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Abstract 
Background: Laryngeal squamous cell carcinoma (LSCC) is one of the most common forms of head and neck cancers. 
However, few studies have focused on the correlation between competing endogenous RNA (ceRNAs) and immune cells in LSCC.

Methods: RNAseq expression of LSCC and adjacent tissues were downloaded from The Cancer Genome Atlas to establish a 
ceRNA network. The key gene in ceRNA was screened by the cox regression analysis to establish a prognostic risk assessment 
model. The CIBERSORT algorithm was then used to screen important tumor-infiltrating cells related to LSCC. Finally, co-expression 
analysis was applied to explore the relationship between key genes in the ceRNA network and tumor-infiltrating cells. The external 
datasets were used to validate critical biomarkers.

Results: We constructed a prognostic risk assessment model of key genes in the ceRNA network. As it turned out, Kaplan–
Meier survival analysis showed significant differences in overall survival rates between high-risk and low-risk groups (P < .001). 
The survival rate of the high-risk group was drastically lower than that of the low-risk group, and the AUC of 1 year, 3 years, and 
5 years were all above 0.7. In addition, some immune infiltrating cells were also found to be related to LSCC. In the co-expression 
analysis, there is a negative correlation between plasma cells and TUBB3 (r = −0.33, P = .0013). External dataset validation also 
supports this result.

Conclusion: In this study, we found that some key genes (SLC35C1, CLDN23, HOXB7, STC2, TMEM158, TNFRSF4, TUBB3) 
and immune cells (plasma cells) may correspond to the prognosis of LSCC.

Abbreviations: ceRNA = competing endogenous RNA, DElncRNAs = differentially expressed lncRNAs, DEmRNAs = 
differentially expressed mRNAs, GEO = Gene Expression Omnibus, GO = Gene Ontology, HNSCC = head and neck squamous 
cell carcinoma, KEGG = Kyoto Encyclopedia of Genes and Genomes, LSCC = laryngeal squamous cell carcinoma, OS = overall 
survival, TCGA = The Cancer Genome Atlas.
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1. Introduction

Laryngeal cancer is a kind of malignant tumor of the head 
and neck, in which laryngeal squamous cell carcinoma (LSCC) 
is the most common, accounting for 96%–98%.[1] The inci-
dence of LSCC is attributed to many factors such as smok-
ing, excessive drinking, air pollution, sex hormone levels, and 
viral infections.[2] Recent years have witnessed the incidence of 
LSCC increase year by year with the acceleration of industrial 
processes and the aggravation of environmental pollution.[3] 
Currently, the main treatment methods involve surgery, chemo-
therapy, and radiotherapy. However, the complications from 
these treatments, as well as relapses and metastasis affecting 
the prognosis, can seriously interfere with a patient’s normal 
life.[4] Therefore, early prevention, diagnosis, personalized 

treatment, and the search for precise targeted therapeutic drugs 
are of great significance to increase the survival rate of patients. 
The treatment of LSCC requires the selection of appropriate 
treatment options according to the patient’s clinical stages, 
metastasis ranges, tumor sizes, and ages. Surgical treatments 
are often applied for early LSCC, including total laryngectomy, 
partial laryngectomy, oral laser microsurgery, etc., quickly 
removing the lesions and effectively controlling the disease.[5] 
Unfortunately, the early symptoms of LSCC are not significant, 
and most patients are diagnosed in stage III or IV.[6] At this 
stage, the treatment effect of patients is not satisfactory to a 
certain extent.

Previous research presents a competing endogenous RNAs 
(ceRNA) hypothesis.[7] lncRNAs competitively bind to miR-
NAs, to regulate the expression level of mRNAs and involve in 
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the regulation of biological behaviors of tumor cells.[8–10] The 
ceRNA network plays a vital role in the development of various 
malignant tumors.[11–13] A large number of studies have shown 
that miRNA can guide RNA-induced silencing complex (RISC) 
to bind to target mRNA, leading to RNA degradation or trans-
lational inhibition.[14]

