. We begin with RNA editing and
modifying enzymes conferring changes in RNA c/s-acting elements. We then discuss the
roles of other essential frans-acting factors, such as RNA splicing, export, and translation
regulators, as well as several oncofetal RBPs. Last, we look at the current progress and
challenges in targeting these proteins with small molecules and discuss their possible
applications in leukemia treatment.

RNA editing enzymes

ADARL1

RNA edits are discrete changes in RNA nucleotide sequences introduced after transcription.
Hydrolytic deamination of adenine to inosine residues (so-called A-to-1 editing) is one of the
most prevalent edits on doublestranded mammalian RNA (dsRNA) that is carried out by the
adenosine deaminases acting on RNA (ADAR) family of enzymes. ADARL1 is ubiquitously
expressed and is the most studied protein of the ADAR family. The ADARI gene encodes
for two protein isoforms: the constitutively expressed N-terminally truncated p110 isoform,
and the full length interferon (IFN)-inducible p150 isoform, both of which shuttle between
the nucleus and the cytoplasm?.

One of the adaptive rationales for RNA editing is the ability of eukaryotic cells to
discriminate between “self” and “non-self” RNAs. Endogenous RNA editing occurs in
transcripts from primate-specific Alu repeats, at the highly conserved regions encoding
functional protein domains as well as untranslated coding and non-coding RNAs. Because
editing makes the base pairing in RNA duplexes imperfect, the endogenous dsRNAs that are
long and entirely aligned are not typically found in the cytoplasm of eukaryotic cells. The
perfectly aligned dsRNAs are usually produced during viral replication and trigger pro-
apoptotic and pro-inflammatory responses through the activation of melanoma
differentiation-associated gene 5 (MDAJB), protein kinase R (PKR), and other pathogen-
associated molecular patterns receptors. The ADAR1 enzymes balance the immune
activation and self-tolerance by attenuating MDAS5 and PKR activity3.

ADARI role in innate inflammation and apoptosis appears to be critical for embryonic
development, especially the hematopoietic lineage, as Adar’~ mice die at E11.4-14 from
widespread death of hematopoietic cells in the liver4. Their lethality can be rescued by
deleting of genes encoding dsRNA-sensing, pro-inflammatory proteins e.g. Mda5°. In
addition to embryonic hematopoiesis, ADARL is required for the repopulating capacity of
hematopoietic stem cells (HSC) in adult mice8.

Elevated mRNA and protein levels of ADAR1 were found in pediatric B-cell acute
lymphoblastic leukemia (B-ALL)7, adult acute myeloid leukemia (AML)8, and progressed
to blast crisis chronic myeloid leukemia (BC CML)?, Table 1. Several studies indicate that
ADAR1 maintains proliferation and self-renewal of myeloid leukemia stem/progenitor cells
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in cooperation with WNT/B-catenin signaling. Xiao et al. reported that AML samples have
significantly higher expression levels of ADAR1 compared to complete AML remission and
non-malignant myeloid blood disorders®. ADARI knockdown led to decreased expression of
WNT signaling effectors (8-catenin, c-MYC, TCF-4, Cyclin D2) and suppressed AML
proliferation8.

ADAR1’s p150 isoform was upregulated in BC CML compared to chronic phase (CP) CML
and normal cord blood progenitors®. Forced expression of the p150 ADAR1 isoform in CP
CML cells increased production of a misspliced form of GSK3 gimplicated in leukemia
stem cell (LSC) self-renewal, while ADAR1 knockdown impaired self-renewal capacity in
BC CML as examined by serial /7 vivo transplantation®. A comprehensive mechanistic study
of ADARI functions in LSCs demonstrated JAK2- and BCR-ABL I-dependent activation of
ADAR1-mediated RNA editing, which in turn inhibits /et-7-mediated differentiation of
CML blastsl9. Because deregulation of RNA editing is associated with progression and
therapeutic resistance of CML, Catriona Jamieson’s group proposed ADARL as an
important biomarker of CML progression and developed a clinically relevant assay for RNA
editing quantificationl?.

ADAR1-mediated editing influences gene expression by changing both mRNA stability and
mMiRNA expression. Jiang Q et al. showed that A-to-1 editing stabilizes MDMZ2transcript
through modification of m/R-155binding sites within its 3" UTR region and downregulation
of pri-miR-1552, Figure 1 (A, C, 1), Table 1. The biological consequences of non-coding
RNA editing are likely to be cell type- or context-dependent, contingent on the signaling
pathways they target. For example, A-to-1 edits inhibiting biogenesis of the tumor
suppressor miR-26a enhance proliferation of normal blood progenitors, but slow down the
cell cycle transition in BC CML12,

Since a loss of ADARL activity induces cell-intrinsic lethality and the induction of
cytokines, ADARL presents a potentially effective therapeutic target. Gannon et al.
suggested possible approaches to disrupt ADAR1 function in cancer cells through inhibition
of its adenosine deaminase activity or inactivation of non-enzymatic functions specific for
the p150 isoform, such as direct PKR binding®3. In accordance with findings describing the
immunomodulatory functions of ADAR1, Ishizuka et al. proposed a new strategy for
overcoming the resistance to immune checkpoint blockade through ADAR1 inhibition4,
Zipeto et al. demonstrated that the previously described inhibitory tool compound 8-
azaadenosine (8-aza) reduced ADAR1’s A-to-1 editing activity in K562 CML cells0,
Multiple studies defining combinatory approaches for ADARL inhibition, targeting ADAR-
edited transcripts, and immunotherapies suggest a promising future of RNA-editing
therapeutics.

