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Abstract 
Recently, various computational methods have been proposed to find new therapeutic applications of the existing drugs. 
The Multimodal Restricted Boltzmann Machine approach (MM-RBM), which has the capability to connect the information 
about the multiple modalities, can be applied to the problem of drug repurposing. The present study utilized MM-RBM to 
combine two types of data, including the chemical structures data of small molecules and differentially expressed genes as 
well as small molecules perturbations. In the proposed method, two separate RBMs were applied to find out the features and 
the specific probability distribution of each datum (modality). Besides, RBM was used to integrate the discovered features, 
resulting in the identification of the probability distribution of the combined data. The results demonstrated the significance 
of the clusters acquired by our model. These clusters were used to discover the medicines which were remarkably similar 
to the proposed medications to treat COVID-19. Moreover, the chemical structures of some small molecules as well as dys-
regulated genes’ effect led us to suggest using these molecules to treat COVID-19. The results also showed that the proposed 
method might prove useful in detecting the highly promising remedies for COVID-19 with minimum side effects. All the 
source codes are accessible using https​://githu​b.com/LBBSo​ft/Multi​modal​-Drug-Repur​posin​g.git

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1103​0-020-10144​-9) contains 
supplementary material, which is available to authorized users.
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Introduction

COVID-19 pandemic, which became a trigger for a series of 
serious challenges, was brought about by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) in Decem-
ber 2019. Until now, various FDA-approved and clinical 
trialed drugs have been suggested for treating the disease. 
Five antiviral drugs, including chloroquine phosphate, inter-
feron α (IFN-α), lopinavir/ritonavir, arbidol, and ribavirin 
from among prime candidate drugs have been introduced 
for treating COVID-19.

Drug repurposing is regarded as a way to discover new 
applications of the existing drugs in treating various diseases 
[1]. This technique may speed up the process of finding the 
therapeutic compounds for the newly emerged illnesses 
[2–6]. Signature matching, which is based on detecting 
the unique signatures of drugs, is one of the computational 
approaches to be used. Chemical structures, transcriptomic 
(RNA), and proteomic or metabolomic data, and adverse 
event profiles are some samples of drug signatures [1]. The 

similarity between the drug-disease and drug-drug predic-
tions can be identified by matching transcriptomic signatures 
[7, 8]. To discover the drug-disease similarity to drug-drug, 
the differentially expressed genes (DEGs) are first measured 
before and after using drugs for a cell line or a tissue and, 
then, compared with DEGs which correspond with healthy 
samples. Moreover, considering the hypothesis of the similar 
therapeutic mechanisms of drugs, various signatures can be 
taken into account when determining the drug-drug’s simi-
larity to drug-disease [9].

Deep learning, which utilizes artificial neural networks 
(ANN) concepts, is a branch of machine learning tech-
niques. One of the main benefits of deep learning is its abil-
ity to automatically detect relationships between features and 
form a multilayer stack of neural networks with nonlinear 
input–output mappings [10].

Compared with the other machine learning methods, 
multimodal learning, which connects the existing informa-
tion about multiple modalities, has many advantages such as 
representing features, supporting different states of fusion, 
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learning the architecture of fusion, and expanding based on 
the number of modalities and data sizes [11]. In the multi-
modal fusion setting, all of the modalities data are accessible 
in the whole phases [12].

Considering the spread of SARS-CoV-2 at lightning 
speed, there is an urgent need to find promising drugs to 
inhibit the virus from spreading and control COVID-19. As 
part of our ongoing program associated with developing 
computational methods as well as drug repurposing [3, 6, 
13], we aimed to introduce a multimodal RBM approach, 
named MM-RBM, to find the drugs that are very similar 
to the four above-mentioned drugs tested on COVID-19. 
To this end, we used the data on the chemical structures 
of medicines as well as DEGs identified after using drugs.