In recent years, tumor immune infiltrating cells have attracted 
widespread attention, especially in immunotherapy.[15] LSCC 
is rich in tumor immune infiltrating cells, and most patients 
respond positively to immunotherapy.[16] Some studies have 
shown that the different compositions and locations of tumor 
immune cells are closely related to the prognosis of LSCC.[17,18] 
However, in past studies, researchers used traditional methods, 
such as immunohistochemistry, to explore the composition of 
immune cells in malignant tumor tissues. The number of cells 
that these methods can detect is very limited.[19] With the devel-
opment of various omics databases, some new methods for 
detecting immune cells based on machine learning have been 
born. For example, CIBERSORT, can estimate the abundance 
of 22 immune cell types from gene expression profiles.[20] Many 
studies use it to analyze the proportion of immune cells in 
cancer.[21,22]

Previous studies have separately reported the role of the 
ceRNA network and tumor immune cells in LSCC.[23,24] So far, 
there are only a few papers to comprehensively study the func-
tions of ceRNAs and tumor immune cells in LSCC. Therefore, in 
this study, we hope to perform a co-expression analysis between 
ceRNAs and immune cells to identify potential immune-related 
biomarkers.

In this study, a ceRNA network for LSCC was established, 
which is determined by gene expression in the Cancer Genome 
Atlas (TCGA) database. The CIBERSORT was used to evaluate 
the proportion of immune cells in LSCC samples and quantify 
the cellular composition of the immune response. Afterward, 
genes in the ceRNA prognostic model and the key immune cells 

that affect the prognosis were screened. Co-expression analy-
sis of key genes and immune cells was carried out to explore 
the potential mechanisms affecting the prognosis of LSCC. As 
it turned out, these findings may provide new ideas for the pre-
diction and treatment of LSCC. We show the experimental flow-
chart in Figure 1.

2. Materials and Methods

2.1. Data selection and analysis of differential gene 
expression

The RNAseq data of 123 patients with LSCC and normal sam-
ples were obtained from The Cancer Genome Atlas (TCGA) 
(Version October 21, 2020) (including 111 cases of cancer tis-
sue and 12 cases of normal tissue adjacent to cancer) (https://
cancergenome.nih.gov/).[25] The clinical data was downloaded 
by the Xena browser (https://xenabrowser.net/). Based on 
Ensembl annotation (http://www.ensembl.org), RNAseq data 
were divided into lncRNA and mRNA expression matrices.[26] 
Besides, the demographic information for each patient (age, 
gender, survival status, number of days of death, tumor stage, 
etc.) was downloaded. With R software and edgeR package, 
differentially expressed mRNAs (DEmRNAs) and differen-
tially expressed lncRNAs (DElncRNAs) were obtained, and 
volcano maps and heat maps were drawn. The selection crite-
ria for DEmRNAs and DElncRNAs is |logFC|> 2.0, P < .01.[27]

2.2. Construction of the ceRNA network

The mircode database (http://www.mircode.org) is used to identify 
the interactions between lncRNA and miRNA.[28] Then, miRNA 
target genes could be searched from miRDB databases.[29–31] After 
determining lncRNA-miRNA pairs and miRNA-mRNA pairs, 

Figure 1. The experimental flowchart of this study.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://xenabrowser.net/
http://www.ensembl.org
http://www.mircode.org
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we examined DEmRNAs and DElncRNA obtained from the 
edgeR package, respectively. Only lncRNA-miRNA and miR-
NA-mRNA pairs formed by differentially expressed RNA were 
screened. Eventually, we used Cytoscape v3.7 to construct the 
lncRNA-miRNA-mRNA network. The mRNA in the ceRNA 
network is the part that performs biological functions. Hence, 
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis of these genes was per-
formed to understand the biological functions of the network. 
The metascape database was used for mRNA enrichment analy-
sis (https://metascape.org/gp/index.html#/main/step1).

2.3. Construction of prognostic risk model related to the 
ceRNA network

The expression data of each DEmRNA and DElncRNA in the 
ceRNA network was extracted, and we used the survival data 

of each sample for single-variable COX regression analysis. 
The survival cox ph feature in R software was used and log-
rank P < .05 was chosen as the threshold for screening key 
genes that affect prognosis. Furthermore, the glmnet package 
in the R software is used to perform a set of cox regression 
analyses. After that, the prognostic risk assessment model of 
the ceRNA network is constructed with multivariable COX 
regression analysis. Based on the medium-risk score, we cal-
culated the risk score for each sample separately and divided 
the patients into high-risk and low-risk groups, respectively. 
The Kaplan–Meier method was applied to analyze the dif-
ference in overall survival (OS) between 2 groups. Use the 
timeROC package of R software to draw ROC curves of 1, 
3, and 5 years.