RNA modification enzymes

More than 150 types of RNA modifications, ranging from simple methylation or
isomerization to more complex multistep chemical transformations, occur co- and post-
transcriptionally. Whereas transfer RNA (tRNAs) and ribosomal RNA (rRNA) are the most
abundantly modified RNAs in a cell, mRNA is characterized by several modifications
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including adenosine methylation (AB-methyladenosine (m®A)), which is the most prevalent
modification of eukaryotic messenger and long non-coding RNAs1°.

m®A’s installation, recognition, and removal are facilitated by protein factors called writers,
readers, and erasers, respectively. The main writer is a multicomponent complex that
consists of a catalytic methyltransferase-like 3 (METTL3) subunit, a substrate-recognizing
subunit METTL14, and other cofactors (WTAP, RBM15/15B, VIRMA, HAKAI, and
ZC3H13) that enable adenosine methylation. Another writer installing m®A in RNA
sequences in a structure dependent manner is METTL166. m8A readers (e.g. YTHDCs,
YTHDFs, hnRNPs, IGF2BPs) recognize m8A modifications while conveying transcripts’
processing, stability, and translation. The removal of mA is catalyzed by two erasers: fat
mass and obesity-associated protein (FTO) and AIkB homolog 5 (ALKBH5).

RNA madifications influence gene expression by changing RNA secondary structure and
folding, consequently affecting functional RNA-RNA and RNA-protein interactions. For
example, mBA eraser FTO and nuclear reader YTHDC1 modulate splicing factor activity
and exon inclusionl’. The levels of m6A RNA modifications have a remarkable effect on
cell fate, but this effect is dependent on cellular context!6. In fact, METTL3-METTL14 were
reported as a tumor suppressor or oncogene in glioblastoma, a tumor suppressor in
endometrial cancer, and an oncogene in lung cancer and acute myeloid leukemial8,

METTL3-METTL14 core subunits

Two distinct genetic screens conducted by Barbieri et al. identified METTL3as an essential
gene for AML cell growth. Downregulation of METTL3 resulted in cell cycle arrest,
differentiation of leukemic cells, and failure to establish leukemia in immunodeficient
micel®. In agreement with these data, Vu et al. demonstrated that sShRNA-mediated depletion
of METTL3in human hematopoietic stem/progenitor cells (HSPCs) and AML cell lines
promotes cell differentiation, coupled with reduced cell proliferation and induction of
apoptosis?0. Weng et al. reported that a key component of m6A methyltransferase complex,
METTL14, is highly expressed in both normal HSPCs and AML cells carrying t(11923),
t(15;17), or t(8;21)2Y. METTL 14 depletion promoted terminal myeloid differentiation of
normal HSPCs and AML cells and inhibited AML tumorigenicity. Therefore, both METTL3
and METTL14 are required for AML sustainability.

Single-nucleotide-resolution mapping of m®A combined with ribosome profiling showed
that m8A promotes the translation of c-MYC, BCL2, and PTEN mRNAs in the human AML
MOLM-13 cell line, Table 2. Loss of METTLS3 led to increased levels of phosphorylated
AKT that supported differentiation upon METTL3 depletionZC. Similarly, METTL14 exerts
its oncogenic role by regulating m6A mRNA modifications and mRNA stability of master
regulators of self-renewal and differentiation (e.g., MYBand MYC), whereas its expression
levels are negatively regulated by myeloid transcription factor SPI1121,

In addition to previously described methyltransferase (MTase) dimer, Barbieri et al.
proposed a METTL14-independent mode of METTL3 function through interaction with
chromatin®®. The study showed that CAAT T-box binding protein CEBPZ recruits METTL3
to the promoters of actively transcribed genes, Figure 1 (B). The promoter bound METTL3

Leukemia. Author manuscript; available in PMC 2021 May 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Elcheva and Spiegelman Page 5

induces m8A modification within the coding region of the associated mRNA transcripts
which enhances their translation by relieving ribosome stalling. These observations are
relevant to Huang et al. discovery that Insulin-like growth factor 2 mRNA-binding proteins
(IGF2BPs), known to bind and stabilize coding regions of oncogenic transcripts, are méA
readers?2,

METTL3 catalytic activity in the nucleus has a predominant effect on the fate of
downstream targets. However, METTL3 can also locate in the cytoplasm and promote the
translation of specific mMRNAs as a reader. High cytoplasmic levels of METTLS3 result in an
increase of WTAP protein expression, which might work as a self-regulatory feedback loop
necessary for sustaining MTase levels in myeloid leukemia?3.

WTAP and RBM15 regulatory subunits—Initially considered as a splicing factor,
RNA-binding protein Wilms tumor 1-associated protein (WTAP) has no methyltransferase
activity. As a MTase co-factor, WTAP interacts with METTL3 and METTL14, and is
required for their recruitment into nuclear speckles. In the absence of WTAP, the RNA-
binding capability of METTL3 and m6A levels are strongly reduced, suggesting that WTAP
regulates its recruitment to mRNA targets?4. Around 30% of AML samples, especially those
with FLT3-1TD and NPM1 mutations, show WTAP upregulation, which possesses
oncogenic properties in cooperation with functional METTL323: 25,

RNA-binding motif 15 (RBM15) is a multifunctional RBP with an essential role in
development and normal and malignant hematopoiesis. As a MTase regulatory subunit,
RBM15 binds and recruits the METTL3-METTL14 complex to specific sites of coding and
non-coding RNAs26, Table 2. As a splicing factor, RBM15 regulates pre-mRNA splicing of
key erythro-megakaryocytic regulators (GATA1, RUNXI, TAL1 etc.) by recruiting SF3B1
splicing complex to intronic regions, Table 3. Perturbations in RBM15 expression are
common for infant acute megakaryoblastic leukemia (AMKL), and can potentially be
rescued by inhibiting PRMT1 which determines RBM15 protein methylation and stability2’.