Materials and methods

Preparation of datasets

Two central databases of Harmonizome and LINCS were 
explored to extract appropriate datasets. Harmonizome gath-
ers the knowledge and information about genes and proteins 
(https​://amp.pharm​.mssm.edu/Harmo​nizom​e) [14]. It contains 
114 datasets on different subjects; one of them comprises the 
differentially expressed genes (DEGs) along with small mol-
ecules perturbations retrieved from the LINCS (Literacy Infor-
mation and Communication System) database [15]. All of the 
small molecules, which were injected into cells in different 
doses and time points, were downloaded (4 million records). 
After excluding the unreadable data and N/A values, first, a 
matrix containing small molecules (applied in various doses 
and time points) was constructed in rows and then genes were 
formed in columns. In the constructed matrix, “1”, “−1”, and 
“0” were assigned to the up-regulated genes, down-regulated 
genes, and unchanged genes, respectively. To create a univer-
sal ID for all of the data, the small molecules’ IDs (BIRD-
ID) were converted into the PubChem Compound ID (CID). 
For this purpose, all the 40,000 small molecules, deposited 
in the LINCS project, were downloaded. Then, LINCS-ID, 
PubChem-ID, and BIRD-ID were specified for each fragment. 
Since there existed no PubChem-IDs for 77 BIRD-IDs, they 
were removed in the further data analysis. After testing vari-
ous dimension reduction methods, variance calculations were 

selected and the columns (DEGs), i.e., the third quantile of 
variances, with higher values were maintained.

Moreover, all the small molecules’ SMILE codes which 
represent the chemical features were downloaded from 
PubChem. MACC fingerprint, which is a static binary of each 
molecule, was also determined using the PADEL package. 
MACC fingerprint may be more useful than the other static 
fingerprints such as PubChem, KRFP, and some dynamic 
fingerprints like ECFP [13]. The columns with zero variance 
were removed too.

Table 1 shows the number of the components of drug-
DEGs and drug–chemical features data matrices before 
and after preprocessing. First, to acquire an expression data 
matrix for 29,074 small molecules, the binary data between 
the small molecules and the genes were downloaded from 
the Harmonizome database. Next, a matrix with 8,000 genes 
was obtained. Considering the large number of features, the 
upper third quantile of variances was chosen as features. To 
acquire the chemical features of these molecules, first, their 
SMILE was downloaded, and, then, 166 MACC properties 
were calculated for each molecule. Consequently, a matrix 
containing 166 columns was created. However, the columns 
whose variances were zero were removed. The end result of 
the above-mentioned process was a matrix with 156 columns, 
which was regarded as the final matrix. The elements of both 
matrices were assigned 0 or 1.

Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is a popular unsu-
pervised stochastic neural network. When a neuron is acti-
vated, it will show random behavior. The binary RBM con-
tains both the visible ( vi and hidden ( hj layers that are fully 
connected via pair-wise potentials. However, the limitation of 
no within-layer connection is applied to both the visible and 
hidden layers [16]. The distribution of the hidden units h , given 
the visible units v, is as follow:

and the distribution of the hidden units v , given the visible 
units h, is as follow:

p(h ∨ v;�) =
∏

j

p
(

hj ∨ v
)

Table 1   Characteristics of drug-DEGs and drug–chemical features data matrixes

Number of DEGs (columns) Number of molecules 
(rows)

Number of DEGs (columns) Number of molecules 
(rows)

Data type

After preprocessing Before preprocessing
2086 29,074 8351 29,074 Drug-DEGs data
16 29,074 166 29,074 Drug–chemical data

https://amp.pharm.mssm.edu/Harmonizome
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The conditional distributions of the binary RBM are also 
specified as follow:

in which aj and bi are the biases of visible and hidden units, 
respectively, Wij is the symmetric interaction term between 
the two units, and � = {w, b, a} is the parameter of the 
model. Here, the contrastive divergence (CD) algorithm was 
employed to update θ during the training process. To speed 
up the learning process of RBM and elevate the accuracy, 
the number of data reconstruction iterations (k) was gradu-
ally increased using the CD algorithm (CDK).