2.4. CIBERSORT estimation

The abundance of 22 different types of immune cells was esti-
mated using CIBERSORT in R software (Version 4.0.2).[20] 
Wilcoxon rankings test identifies differences in immune 
infiltration between normal samples and patient samples. 
The result of P < .05 indicates that the difference is statisti-
cally significant. In addition, corrplot and vioplot packages 
in R were also applied to visualize the results. The effects 
of immune cells on prognosis were analyzed by the Kaplan–
Meier method.

2.5. Co-expression analysis of mRNAs in prognostic risk 
model and key immune cells

The corrplot package in R can be used for correlation analysis 
of 7 mRNAs and key immune cells. Under the Pearson correla-
tion analysis, a co-expression heatmap was graphed to show 
the correlation between mRNAs and immune cells. The ggplot 
package in R was used to plot the correlation curves for mRNAs 
and immune cells that are highly correlated.

2.6. Multidimensional validation

The Gene Expression Omnibus (GEO) database is that of 
gene expression created and maintained by the National 
Center for Biotechnology Information. Moreover, it contains 
high-throughput gene expression data submitted by research 
institutions around the world.[32] The GSE84957 data set 
was used to confirm the expression of key genes in normal 

Table 1

Clinical information statistics of TCGA dataset.

Characteristic  TCGA dataset 

Survival status Alive 67
Dead 50

Age ≤60 49
>60 68

Sex Female 20
Male 97

Grade G1 8
G2 72
G3 32
G4 1

T T1 7
T2 14
T3 26
T4 55

N N0 41
N1 12
N2 41
N3 2

M M0 41
M1 9

Stage I 2
II 10
III 14

 IV 74

Figure 2. (A) Volcano map based on lncRNA expression values of 123 samples in TCGA database. Green represents low expression and red represents high 
expression. (B) Volcano map based on mRNA expression values of 123 samples in TCGA database. Green represents low expression and red represents high 
expression.

https://metascape.org/gp/index.html#/main/step1
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tissues and cancer tissues. All patients were provided writ-
ten informed consent before their participation. The study 
was undertaken per the Institutional Ethics Committee of 
Beijing Tongren Hospital Affiliated with Capital Medical 
University and the ethical standards of the World Medical 
Association Declaration of Helsinki.[33] Kaplan Meier-plotter 
(http://kmplot.com/analysis/index.php?p=service) is a web-
site for online survival analysis. Currently, the website has 
researched 54,675 genes and 18,674 cancer samples, involv-
ing breast cancer, lung cancer, gastric cancer, etc. Based on the 
Kaplan Meier-plotter website, it is used for survival analysis 
of critical mRNA. It can verify whether there is a significant 
difference in the survival time of patients at different expres-
sion levels.[34] In addition, oncomine was used to analyze the 
differential expression of key mRNAs in histological types 
of tumors and normal tissues (https://www.oncomine.org/
resource/login.html#).[35]

3. Results

3.1. Screening of differentially expressed genes and 
construction of the ceRNA network

There are 111 LSCC and 12 adjacent samples in the TCGA 
head and neck squamous cell carcinoma (HNSCC) dataset 
(Table 1). As shown in Figure 2, there are 662 DEmRNAs (289 
mRNA upregulated, 373 mRNA downregulated) in LSCC 
samples; 57 DElncRNAs (39 upregulated, 18 downregulated) 
compared with adjacent tissues. Among these differentially 
expressed RNAs, we constructed a ceRNA network contain-
ing DElncRNAs and DEmRNAs, revealing the complex com-
petition and connections between endogenous RNAs. We took 
advantage of Cytoscape 3.7.0 software to construct a ceRNA 
network with 58 nodes and 56 edges, including 3 lncRNAs, 
15 miRNAs, and 40 mRNAs. The relationship between the 
different forms of RNA is illustrated in Figure 3A.