FTO and ALKBH5 mPA erasers

The mOA eraser FTO is upregulated in AML with the mixed lineage leukemia (MLL) gene
rearrangements, PML-RARA, FLT3-TD, and/or NPMI mutations?8. The molecular
analysis of FTO gain-of-function in MLL-rearranged MONOMAC-6 cells identified
significantly up- and downregulated hypomethylated mRNAs. The upregulated
hypomethylated RNA messengers were enriched in stem cell genes (MANOG, SOX2) and
WNT-signaling, while most of the downregulated hypomethylated transcripts belonged to
the interferon signaling and genes of the immune system. Ultimately Li et al. showed that
FTO enhances leukemogenesis and inhibits all-trans-retinoic acid (ATRA)-induced AML
cell differentiation by regulating expression of ASB2and RARA through reducing méA
levels in these MRNAs28, Figure 1 (B), Table 2.

Subsequently, this research group conducted a massive search for FTO inhibitory
compounds, followed by /in vitro mRNA target validation and 7 vivo studies of two highly
effective FTO inhibitors, CS1 and CS22°. Other inhibitors, namely FB23 and FB23-2,
which selectively block FTO m8A demethylase activity, were recently described by Huang
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et al.30 Similar to genetic depletion, FTO pharmacologic targeting dramatically suppressed
proliferation and promoted differentiation of AML cell lines and primary blast cells /n vitro
and in mouse models. Su et al. demonstrated that in addition to self-renewal and cell cycle
control FTO regulates expression of immune checkpoint genes of the L/LRB4 family
overexpressed in AML. Therefore, FTO inhibition suppressed L/LRB4 and sensitized
leukemia cells to T cell cytotoxicity?9. Given recent findings by Mauer et al. that FTO
mediates modifications of small nuclear RNAs (U1, U2, U6 snRNAS) involved in mRNA
splicing3!, FTO inhibitors may have a broad effect on gene expression.

Two independent studies showed that another RNA demethylase, alkB homologue 5 protein
(ALKBHS), is highly expressed in AML32 33 Wang et al. demonstrated that ALKBH5
transcription is activated by H3K9me3 demethylase KDMA4C, and proto-oncogene MY B33,
Shen et al. focused on the role of ALKBH5 in mRNA stability and identification of the
direct mRNA targets by integrative omics studies of RNA-seq, m8A-seq, and ALKBH5-
RNA immunoprecipitant’s sequencing32. Ultimately, both groups illustrated that ALKBH5
selectively supports leukemia stem cell proliferation, metabolism, and self-renewal by
regulating essential factors of cell division and kinase signaling such as TACC3and AXL,
Table 2.

YTHDF2 mSA reader—mBA writers and erasers determine the specifics of cis-acting
RNA regulatory elements that are recognized and functionally interpreted by m8A readers.
Among three cytoplasmic YT521-B homology (YTH) domain family of proteins (Y THDF1,
2, and 3), YTHDF?2 targets m6A labeled mRNAs for degradation. Conversely, Y THDF1 and
3 promote translation. Other YTHD readers include nuclear YTHDC1, which regulates
splicing and targets some mRNASs for nonsense mediated decay, and cytoplasmic YTHDC2
promoting translation.

Paris et al. reported that YTHDF2 levels are significantly increased in cytogenetically
diverse human AML. Importantly from a potential therapeutic standpoint, inactivation of
YTHDF2 in AML selectively Kills LSCs (most likely by modulating essential regulators of
apoptosis) but stimulates expansion of normal HSCs34,

Chemical modulation of mSA RNA methylation—Targeting abnormally
overexpressed regulators of RNA methylation has emerged as a promising therapeutic
strategy. Within the writer complex, RNA-binding subunit METTL3 is a key m6A
methyltransferase containing a targetable S-adenosyl-L-methionine (SAM)-binding pocket.
Several biotechnology companies have begun development of METTLS3 inhibitors with
prospective clinical trials starting in 2021-20223%. mbA erasers FTO and ALKBHS5 belong
to the 2-oxoglutarate and iron-dependent oxygenases respectively, and are sensitive to
certain conventional inhibitors, e.g. 20G competitor succinate and the metal chelator
flavonoid!®. Because FTO negatively regulates ATRA pathway through ASB2and RARA,
FTO inhibitors can potentially supplement ATRA treatments in myeloid leukemia. Solving
crystal structures of these proteins will further aid in the design of selective inhibitors that
have high therapeutic potential. However, the physiological consequences of m6A mRNA
methylation are context-dependent and may have the opposite effect in different tissues.
Another question is why writers and erasers, enzymes with the opposite effects on RNA
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methylation, both have oncogenic properties. It will be important to understand how cancer
cells gain advantage from hundreds of oncogenes and tumor suppressors being
simultaneously methylated or demethylated. Elucidating these mechanisms and biological
consequences of altering RNA modifications will be critical for the successful clinical
implementation of RNA methylation-based therapies.