Multimodal deep feature fusion

Gathering information through merging various modalities 
yields better results in the drug-disease and drug-target pre-
dictions [17] as well as drug repurposing [18–20]. In the 
present study, we employed our proposed systematic method 
in a probabilistic manner to elicit multimodal feature rep-
resentations. In this method, to overcome the difficulties 
of finding correlations between different modalities which 
comprise various statistical properties, the layers of hid-
den units were placed between the modalities. Moreover, 

p(v ∨ h;�) =
∏

i

p
(

vi ∨ h
)

p
(

hj = 1|v
)

= �

(

∑

i

Wijvi + aj

)

p
(

vi = 1|h
)

= �

(

∑

j

Wijhj + bi

)

a multimodal restricted Boltzmann machine (MM-RBM)-
based framework was applied to acquire both the intra- 
and cross-modality relationships and identify drug clus-
ters through information obtained from both the chemical 
structures and gene expressions modalities. The fusion of 
different modalities may provide us with supplementary 
information and increase the accuracy of our results [21]. 
After the CD learning algorithm was utilized to discover the 
intra- and cross-modality features of multi-platform data, 
the final states of the joint representation of latent features 
were applied to classify drugs based on the cross-platform 
input data. For this purpose, an integrative clustering of the 
multi-platform cancer data was provided [22]. Generally, 
this approach was a success in capturing the posterior dis-
tribution of the expository factors of the input data. Figure 1 
demonstrates a multimodal deep network in which one path 
indicates the statistical traits of chemical features, and the 
other one shows those of DEGs. The top common hidden 
layer determines the common properties of the modalities. 
This method is different from the previously proposed mul-
timodal approaches, in which first the features are extracted 
individually from various modalities, and then, kernel 
machines are employed to combine them [21, 23].

Learning method

We employed a multimodal RBM approach (MM-RBM) from 
among a multitude of available clustering methods [21, 22]. 
Our proposed MM-RBM includes two stages: (1) using RBM 
to encode the hidden features determined by each input modal-
ity and fusing cross-platform modalities using a joint repre-
sentation of hidden variables and (2) identifying the common 
features. For the purpose of applying the proposed MM-RBM, 

Fig. 1   Multimodal restricted 
Boltzmann machine
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we first initialized the parameters W, b, c employing a ran-
dom generator and then trained a stack of RBM layer by layer 
through applying the CDK algorithm to each unlabeled data 
(20,974 for the chemical features and DEGs data), separately. 
We divided the epochs into 10 sectors and elevated k one by 
one in each sector division. This pre-training approach was 
applied to both the chemical features and DEGs data twice. 
Next, we applied one RBM layer with 154 binary features and 
two stacked RBM layers with 2086 binary features as inputs 
in the chemical features and DEGs, respectively. The resultant 
values of chemical features and DEGs reconstructed by the CD 
algorithm were in agreement with the experimental input data, 
with the average correlations of 0.80 and 0.68 for the chemical 
features and DEGs dimensions, respectively. Since there were 
high correlations between the reconstructed and input data, the 
hidden layers in our proposed MM-RBM could display the 
innate features of various input data modalities.

At the end, we joined two output layers from two RBM 
models to fuse cross-platform modalities and achieve the 
shared features obtained from different input data. The CDK 
algorithm was used to train the stacked layers of RBM. The 
binary MACC fingerprints which employ the digits 0 or 1 and 
DEGs obtained from the Harmonizome database are the input 
nodes of the two single-modal RBM layers.

We conducted a grid search for hyper-parameter optimiza-
tion. We also carried out research to discover an optimal num-
ber of layers as well as a number of hidden units which utilize 
a nested cross-validation framework. To conduct a search for 
hyper-parameter optimization, the number of layers should 
change from 1 to 5, and the number of hidden units per layer 
must decrease while the depths of the network are 1/2 and 
1/10 in the previous layer. {154,78}, {2086,1043,104}, and 
{182,91} are the best combinations of parameters which we 
managed to obtain for chemical features data, DEGs data, and 
shared features, respectively. We selected RELU as a nonlin-
ear function of hidden neurons. The best learning rate and l2 
regulizers of chemical features and DEGs data were 0.01 and 
0.001, respectively. Figure 2 demonstrates the reconstruction 
error in the RBM layers.