Figure 3. (A) Construction of the ceRNA network related to LSCC. Square nodes represent lncRNAs, where red is upregulated lncRNA and blue is downreg-
ulated lncRNA. Diamond-shaped nodes represent miRNAs. Oval nodes represent mRNAs, where red is upregulated mRNA and blue is downregulated mRNA. 
(B) Enrichment analysis of mRNAs in the ceRNA network.

http://kmplot.com/analysis/index.php?p=service
https://www.oncomine.org/resource/login.html#
https://www.oncomine.org/resource/login.html#
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Based on the metascape database, we carried out GO and 
KEGG enrichment analyses on mRNAs that performed biolog-
ical functions in ceRNA (Figure 3B). The results indicate that 
these biological processes are mainly concentrated in endocyto-
sis, RHO GTPase effectors, cell fate determination, salmonella 
infection, vesicle organization, regulation of cell adhesion, reg-
ulation of autophagy, negative regulation of cell cycle, nervous 
system development, blood vessel morphogenesis.

3.2. Analysis of prognostic risk model related to ceRNA 
network
First, we perform a univariate COX proportional hazard 
regression model on differentially expressed genes and sur-
vival data in the ceRNA networks. The results showed that 9 

differentially expressed genes had a significant effect on the 
prognosis, all of which were mRNAs. We made use of the 
glmnet package in R to perform lasso cox regression analysis. 
In the first step, the change trajectory of each independent 
variable is displayed in Figure 4A. As the lambda increases, 
independent variable coefficients tend to gradually increase. 
We exploited a 10-fold crossover method to test the model, 
and then analyze the confidence interval for each lambda 
(Figure 4B). When lambda=0.013748, the model is optimal. 
The model at this point encompasses 8 mRNAs. Furthermore, 
we performed a multivariate cox regression analysis on the 
8 mRNAs obtained in the previous step and retained the 7 
mRNAs with the minimum AIC value (AIC = 359.51) as the 
final model (Figure 4C). The final 7-mRNA signature formula 
is as follows.

Figure 4. (A) LASSO model after 10-fold cross-validation. The 2 vertical dashed lines represent lambda.min and lambda.lse respectively. (B) Coefficient distri-
bution of LASSO model. (C) Forest plot of the prognostic risk model of key genes in the ceRNA network. * means that the difference is statistically significant.
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R i s k S c o r e = 0 . 0 6 5 * e x p S L C 3 5 C 1  +  0 . 4 5 5 * e x p -
CLDN23 + 0.048*expHOXB7 + 0.031*expSTC2 + 0.018*expT-
MEM158-0.148*expTNFRSF4 + 0.323*exp TUBB3

To evaluate the prognostic effect of the model, the samples 
were divided into high-risk groups and low-risk groups. As is 
shown in Figures 5C–E, the distribution of risk scores based on 
the 7-mRNA signature model and their corresponding expres-
sion profiles in the TCGA-HNSCC dataset. Moreover, based on 
the analysis of the prediction accuracy rates of the model for 1, 
3, and 5 years according to RiskScore, it can be seen that the 
model has a large area under the curve (AUC), and the AUC for 
1, 3, and 5 years are all above 0.7(Figures 5B). Kaplan–Meier 
survival analysis suggests the significant differences in the overall 
survival rate of the high-risk groups and the low-risk groups (P 
< .001). The survival rate of patients in the high-risk group was 
significantly lower than that of the low-risk group (Figures 5A). 
These results indicate that RiskScore can effectively screen high-
risk patients with poor clinical prognosis.

3.3. The composition of tumor-infiltrating immune cells of 
LSCC

The CIBERSORT algorithm was used to estimate the abun-
dance of 22 immune cells. The distribution of tumor-infiltrat-
ing immune cells in normal and patient samples is shown in 
Figure 6A. It shows immune cell types and relative percent in 
LSCC tissues. Figure 6B is the heatmap of tumor-infiltrating cells 
in LSCC tissues and control group tissues. The correlation anal-
ysis of immune cells showed that Monocytes, B cells naive and 
plasma cells were positively correlated. T cells CD8 and T cells 
CD4 memory activated are positively correlated. Monocytes, 
B cells naïve, plasma cells, and T cells CD8 are all negatively 
correlated with Macrophages M0. Furthermore, Dendritic cells 
activated and Mast cells activated are negatively correlated with 
Macrophages M1(Fig.  7A). In the violin chart (Fig.  7B), the 