MRNA splicing
The precursors of eukaryotic mRNA, pre-mRNAs, contain introns that should be excluded
from matured RNA messengers. Intron removal happens through splicing, which is carried
out by the spliceosomes acting at the regulatory splicing sites in nascent pre-mRNA.
Multiple mRNA’s isoforms are usually produced from a single gene by differential exon
usage during alternative splicing (AS). Cancer cells often express differentially spliced or
aberrant cancer-specific isoforms favoring clonal expansion and survival.

The preferential assembly of the anti-apoptotic long isoform of B-cell lymphoma (BCL-2)
gene, and anti-apoptotic short Caspase 9 protein are canonical examples of how acute and
chronic myeloid leukemia cells utilize alternative splicing to acquire chemoresistance36.
Along with the selective expression of physiologically normal variants, around 30% of
differentially expressed transcripts in cancer cells contain products of abnormal splicing.
Those events include atypical usage of exons (cassette exon), intron retention, and a
disruption of functional open reading frames3”. A genome-wide study showed that equal
proportions of oncogenes and tumor suppressors are recurrently mis-spliced in AML38,
However, distinct sets of splicing-related mutations affect expression of tumor suppressors
and oncogenes3®. For instance, intron retention, a widespread splicing alteration across
various cancers, is a common mechanism for tumor suppressor inactivation. Although
most aberrantly spliced transcripts undergo degradation via nonsense mediated decay, and
not all protein products of mis-splicing are equality important for cancer development and
progression, clonal enrichments with cancer-specific variants driving chronic myeloid*! and
lymphoid2 leukemia as well as the acquired resistance to CAR19 therapies in childhood B-
ALL*3 were previously described.

The fidelity of canonical splicing hinges on the structural and functional integrity of
spliceosomal subunits U1, U2, U4, U5, and U6 snRNPs (five SnRNA and around 50
proteins), regulatory RNA sequences in splicing sites flanking introns at 5’-(GT/U) and
(AG)-3’, the intronic branch nucleotide adenine (A), exonic or intronic splicing silencers,
and enhancers.

In 2011, Kenichi Yoshida et al. were among the first who described the importance of
splicing factors (SF) for the pathogenesis of myelodysplasia®*. Recurrent mutations in six
components of the splicing machinery (SF3B1, UZAF1, SRSF2, ZRSR2, SF3A1, and
PRPF40B) were found in about 55% of cases, Figure 1(D), Table 3. Importantly, the
heterozygous mutations occurred in a mutually exclusive manner, indicating that the
functional splicing factors are required for cell survival.

Among more than 150 proteins involved in splicing, 4 factors (SF3B1, U2AF1, SRSF2, and
ZRSR?2) are altered most commonly (comprehensively reviewed by Taylor and Lee*®).
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Splicing Factor 3b Subunit 1 (SF3B1, 155 KDa subunit) gene is the most commonly
mutated splicing factor in human cancer. It encodes the largest of seven subunits of the SF3B
complex, which plays a key role in U2 snRNP positioning to the branchpoint site*®.
Mutations in the SF3B1 gene are present in about 10% to 20% of acute myeloid and
lymphoid leukemia, but are significantly enriched in chronic myeloid malignancies,
especially in refractory anemia with ring sideroblasts (RARS)*®. Displaying up to 80%
frequency for K700E substitution, SF381 mutations are likely to be early genetic events in
RARS and are associated with favorable prognosis. Conversely, SF3B81 mutations are the
subclonal events in chronic lymphoblastic or lymphocytic leukemia (CLL) tumors and
linked to poor clinical outcomes. U2 small nuclear RNA auxiliary factor 1 (U2AF1, 35 kDa
subunit) is also a core component of the spliceosome that, together with its partner U2AF2,
recruits U2 snRNP to the branch site of pre-mRNA. U2AF1 mutations can be found in 10—
15% of patients with non-RARS MDS, chronic myelomonocytic leukemia (CMML), and
secondary AML (s-AML). Serine and Arginine-(R) Rich Splicing Factor 2 (SRSF2), binds
to splicing enhancers and promotes splicing by recruiting a core spliceosome. SRSF2
mutations were found in 50% of CMML cases and in 15-20% of MDS and s-AML cases.
The haploid, presumably loss-of-function mutations in the ZRSR2 gene located at Xp22.1,
are found in 5-10% patients with MDS, and are more common in males*°.

Detailed analysis of SF protein structure showed that the hotspot mutations loosen the
strength of the canonical protein-protein and RNA-protein interactions therefore provoking
catalytic reactions in otherwise atypical regions. For example, mutations in SF3B1 HEAT
domains (HR4-HR7) have a major impact on the formation of the SF3B1 RNA-binding
platform. Changes in SF3B1 tertiary structure lead to selection branchpoint sequences with a
greater complementarity to U2 snRNA, a shift in the spliceosome position, and usage of
cryptic 3’ splicing sites upstream of the canonical site?S.