Implementation

The proposed method was implemented in Python 3.6. Ten-
sorFlow [24], and the open-source software library, named 
Keras, was also used [25]. The source codes were executed on 
a PC with a Corei7 CPU having eight cores, 32 GB RAM, and 
a NVIDIA 1070i GPU with 8 GB RAM.

Results and discussion

Clustering of data

The output of the model is categorized into 12 clusters. 
The number of data records and unique drugs in each clus-
ter is shown in Table 2.

In the Harmonizome database, the gene expressions are 
related to different drug dosages corresponding with dif-
ferent time points. Hence, the number of data samples is 
more than the number of drugs.

Model evaluation and identification of clusters

Since the last layer consists of 4 nodes, a maximum of 
16 clusters could be identified. A total of 12 clusters was 
obtained by applying our proposed model. To further 
assess the clusters, the heatmap plots representing the dif-
ference between the values 1 and 0 were depicted for all 
the features in each cluster. Although the separation power 
of clusters was found to be low by applying the chemical 
features, DEGs’ properties helped facilitate the satisfac-
tory separation of clusters (Fig. 3a, b). Besides, instead 
of applying the properties individually, applying them in 
groups of two or a combination of two or more proper-
ties led to the clusters’ much more satisfactory separation 
(Fig. 3c).

We also conducted a variance analysis based on the 
principal component analysis (PCA). Based on the sig-
nificance level (p < 0.05), a total of 10 and 105 significant 
chemical structures and DEGs features were selected, 
respectively. These features are described in detail in the 
Supplementary file 1. The PCA of the mean of MACC 
and DEGs indicated that all the 12 clusters display a sig-
nificantly different pattern in the chemical structures and 
DEGs dimensions. The second principal component in 
cluster #2 in particular exhibited a considerable variance 
in the MACC data, whereas cluster #5 showed the small-
est value. While the first principal component in cluster 
#1 indicated the largest variance in the DEG data, cluster 
#8 demonstrated the smallest value (Fig. 4).

To make an assessment of clusters, we used the Drug-
Path database [26] which contains the drug-induced path-
way information obtained by changing the expression lev-
els of genes after using drugs. The total number of unique 
genes which were dysregulated in each cluster is shown 
in Table 3.

As shown in Fig. 3c, all the 12 clusters can be cat-
egorized into 5 clusters in a manner that clusters #1, #2, 
#3, and #4 are put into cluster A, clusters #5, #6, and #7 
into cluster B, clusters #8 and #9 into cluster C, clusters 



1722	 Molecular Diversity (2021) 25:1717–1730

1 3

#10 and #11 into cluster D, and cluster #12 into cluster 
E. The distribution diagram of genes that have been dys-
regulated in various biological pathways through applying 
different drugs is shown in Fig. 5a. The Venn diagram also 
shows that all the new clusters except cluster B contain 
unique DEGs (Fig. 5b). The complete list of the specific 

and common DEGs in superclusters is listed in the Sup-
plementary file 2.

To evaluate and examine the relationship between the 
clusters and existing drug classes, we selected the class 
labels of 793 drugs of our data from the Therapeutic Use 
hierarchy of the Mesh Database. Sixteen classes were 

Fig. 2   The Reconstruction error in all the RBM layers. a The MACC 
hidden layer 154 × 78. b The Harmonizome hidden layer {2086 × 
1043}. c The Harmonizome hidden layer {1043 × 104}. d The 

Merged MACC and Harmonizome hidden layers {182 × 91}. e The 
Merged MACC and Harmonizome hidden layers {91 × 4}
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identified. Except for some classes of drugs, which belong 
to only a number of clusters, other classes such as anti-
neoplastic agents, central nervous system, cardiovascular 
agents or anti-inflammatory agents emerged in almost all 
the clusters by the same percentage. For example, cluster 
#11 contains only the class of urological drugs. Smoking 
and antiemetic agents’ classes belong to clusters #1 and #8, 
respectively. Although the dermatology class is distributed 
in all the clusters, its drugs can be found in cluster #2. Also, 
about a half of the hematologic agents has been included in 
clusters #2 and #6. The full picture of this study is given in 
the supplementary file 5.