Wilcoxon rank-sum test showed that B cells, Monocytes, and 
Macrophages M0 in normal tissues and tumor tissues are differ-
ent. B cells and monocytes are present at lower concentrations 
in tumors while M0 macrophages are more abundant. The sur-
vival analysis showed that Dendritic cells resting (P = .021) and 
plasma cells (P = .002) may be correlated with the prognosis of 
LSCC patients (Fig. 8).

3.4. Co-expression analysis of mRNAs in prognostic risk 
model and key immune cells

To explore the correlation between key RNAs and progno-
sis-related immune cells, we performed a Pearson correlation 
analysis (Fig.  9). The results showed significant correlations 
between SLC35C1 and CLDN23(R = 0.36, P < .001), STC2 
and TMEM158(R = 0.53, P < .001), and TUBB3 and plasma 
cells (R = −0.33, P = .0013). Further co-expression analysis also 
revealed a significant positive correlation between SLC35C1 
and CLDN23, STC2 and TMEM158, and a significant negative 
correlation between TUBB3 and plasma cells.

3.5. Multidimensional validation

The GSE84957 microarray in the GEO database contains 9 
primary LSCC tissues and 9 corresponding adjacent non-tu-
mor tissues. For that matter, it was used to verify the expres-
sion levels of 7 key genes. Admittedly, compared with normal 
tissues, SLC35C1, CLDN23 and TNFRSF4 were significantly 
downregulated in LSCC tissues (P < .05), HOXB7, STC2, 
TMEM158, and TUBB3 were significantly upregulated in 
LSCC tissues (P < .05, Figure  10A). In the TCGA database, 
compared with normal tissues, SLC35C1 and CLDN23 were 
significantly downregulated in LSCC tissues (P < .05), and 
HOXB7, STC2, TMEM158, TNFRSF4, and TUBB3 were 

Figure 5. (A) The overall survival curve of high-risk and low-risk patients based on Kaplan-Meier analysis. (B) 1-year, 3-year, and 5-year ROC curves based on 
prognostic model. (C) Distribution of risk scores for patients with LSCC. (D) Risk score and survival status of patients with LSCC. (E) Heatmaps of key mRNA 
expression values in samples of the high-risk and low-risk groups.
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significantly upregulated in LSCC tissues (P < .05, Figure 10B). 
The expression level of TNFRSF4 in GEO and TCGA databases 
is inconsistent. According to previous studies, the expression 
level of TNFRSF4 is controversial. Both high and low expres-
sions of TNFRSF4 have been reported in tumor tissues.[36,37]

We used the oncomine database to analyze the expression 
levels of key genes for different types of cancer (oncomine 
parameter selection P value <.01, logfc>1.5, generank selection 
top 10%). As shown in Figure  10C, red boxes indicate high 
expression and blue boxes indicate low expression. The num-
bers in the table represent the number of studies included in 
the oncomine database. The Kaplan–Meier method was further 
used to analyze critical mRNAs to assess their impact on over-
all survival (Figure 10D). Among them, the high expressions of 
SLC35C1, CLDN23, HOXB7, STC2, TMEM158, and TUBB3 
are all related to patients with poor prognostic (P < .05), and 
the high expression of TNFRSF4 is related to the better one (P 
< .05). In the calculation results of TCGA and GEO, HOXB7, 
STC2, TMEM158, and TUBB3 genes are all highly expressed in 
patients. This is consistent with their high expression and poor 
prognosis. TNFRSF4 is low expression in patients, which is con-
sistent with high expression and better prognosis in patients.