The analysis of SF381 mutations in primary human CLL revealed dysregulation of multiple
cellular pathways including DNA damage response, telomere maintenance, and Notch
signaling®’. Although mis-splicing alters multiple mRNAs, dysfunction or inactivation of
some factor are critical to disease development. Kim et al. identified a direct connection
between SRSF2 P95 mutation, £EZHZ2 mis-splicing and inactivation, and myelodysplasia
development. Importantly, restoring £2HZ2 expression partially rescued hematopoiesis in
Srsf2 mutant cells?8,

Aberrant splicing can be a feature of leukemic cells without genomic mutations in splicing
factors and is likely a result of mutations in cis- and frans-acting RNA elements or the
upstream regulators of splicing. Pediatric B-cell malignances lacking genomic mutations of
SF display global mRNA mis-splicing, including approximately 100 splicing regulators
when compared to normal B-cells#®. One of the mis-spliced factors, A/RNPAL, plays an
important role in RNA metabolism. The knockdown of hnRNPA1 in B-lymphoblastoid cells
initiated a broad change in hnRNPA1-regulated exon usage and production of atypical splice
variants of cancer drivers including D/CERI and NT5C2*°.

Although a number of /n vitro and in vivo studies failed to demonstrate a uniform capacity
of RBPs to initiate leukemia, three independent genome-wide studies found RBPs
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indispensable for leukemia sustainability. The CRISPR/Cas9-based library designed by
Wang et al. targeted RNA-binding domains of 490 classical RBPs®C. The screen identified a
network of physically interacting RBPs upregulated in AML, and the RNA splicing factor
RBM39 as one of the key factors of AML dependency. RBM39 is required for efficient
splicing of many mRNAs, including the HOXAZtranscriptional targets; therefore, genetic or
chemical inhibition of this splicing factor caused preferential lethality of cells with
spliceosomal mutant AML. The second study by Yamauchi et al. employed a genome-wide
CRISPR-Cas9 screening using AML cell lines followed by a second screen in vivo. The
screening identified MRNA decapping enzyme scavenger (DCPS) as being essential for
AML cell survival, interacting with components of pre-mRNA metabolic pathways
including spliceosomes®?, Figure 1 (E), Table 3. Finally, a genome-wide /7 vivo CRISPR/
Cas9 screen in BCR-ABL/NUP98-HOXAI-driven CML mouse model showed a significant
enrichment with RBPs (~680 genes), suggesting a “disproportionate dependency” on RBPs
in myeloid leukemias. In this study, Bajaj et al. identified dsRNA-binding protein Staufen2
(Stau2) as an essential regulator of chromatin modifiers®2. The gene expression analysis
identified KDM family of H3K4 demethylases being downstream targets of Stau2, Table 6.
The biological effects of genetic and pharmacologic inhibition of KDM1A suggest its
potential therapeutic value in BC CML.

Alternative cleavage and polyadenylation

Given the important functions of 3’UTR in regulating mRNA fate, mMRNAs can be
polyadenylated at alternative sites, which, similar to splicing, results in RNA messengers
harboring 3’UTRs of different size and content. Notably, global 3’UTR shortening and high
expression levels of cleavage and polyadenylation factors, often indicated as alternative
polyadenylation (APA), are common for fast proliferative and cancer cells®3 54,

A significant increase in the cleavage and polyadenylation specificity factor 1 (CPSF1)
expression was found in t(8;21) AML at diagnosis, and was associated with the short 3’UTR
in fusion AML1-ETO transcript. CPSF1 knockdown led to the extension of AMLI-ETO
3’UTR, decreased fusion mRNA expression and suppression of leukemia cell growth®®.
Data analysis of singe cell RNA-seq of 16,843 bone marrow mononuclear cells from healthy
donors and AML patients shows that NF-xB, GATAZ, and /AP-family genes exhibit APA
dynamics specific for altered differentiation and proliferation of leukemic cells®6.

The U1 snRNP is an essential component of a spliceosome. Independently from its role in
splicing, U1 snRNP plays an important role in controlling premature cleavage and
polyadenylation by inhibiting the recognition of proximal and cryptic intronal
polyadenylation sites (termed telescripting)®’. Because the base pairing between UZ snRNA,
a component of U1 snRNP, and pre-mRNA is necessary both for splicing and telescripting,
U1 snRNP deficiencies cause global mis-splicing®8 and 3’UTR shortening®®, Tables 3, 4.
The A>C mutation of U snRNA was found in eight out of 78 (10.3%) cases of CLL and
other types of cancer®8, Figure 1 (D, F), Table 3.

Ubiquitously expressed human antigen R (HUR, or ELAV-like protein 1), nucleolin, and
tristetraprolin protein (TTP) bind to AU-rich elements within 3’UTRs. HuR and nucleolin
stabilize mRNAs and are upregulated in a variety of blood cancers, while TTP function as a

Leukemia. Author manuscript; available in PMC 2021 May 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Elcheva and Spiegelman Page 10

tumor suppressor by triggering mRNA decay. TTP downregulation or loss of function,
reported in several human malignances including leukemia, is associated with poor
prognosis®®, Figure 1 (F), Table 4.

Chemical modulation of mMRNA processing

Given that splicing and RNA processing enzymes are required for cell survival, cancer cells
bearing heterozygous SF mutations are dependent on wild-type alleles and are more
susceptible to chemical compounds inhibiting spliceosome activity.

The first clinical trials of bacteria-derived chemicals targeting the SF3B complex
(spliceostatin A, pladienolide (E7107), and GEX1) did not take into consideration the
mutational status of splicing factor genes and presented severe side effects®L. Since then, a
significant scientific effort has been committed to understanding the spliceosome structure
and catalytic activity for the rational design of efficient SF3B inhibitors. Recent work by
Michael Seiler and colleagues describes an orally available modulator of the SF3B complex,
H3B-8800, which potently and preferentially destroys spliceosome-mutant epithelial and
hematologic tumor cells82, The safety, pharmacokinetics and pharmacodynamics of
H3B-8800 might be evaluated by the end of 2020, when a phase 1 clinical trial
(NCT02841540) in patients with myeloid malignancies carrying spliceosomal mutations is
completed.