Table 2   The number of different clusters obtained by applying the 
proposed method

Cluster 1 Cluster 2 Cluster 3 Cluster 4
#Record 

(#Drug)
(405) 537 (116)124 (1812) 4865 (1097) 2094
Cluster 5 Cluster 6 Cluster 7 Cluster 8

#Record 
(#Drug)

(1281)2660 (639) 954 (1451) 3150 (399) 515
Cluster 9 Cluster 10 Cluster 11 Cluster 12

#Record 
(#Drug)

(2121) 6630 (1538)3695 (1288) 2728 (744)1122

Fig. 3   The heatmap plots of clusters based on (a) the chemical structure features, b) DEGs features, and c) both the chemical structures and 
DEGs features
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Comparing multimodal and unimodal

As it has been emphasized in various works regarding drug 
repurposing, data integration yields better results [27]. 
Although using exclusively the chemical data results in the 
classification of strikingly similar drugs in one category, one 
cannot necessarily replace the other In other words, while 
two drugs can have completely similar chemical structures, 
there may be great differences between them in terms of their 
effectualness in treating the disease. Pharbital, for example, 
can produce an entirely different effect with a slight change 
in its chemical structure [28]. Therefore, although compared 
to the integrated data, the internal evaluation criteria yield 
better results on the chemical data types, it cannot be suf-
ficient. Further, the addition of the expression data types 
can produce more accurate and sensible biological results. 
However, we tested our method on exclusively chemical data 

types, with the result that it was established in 15 clusters. 
To make a comparison between multimodal and unimodal 
data, we used the Tanimoto criterion as an internal criterion 
to find out the average of both cohesion within and separa-
tion of clusters. By calculations, cohesion within single and 
combination data equaled 0.53 and 0.63, respectively.

Moreover, the calculated separation values of single and 
combination data were 0.63 and 0.65, respectively (lower 
cohesion and higher separation are desirable). The resultant 
values indicated that although the clusters of exclusively 
chemical data appear to have more internal cohesion com-
pared to the other ones, there are no marked differences in 
clusters’ behavior. Based on the outcomes of our method, 
due to remarkable similarity between DEGs, which are 
located in the same cluster, chemical data cohesion is low, 
and one may replace the other.

Drug repurposing for COVID‑19

The COVID-19 epidemic outbreak provided the impetus 
for many studies which have been carried out to find the 
most effective treatment. To this end, scientists and medi-
cal specialists have proposed and tested a number of drugs 
which are usually used in the treatment of other diseases 
[29–33]. In the present study, first, we selected hydroxy-
chloroquine, lopinavir, disulfiram, and nitazoxanid from 
among prime drugs because the Harmonizome database 
contains the genes expressions information as well as 
DEGs which were identified in the course of treatment 
with the above-mentioned drugs. Then, we searched for 
similar drugs. As shown in Fig. 6, hydroxychloroquine, 
lopinavir, disulfiram, and nitazoxanide fit into cluster 
#5, clusters #3 and #10, clusters #3 and #10, and clusters 

Fig. 4   The PCA plots for a the MACC and b DEGs data

Table 3   The total number of specific dysregulated genes in each clus-
ter

Cluster # Specific dysregulated 
gene

Example genes

3 21 5641+, 4041−
4 8  5322+, 10,652−
5 5  10,452+, 567−
6 3  2956+,  1270+
7 6 9846+, 2568−
9 56 661+,779−
10 17  5729+, 7100−
11 9  8986,50,617−
12 3  971+, 57,804−
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#4 and #10, respectively. Each of these clusters contains 
drugs that are classified in terms of the existing similarity 
between the chemical structure features and DEGs. A total 
of 415 drugs was identified; these drugs produce effects 
resembling those generated by the four above-mentioned 
drugs. A list of drugs in each cluster is presented in the 
Supplementary file 3.

After treating the diseases with these drugs, we identi-
fied the similarities between every two drugs in each clus-
ter in terms of the chemical features and the dysregulated 
genes. As shown below, we utilized the Tanimoto coeffi-
cient to determine the chemical features similarities:

where n represents the number of chemical features in each 
drug (a, b) and (c) demonstrates the intersection set.