4. Discussion
After the differentially expressed ceRNA network between 
LSCC and adjacent tissues and the key immune cells in the 

tumor microenvironment has been identified, we constructed a 
prognostic prediction model based on the selected ceRNA net-
work and immune cells. In this regard, SLC35C1, CLDN23, 
HOXB7, STC2, TMEM158, TNFRSF4, and TUBB3 in the 
model can effectively predict the prognosis. SLC35C1 and 
CLDN23 are downregulated in most cancers.[38–41] HOXB7, 
STC2, TMEM158, and TUBB3 are upregulated in most can-
cers (Figure  10C). For example, HOXB7 is highly expressed 
in breast cancer, ovarian cancer, and melanoma samples.[42–45] 
STC2 is highly expressed in rectal cancer and colon cancer.[46,47] 
TMEM158 is upregulated in laryngeal cancer, glioblastoma, 
and colorectal cancer.[48–50] TUBB3 is upregulated in gastric 
cancer, gallbladder cancer, and ovarian cancer.[51–53] STC2 is 
the encoding gene for stanniocalcin-2. One study investigated 
the expression of STC2 in 70 esophageal cancer cell lines. 
The expression of STC2 in cancer tissues was higher than in 
the corresponding normal tissues (P < .001). Additionally, 
STC2 expression was significantly associated with lymph node 
metastasis, lymphatic invasion, and long-range metastasis (P = 
.005, .007, and .038, respectively). Obviously, the 5-year sur-
vival rate of patients with high STC2 expression was lower 
than those with low STC2 expression rates (P = .016). In vitro 
experiments showed that the proliferation rate of STC2 trans-
fected cells was significantly higher than that of control cells 
(P < .001). STC2 transfected cells were also more aggressive 
than the control cells (P < .001).[35] TMEM158 is a gene that 
encodes transmembrane protein 158. Its upregulation promotes 

Figure 6. (A) Histogram of immune cell infiltration in TCGA samples. The abscissa represents the sample name, and the ordinate represents the percentage of 
immune cells. Different colored bars represent different immune cells. (B) Heatmap of immune cell infiltration in each sample. The abscissa is the sample name, 
and the ordinate is 22 immune cells. The shade of color represents the relative expression of immune cells.
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the progression of several cancers. TMEM158 was significantly 
upregulated in pancreatic cancer samples. Studies of the mech-
anism have demonstrated that the activation of TGFβ1 and 
PI3K/AKT signals may be the aggressive cause of TMEM158 
triggering pancreatic cancer. TGFβ1 has the effect of promoting 
carcinogenesis. A study demonstrated that TMEM158 was an 
upstream regulator of TGFβ1 by western blot, qRT-PCR, and 
ELISA experiments. Blockade of TGFβ1 significantly reversed 
TMEM158 overexpression-induced pancreatic cancer cell 
metastasis and epithelial-mesenchymal transition. PI3K/AKT 
signaling has been widely implicated in cancer cell proliferation, 

metastasis, and apoptosis. TMEM158 was able to stimu-
late increased PI3K/AKT signaling in pancreatic cancer cells. 
Inhibiting the expression of TMEM158 can effectively reverse 
the pancreatic cancer cell proliferation, migration, and invasion 
induced by PI3K/AKT signaling.[54] SLC35C1 is a GDP fucose 
transporter negatively regulating the WNT signal pathway. In 
HEK293 cells, the silence of SLC35C1 can activate the WNT 
pathway, while the hyperexpression of SLC35C1 suppresses 
this pathway. WNT plays an important role in the maintenance 
of homeostasis, and abnormal activation of the WNT pathway 
is associated with a variety of cancers. SLC35C1 is a negative 

Figure 7. (A) Correlation heatmap of 22 immune cells. The color of the square represents the correlation between the 2 immune cells. (B) The expression dif-
ference of 22 immune cells in normal samples and patient samples. The blue violin column represents the normal sample, and the red violin column represents 
the patient sample. The p-value of the 2 sets of samples after the rank-sum test is located above the violin column.
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regulator for the WNT signaling pathway. Its abnormal expres-
sion may lead to over-activation of WNT signaling in cancer 
cells.[55] CLDN23 is the encoded gene of claudin-23. CLDN23 
showed low expression in tumor patient samples in GEO and 
TCGA databases. The expression of CLDN23 is also downregu-
lated in other types of tumors.[41] For example, intestinal tumors 
can reduce the expression of CLDN23. CLDN23 is reduced in 
tumor tissue compared to nearby normal mucosa.[56] However, 
survival analysis showed that low expression of CLDN23 was 
associated with longer OS. In previous studies, the relation-
ship between CLDN23 and OS was controversial. Studies have 
reported that lower CLDN23 mRNA levels are associated with 
poorer OS.[40,57] There is also a Cox multivariate survival analy-
sis showing that when CLDN23 is low expressed, the OS of gas-
tric cancer patients is longer.[58] A recent study showed that low 
expression of CLDN23 was associated with longer OS in col-
orectal cancer patients of CMS4 and C4 subtypes. In contrast, in 