Whereas the majority of known spliceosome inhibitors target the SF3B complex,
sulfonamide-containing compounds were shown to induce the proteasomal degradation of
the accessory RNA-splicing factor RBM39. The anti-cancer properties of the molecules
indisulam, E7820, and chloroquinoxaline sulfonamide have been known for decades, but the
mechanism of their action through inhibiting splicing was only recently discovered®3.
Another example of possible drug repurposing is the DCPS inhibitor RG3039. A dibasic
lipophilic molecule was originally developed to treat spinal muscular atrophy, and its anti-
leukemic effect has been recently reported®?.

The post-translational modifiers protein arginine methyltransferases PRMT1 and PRMT5,
are very promising targets for cancer treatment. These enzymes catalyze arginine
methylation on many cellular proteins including histones and cooperate with oncogenic
drivers and fusion proteins in promoting cancer. The selective PRMTL1 inhibitors (e.g.,
GSK3368715 and MS023) and PRMTS inhibitors (e.g., GSK3203591 and GSK3326595)
showed a significant synergistic anti-leukemic effect in myeloid malignances®4 65,
Mechanistically, a global deficiency of arginine methylation dramatically increased aberrant
exon-skipping events®. This suggests that the spliceosomal mutant cancers could be the
right category for treatments with PRMTs inhibitors. Indeed, distinct PRMT inhibitors
preferentially killed Srsf2-mutant AML compared to the wild type cells®®. In addition to
spliceosome-mutant cancers, a loss of metabolic regulator MTAP has been shown to
increase sensitivity to PRMT1 or a combinatory treatment with PRMT1,5 inhibitors®4. The
safety, tolerability, and pharmacokinetics of PRMTs inhibitors are under clinical
investigation.
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MRNA nuclear export and translation

Messenger RNPs are exported to the cytoplasm by a conserved export receptor NXF1-NXT1
(TAP-p15) and various adaptor proteins coupled with mRNA splicing®8. The general protein
export receptor exportin 1 (XPO1/CRM1), does not have a major role in mRNA export,
although mRNAs of some proto-oncogenes and cytokines connect to the XPO1-dependent
adaptors through AU-rich sequences in their 3" UTRs5®. Exportins (karyopherin-g proteins)
play an important role in cancer including hematologic malignances by exporting ncRNAs
and tumor-suppressor proteins (p53, NPM1, NFxB). High expression of XPO1 was reported
for AML, ALL, CLL, CML, Non-Hodgkin lymphoma, and multiple myeloma (MM), and
was linked to poor survival rates8’, Figure 1(G), Table 5. Exportin 1 inhibitor selinexor was
tested in various types of cancer and is especially successful against AML and MM®8,

Among several factors of the elF4F complex required for the initiation of canonical cap-
dependent translation, cap-binding protein elF4E stands as the most powerful oncogene
capable of transforming normal cells and inducing cancer in mice®. It is believed that
elF4E’s dual capacity of selectively transporting and initiating translation of cell cycle
regulators’ mRNA, e.g. Cyclin D1, initiates tumorigeneses’%71, Figure 1(G, H), Table 5.
Inhibition of elF4E-dependent mMRNA export with m’G’-cap competitive inhibitor ribavirin
was clinically beneficial, and did not cause significant toxicity in AML patients’2. In a
subsequent study, however, activation of factor GLI1 led to glucuronidation of ribavirin, loss
of the elF4E-ribavirin interaction, and ultimately drug resistance’3. Several ongoing clinical
studies assess the possibility of treating AML and lymphomas with ribavirin and monitoring
cancer progression by Cyclin D1 levels (NCT03760666, NCT03585725).

Multifunctional oncofetal RBPs

Several multifunctional RBPs expressed in stem and progenitor cells during embryonic
development are often upregulated in cancers. Although protein structures of MSI2, LIN28,
and IGF2BPs do not match the criteria of well-targeted “druggable” peptides, efforts to
develop small molecule inhibitors of those proteins have yielded promising results.

Musashi RNA binding protein 2

Musashi RNA-binding proteins 1 and 2 (MSI1, MSI2) belong to a family of RBPs with a
pivotal role in embryonic development of multiple species. Among two homologs, MSI2
plays an essential role in normal and malignant hematopoiesis. Overexpression of MSI2 in
human umbilical cord blood-derived HSCs led to a 17-fold increase in short-term
repopulating cells and 23-fold ex vivo expansion of long-term HSCs’4. MS/2knockout in
mice depleted the HSCs number roughly in half, but even more severely abolished activity
of LSCs that are dependent on increased levels of MSI275. By mapping MSI2-mRNA
binding in myeloid LSCs and normal HSCs, Nguyen et al. showed that significantly more
transcripts were bound to MSI2 in cancer cells than in their normal counterparts’®.
Interestingly, MSI2 was required for maintaining protein levels of key oncogenes (e.g.
MYB, HOXAY) rather than their mRNA abundance. These data are in line with the previous
studies demonstrating that MSI2 maintains ML L-leukemia self-renewal programs by
retaining efficient translation of HOXA9, MYC, and IKZF2, and where /IKZF2plays a key
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role in inhibiting myeloid differentiation’8 /7. A comparative analysis of myeloid LSCs
transcriptomes from Msr-deficient mice identified 7span3, a transmembrane protein
mediating signal transduction, as the important factor for leukemia development,
propagation, and AML localization in the bone marrow’®.