Moreover, to determine the DEGs’ similarities in 
every pair of drugs, we used a similarity measure based 
on the dysregulated genes in which each gene’s score was 
computed:

T(a, b) =
Na

Na + Nb − Nc

Fig. 5   a The heatmap of DEGs in each cluster; b Venn diagram contains the common and unique number of DEGs in each cluster

Fig. 6   Drugs that are similar 
to four potential drugs used for 
COVID-19
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At the end, the total number of genes in every pair of 
drugs was calculated using the following equation:

where a and b represent the drugs, ai is the i′ feature in the 
drug (a), and n is the number of genes in each drug.

Through applying the similarity measures, we identified 
the drugs that closely resembled the representative of each 
cluster. With regard to the chemical structures and drugs’ 
effects on the gene expressions, we picked the drugs which 
bore a remarkable similarity to each drug in each cluster. 
Then, we examined the Comparative Toxicogenomics 
Database (CTD) [34] to further evaluate the accuracy of 
the selected drugs. Figure 7 shows that a majority of drugs 
are linked to COVID-19 by at least one dysregulated gene. 
Some of them such as chlorpromazine, nelfinavir, dasatinib, 
tamoxifen, and dabrafenib share more than one DEG iden-
tified in the course of testing them on the treatment of the 

sim(a
i
, b

i
) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if a
i
= b

i
= 0

+2 if a
i
= b

i
= +1 or a

i
= b

i
= −1

−1 if (a
i
= 0 and �

�

b
i
�

�

= 1) or (�
�

a
i
�

�

= 1 and b
i
= 0

−2 a
i
∗ b

i
= −1

SIM(a, b) =
∑

i

sim(ai, bi)

disease. Chlorpromazine, from among these drugs, has a 
therapeutic effect on the Middle East respiratory syndrome 
coronavirus (MERS-CoV) [35], nelfinavir has a therapeutic 
impact on human immunodeficiency viruses (HIV) and hep-
atitis C [36], and riboflavin on HIV. Although dabrafenib, 
gefitinib, and dasatinib have been approved in the treatment 
of various cancers, they affect the expression of genes that 
are dysregulated in viral diseases, especially in coronavi-
rus-related ones. Niclosamide is also an FDA-approved 
anthelmintic drug which has the therapeutic potential in 
the coronavirus family [37]. Selamectin, which is a topical 
parasiticide and anthelmintic drug and has been approved for 
treating dogs and cats, was introduced as an efficient drug in 
the treatment of COVID-19 [38]. Since we did not observe 
any connection between the dysregulated genes and COVID-
19 in CTD, we did not mention it in Fig. 7. A majority of 
our proposed drugs have many interactions with a number 
of viral diseases, so they have the therapeutic potential on 
COVID-19. Amodiaquine, vidarabine, and quinacrine are 
also associated with a large number of other viral diseases, 
including the coronavirus family. The complete information 
on the proposed drugs can be found in the Supplementary 
file 4.

Fig. 7   Candidate Drugs and 
their relationship with COVID-
19
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Chemical structural similarities between drugs

To assess the chemical structures of the candidate drugs, we 
investigated the similarities among the chemical structures 
of the proposed drugs and hydroxychloroquine, lopinavir, 

disulfiram, and nitazoxanide [39]. As mentioned earlier, we 
examined a wide range of small molecules in the drug bank 
database. Upon examination, we found 45 small molecules 
that could be chosen as promising drugs for treating COVID-
19. From among these molecules, some representatives, 
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which possess some features in common with the medicines 
that produce rather satisfactory results in protecting the body 
against this type of coronavirus, were identified. Hydroxy-
chloroquine contains a nitrogen aromatic heterocyclic ring 
named quinoline; lopinavir contains amides functional 
groups, and nitazoxanide has a thiazole ring (Fig. 8, box A). 
The same kinds of features were identified in amodiaquine, 
nelfinavir, dabrafenib, and dasatinib, respectively. Moreo-
ver, it was found that vidarabine, puromycin, and azacitidine 
contain hydroxytetrahydrofuran resembling remdesivir as 
well as EIDD-2801 (Fig. 8, box B), which was suggested 
for treating COVID-19.