the CMS2 and C1 subtypes, low CLDN23 expression was asso-
ciated with shorter OS. It was shown that CLDN23 plays a dual 
role as a tumor suppressor/promoter in colorectal cancer.[59] 
Therefore, the effect of CLDN23 on prognosis is controversial, 
possibly because CLDN23 in different subtypes has different 
effects on prognosis, and our study did not divide the samples 
into subtypes. HOXB7 is the coding gene of homeobox protein 
Hox-B7. Previous studies have proved that HOXB7 activation 
may be a functional bridge between the homeobox gene and 
tumor progression. Besides, HOXB7 can also induce other genes 
to be directly or indirectly related to angiogenesis and tumor 
invasion. Vascular endothelial growth factors, interleukin-8, 
and angiopoietin-2 can all be upregulated by HOXB7 transduc-
tion.[60–62] In a study of patients with pancreatic cancer, HOXB7 
mRNA and protein levels increased significantly in pancreatic 
ductal adenocarcinoma cell lines and patient tumor samples 
compared to normal samples. Tissue microarray evaluation of 

Figure 8. (A)The influence of Dendritic cells resting on the prognosis of patients with LSCC. (B)The influence of plasma cells on the prognosis of patients with LSCC.

Figure 9. (A) Correlation analysis between key members of ceRNA network and key members of immune cells. (B) Scatter plot of the correlation between 
TUBB3 and plasma cells.
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145 pancreatic ductal adenocarcinoma samples revealed that 
high expression of HOXB7 protein was associated with lymph 
node metastasis (P = .034), which resulted in poor prognostica-
tion in patients. Knocking out or overexpression of HOXB7 in 
pancreatic ductal adenocarcinoma cell lines leads to decreased 
or increased invasiveness, respectively. HOXB7, together with 
its downstream targets may become new clinical biomarkers or 
therapeutic targets.[63] TUBB3 is the gene encoding the tubulin 
beta-3 chain. Overexpression of TUBB3 has been found to be 
related to the poor prognosis of some solid tumors including 
HNSCC. A study performed immunohistochemical staining on 
667 cases of oral cancer, hypopharyngeal cancer, and LSCC tis-
sues to detect the expression of TUBB3. It was demonstrated 

that more than 90% of tumors showed clear cytoplasmic 
TUBB3 expression. 69 cases (15.5%) were weakly positive, 149 
cases (33.5%) were moderately positive, and 188 cases (42.2%) 
were strongly positive.[64] Other studies have shown that some 
miRNAs, such as miR-200b-3p, can regulate the resistance of 
colorectal cancer cells to oxaliplatin by targeting TUBB3. It may 
be a potential drug target for colon cancer.[65] However, there are 
few studies on these genes in LSCC.

Dendritic cells are the most powerful professional anti-
gen-presenting cells. Mature dendritic cells can effectively 
activate the initial T cells, at the center of initiating, regulat-
ing, and maintaining the immune response. A dendritic cell is 
closely related to the occurrence and development of tumors. 