MSI2 pays an essential role in the development and progression of CML as a translocation
partner (e.g., MSI2-HOXAY), or in cooperation with other fusions (e.g., BCR-ABLI,
NUP98-HOXA9 9 80, In NUPIS-HOXAZ-driven BC CML, MSI2 upregulation was
accompanied by the increased expression of self-renewal regulators, HOXA9and HESI, and
downregulation of differentiation factor NUMB'®. In addition to control of proliferation and
differentiation, MSI2 reprograms the metabolic profile of BC CML by regulating BCAT8L,
Table 6.

The small molecule search identified a selective MSI2 inhibitor that reduced disease burden
in a murine MLL-AF9 AML model and suppressed growth of human AML82. Ro 08-2750
specifically diminishes MSI2 mRNA-binding capacity and downregulates MSI2 direct
translational targets (SMAD3, c-MYC, HOXA9)82. Because the transcription factor HOXA9
regulates MSI2 expression by binding with the AM/S/2 promoter’®, it is expected that the
disruption of RNA-protein interaction between MSI2 and HOXA9 mRNA and similar
targets will decrease MSI2 levels and weaken the stem cell program in aggressive leukemia.

LIN28 family of proteins

The LIN28 family consists of the two proteins, LIN28A and LIN28B, which play a central
role in regulating pluripotency and differentiation by controlling the fate of coding and non-
coding RNA. Fetal hematopoietic progenitors express high levels of Lin28b, which, along
with IGF2BP3, is at the center of the fetal-to-adult hematopoietic switch®3. Viswanathan et
al. reported Lin28/L IN28B upregulation in about 15% of primary human tumors and human
cancer cell lines®. L/N28expression was found to be more common in peripheral blood
cells from patients with BC CML or in the accelerated phase than in the chronic phase of
CML. Mechanistically, LIN28 blocks maturation of the /et-7family of microRNAs that
suppress multiple proliferative factors such as HMGAZ, K-RAS, and c-MY 8, Jiang et al.
discovered a tumor suppressor miR-150 important for ML L-fusion-mediated
leukemogenesis, and showed that pri-miR-150/pre-miR-150 maturation is inhibited by the
ML L-fusion/c-MYCI LIN28 axis®®. Lin28A, however, is required for cell differentiation and
is suppressed in murine miR-125b-driven AMLS®, Table 6.

The molecular basis of LIN28 and /et-7 interaction was thoroughly investigated7: 88,
Several groups identified compounds disrupting the antagonistic effect of LIN28 on miR-
let-7biogenesis® 90, Wang et al. utilized the fluorescence polarization assay to identify
small-molecule inhibitors for both domains of LIN28 involved in /et-7interactions. Of
101,017 tested compounds, six inhibited LIN28//et-7binding and impaired LIN28-mediated
let-7 oligouridylation. The selective pharmacologic inhibition of individual domains of
LIN28 provides a foundation for their therapeutic targeting in leukemia cells and other
LIN28-driven diseases®?.
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IGF2BPs family of proteins

Insulin-like growth factor 2 RNA-binding proteins (IGF2BPs) comprise another RBP family
important for embryonic development. The family consists of three members, IGF2BP1,
IGF2BP2, and IGF2BP3, where IGF2BP1 and IGF2BP3 display greater structural similarity
and are often co-reactivated in cancer?2. IGF2BPs regulate mRNA stability and translation
of multiple oncogenes (e.g. /GF2, c-MYC, LIN28B, K-RAS) via binding with 5'UTR,
3’UTR and coding regions of messengers®2 93 Of note, m6A RNA modifications increase
the affinity of RNA-IGF2BP binding, therefore, IGF2BPs are considered as m8A readers?2.
Figure 1(1).

IGF2BP1 and IGF2BP3 are upregulated in E7V-RUNXI B-ALL and MLL-earranged
leukemia, supporting leukemia proliferation through c-MYCand CDK6** 95, Table 6. Being
a downstream target of miR-/et-7, IGF2BP1 counteracts /et-7and is often co-expressed with
LIN28 enhancing leukemia stem cell properties®8: 97, Therefore, upregulation of IGF2BP1
and its paralogs is associated with poor survival rates in subsets of leukemia®>: 98: 99,

Given the physiological role of IGF2BP1 in stem cell maintenance and development, we
recently investigated the impact of IGF2BP1 expression on LSC properties?. We found that
IGF2BP1 supports the LSC phenotype by maintaining levels of HOXB4, MYB, and
metabolic factor ALDHIA1. The small molecule inhibitor of IGF2BP1, BTYNB, was
assayed in multiple cell lines derived from solid tumors9, In our study, BTYNB sensitized
myeloid, B-cell, and T-cell leukemia lines to chemotherapeutics, establishing a proof of
principal that IGF2BPs could be successfully targeted by small molecules in leukemia cells.

Concluding Remarks

RBPs are a family of proteins playing a central role in normal cell physiology and are
crucial for cancer development and progression. Whereas mutations in functional domains
of splicing factors could represent early genetic events predisposing to leukemia, a large
body of data depicts abnormal RBP activity as a driving force of leukemia progression and
an attribute of aggressive forms of disease. Multiple studies indicate that aberrant activity of
RBPs is associated with acquisition of cancer stem cell phenotypes fundamental for
resistance to therapies, minimal residual disease, and relapse. Therefore, finding ways of
effectively targeting major classes of RBPs, discussed in this review, could potentially
improve outcomes of leukemia treatments by lowering rates of refractory and relapsed
leukemia. Given the association of RBP deregulation with disease aggressiveness and poor
clinical outcomes, constructing a pro-LSCs score by assessing spliceosome mutations or
mis-splicing, levels of RNA editing/modifications, and oncofetal proteins expression would
be a valuable addition to the existing testing platforms.