Figure 10. (A) Based on the GSE84957 data set, the expression of key mRNA in LSCC and normal samples was verified. The box plot shows mRNA expression 
in laryngeal carcinoma (blue) and corresponding normal tissues (yellow). (B) Based on the TCGA database, the expression of key mRNA in LSCC and normal 
samples was verified. The box plot shows mRNA expression in laryngeal carcinoma (blue) and corresponding normal tissues (red). The numbers in the table 
represent the number of studies included in the oncomine database. (C) Based on the oncomine database, identify the expression of key mRNA in different 
tumors. Red and blue represent upregulation or downregulation, respectively. (D) Based on the Kaplan–Meier database, the key mRNA in the model was vali-
dated for the prognosis of LSCC.
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A large number of dendritic cells in most solid tumors results 
in a good prognosis. The cellular immune response dominated 
by CD8+ T cells is the basis of dendritic cells as an immuno-
therapy method.[66] Dendritic cells can induce high expression 
of major histocompatibility complex I and major histocom-
patibility complex II molecules. Major histocompatibility 
complex molecules bind to tumor antigens to form peptide- 
major histocompatibility complex molecular complexes. It is 
then presented to T cells to initiate the major histocompati-
bility complex I restricted cytotoxic T lymphocyte response 
and the major histocompatibility complex II-restricted CD4+ 
Th1 response.[67] At the same time, dendritic cells also pro-
vide the second signal required for T cell activation through 
costimulatory molecules (CD80/B7-1, CD86/B7-2, CD40, 
etc.) to initiate an immune response.[68] The combination of 
dendritic cells and T cells can secrete a large amount of IL-12 
and IL-18 to activate T cell proliferation, which is conducive 
to tumor clearance. Dendritic cells can secrete chemotactic 
cytokines and upregulate the expression of IL-12, CD80, 
and CD86.[69] In addition, Dendritic cells also present anti-
gen peptides directly to CD8+ T cells. CD4+ and CD8+ T 
cells can further enhance the anti-tumor immune response by 
secreting cytokines.

Plasma cells, also called effector B cells, are cells in the 
immune system that release large amounts of antibodies. It was 
indicated in a retrospective study that in 69 studies of 19 can-
cers, 50.0% of patients reported a positive effect of plasma cells 
on prognosis, while the rest had a neutral (40.7%) or negative 
(9.3%) effect. When plasma cells are present, the prognostic 
effect of T cells is generally stronger.[70] In addition, 21 studies 
inferred the proportion of plasma cells from gene expression 
data, most of which presented positive predictive effects. There 
is plenty of evidence to support the positive role of plasma cells 
in anti-tumor immunity.[71] Our results indicate that high con-
centrations of dendritic cells and plasma cells are associated 
with a better prognosis. This is consistent with previous reports 
in the literature.

In the correlation analysis, a significant positive correla-
tion was found between SLC35C1 and CLDN23, STC2 and 
TMEM158, and a significant negative correlation between 
TUBB3 and plasma cells. From our research, a high level of 
plasma cells can make patients have a better prognosis. In 
tumor tissues, TUBB3 was significantly higher than that in adja-
cent tissues, while patients with high levels of TUBB3 were at 
higher risk. The results of the final analysis are consistent with 
the results of these studies. Plasma cell and TUBB3 (R = −0.33,  

Figure 10. Continued
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P = .0013) showed a significant negative correlation. Therefore, 
we reasoned that plasma cells and TUBB3 may play critical roles 
in the progression of LSCC. However, after a systematic litera-
ture review, there are no relevant biological experiments to sup-
port our computational results. We will continue to explore the 
underlying mechanisms by which plasma cells and TUBB3 affect 
LSCC in future work.

Inevitably, some related limitations and shortcomings must 
be acknowledged. First of all, the amount of data collected 
from public databases is limited, in that the clinical samples 
analyzed in our research are relatively incomplete. At present, 
despite the rapid development of omics technology, a large 
number of research projects on detecting activity indicators 
are already feasible.[72] Large-scale experimental data is still 
difficult to obtain with very expensive testing costs as well.[73] 
Last but not least, the biggest problem in this study is the lack 
of validation of key genetic mechanisms. However, in order 
to reduce this bias, we also used multiple databases to reveal 
the gene expression of key biomarkers in tumors and adjacent 
tissues.

5. Conclusion
As for differentially expressed mRNAs and lncRNAs, a ceRNA 
prognostic risk model was constructed to predict survival and 
prognosticity in patients with LSCC. The higher AUC value 
proves the accuracy of our model. We have identified HOXB7, 
STC2, TMEM158, TUBB3, and other key genes related to 
the prognosis from the ceRNA network. Immune microenvi-
ronment analysis found that high levels of Dendritic cells and 
plasma cells will give patients a better prognosis. The co-expres-
sion analysis also illustrated that plasma cells and TUBB3 are 
related, which suggested that they may jointly affect the prog-
nosis of LSCC patients.
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