Novel molecular-genetic tools and mouse models provided compelling evidence of increased
dependency of acute myeloid and blast crisis chronic myeloid leukemia on RBPs. Therefore,
a search for chemical modulators of RBP activity is rapidly expanding (summarized in Table
7). The first clinical trials of splicing factor inhibitors highlighted the importance of the deep
understanding of RBP functions, which are often context dependent. General toxicity and

safety concerns remain a hurdle in targeting proteins that are ubiquitously expressed and are
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present in normal tissues. In this regard, oncofetal RBPs, which are not widely expressed in
normal adult tissues, could have a therapeutic advantage. In addition, the genetic background
of leukemic cells should be taken into consideration since a mutational status of splicing
factors and other genes can increase the susceptibility to RBP inhibitors. Given a supportive
role of RBPs in expression of multiple oncogenes, development of relatively nontoxic
compounds would be highly beneficial for combinatorial therapies that would, among other
effects, allow lower dosages of conventional cytotoxic drugs in older AML patients.

Our literature review indicates that leukemia cells may experience a systemic deregulation of
RNA network affecting multiple cis- and trans- acting RNA regulatory elements. It is
apparent that upregulation of various classes of RBPs are required to meet the anabolic
demand of fast proliferating cells. The dynamics and synergistic effect of posttranscriptional
aberrations in oncogenic transformation has not been fully investigated and understood.
Targeting common pathways and regulatory elements that coordinate abnormal activity of
various RBPs might be essential for eradicating the most aggressive forms of leukemia and
other cancers.
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function (green), loss- or change-of-function (yellow, arrow down, *mutation). Target genes
are listed on the right side of the diagram: upregulated oncogenes (red boxes), tumor

suppressor gene inactivation (blue boxes, arrow down). (A) ADAR1 regulates miRNA

biogenesis in an A-to-I editing-dependent manner (C), A-to-I editing affects mRNA stability
(); (B) RNA modifying enzymes facilitate m®A methylation (METTL3/14), demethylation
(FTO, ALKBHD5), substrate recognition (WTAP, RBM15); METTL3 can co-localize with
DNA in the nucleus and enhance mRNA translation in the cytoplasm; (C) noncoding RNA
processing: ADARL and LIN28 suppress maturation of miRNA /et-7, miR-155, miR-150,
and miR-26a; (D) RNA splicing factors are often mutated in chronic leukemia and/or mis-
spliced in acute leukemia producing more mis-spliced pro-oncogenic mRNA isoforms; (E)

5’ cap recognizing enzymes that either promote mRNA nuclear export and translation
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(elF4E) or destabilize mRNA (DCPS); (F) alternative cleavage and polyadenylation,
occurring during splicing (D), is characterized by mRNA 3’UTRs shortening or lengthening;
shorter 3’UTRs increase stability and expression of oncogenic transcripts; downregulation or
deactivation of 3’UTR-binding protein TTP increases mRNA abundance; (G) high
expression levels of nuclear export regulators (exportins, XPO1/CRM1, elF4E) increase
transport and translation of oncogenic factors; (H) high levels of elF4E promote nuclear
export and translation of selective proto-oncogenic targets; (1) increased mRNA stability and
translation of oncogenic transcripts through multiple post-transcriptional events, including
reactivation of oncofetal proteins LIN28 and IGF2BPs; (J) méA reader Y THDF2 targets
MRNAs for CCR4-NOT-dependent deadenylation and degradation.
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Small molecule inhibitors of RNA-binding and modifying proteins

Table 7.

Function Gene Name Inhibitor CASH References
RNA editing ADARI 8-azaadenosine 10299-44-2 10
JAKZ2 SAR302503 936091-26-8
BCR-ABL Dasatinib 302962-49-8
RNA modification METTL3 In development reviewed in1% 35
METTL14
FTO CS1 (Bisantrene) 78186-34-2 29
CS2 (Brequinar) 96187-53-0
FB23/FB23-2 2243736-45-8 | 30
RNA splicing SF3B1 Spliceostatins A-G 391611-36-2 reviewed in37: 45, 61
Pladienolides A(E7107) 445493-23-2
Herboxidiene (GEX1A) 142861-00-5
RBM39 E7820 289483-69-8 50,63
Indisulam 165668-41-7
Tasisulam 519055-62-0
PRMTI GSK3368715 1629013-22-4 | 64,65
(type | PRMTs) | MS023 (pan type | PRMTs inh.) | 1831110-54-3
PRMT5 GSK3203591 (GSK591) 1616391-87-7 | 64,65
GSK3326595 1616392-22-3
Decapping DCPS RG3039 1005504-62-0 | 5t
Nuclear export & trandlation | XPO1/CRM1 Selinexor 1393477-72-9 | reviewed in%8
eIF4E Ribavirin 36791-04-5 reviewed in’2
Oncofetal RBPs MSI2 Ro 08-2750 (Ro) 37854-59-4 82
LIN28 C1632 (C45H15N50) 108825-65-6 89
TPEN, LI71 o1
IGF2BP1 BTYNB 304456-62-0 100
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