Proposing various drugs has made it possible for 
researchers and medical specialists to discover an effec-
tive as well as efficient remedy at a rapid pace. Considering 
both the devised and previously used drugs, herein, we rig-
orously concentrated on their chemical structures similari-
ties. we aimed to devise modified small molecules which 
compared to the previous candidates have fewer side effects 
and employ a synthetic route to create the desired products 
easily and cost-effectively. Like hydroxychloroquine that 
comprises quinolones, ten drugs which contain a quinoline 
ring were yielded as the end results. Many of the quino-
line derivatives, which are regarded as useful compounds, 
can be found in a number of biologically active compounds 
and medicines [40, 41]. To illustrate this, consider the fact 
that quinoline has several antimalarial derivatives such as 
chloroquine, quinine, and primaquine [42]. Our method pro-
poses amodiaquine (used in the treatment of malaria) and 
quinacrine that is considered to be an effective medication 
in the treatment of COVID-19. Like hydroxychloroquine, 
amodiaquine and quinacrine both have a quinoline ring and 
aniline derivatives. To conduct a follow-up study, we found 
that like nitazoxanide which has a thiazole ring and is an 
effective remedy for COVID-19, dasatinib and dabrafenib 
contain the thiazole heterocyclic motif. The thiazole core, 
which has attracted widespread attention, is considered to 
be a pivotal compound in the field of drug discovery. This 
structure is found not only in a biologically active molecule 
like thiamine (vitamin B1) but also in some fungicides such 
as tricyclazole as well as nonsteroidal anti-inflammatory 
drugs, namely meloxicam [43, 44]. Besides, lopinavir, which 
contains two amides as well as some functional groups, is 
a pseudo peptide compound. Amides, which are considered 
to be the backbone of vital organic structures of nature, 
enzymes, and proteins in which peptide bonds play a sig-
nificant role in the human’s body, are one of the most impor-
tant functional groups in biochemistry [45]. From among 
the proteins, both the di- and tripeptides from our pseudo 
peptides display a wide range of noticeable bioactivities such 
as antidiabetic, antibacterial, and antitumor activities [46]. 
The machine has introduced some drug structures which 
significantly contain pseudo peptide scaffolds.

As evidenced in Fig. 8, nelfinavir, which is an antiret-
roviral drug and is used in the treatment of HIV, has been 
selected by our approach. This drug contains some func-
tional groups that are similar to those found in Lopinavir. 
Furthermore, riboflavin which is known as vitamin B2 and 
has approximately the same structure (e.g., benzopyrazine 
and cyclic urea) as hydroxychloroquine and lopinavir do, 
was chosen by the machine as a remedy for COVID-19.

Riboflavin, which is used as a dietary supplement, is a 
vitamin found in food. Recent studies argue that riboflavin 
might prove useful in treating viral diseases [47].

It worth noting that a vast number of scientific studies 
have introduced a number of drugs and small molecules to 
treat COVID-19. Remdesivir, which has been previously 
suggested as a potential treatment for Ebola (in the litera-
ture, 2016), is also being researched as a possible remedy for 
COVID-19 [48–50]. Besides, EIDD-2801, as an experimen-
tal small molecule, was found to possess some therapeutic 
potential to treat COVID-19 [51]. Remdesivir and EIDD-
2801 both contain hydroxytetrahydrofuran in which at least 
one nitrogen heterocyclic ring is connected to the central 
core. Through conducting a precision chemical analysis of 
the proposed small molecules, the machine firmly showed 
that some drug-containing hydroxy tetrahydrofurans and a 
heterocyclic nitrogen compound might prove to be effec-
tive in treating COVID-19. Interestingly enough, these small 
molecules skeletally resemble EIDD-2801 and Remdesivir, 
and in contrast to EIDD-2801 which is considered to be an 
experimental small molecule, these specified compounds are 
regarded as a drug. For example, vidarabine, which fits into 
the category of hydroxychloroquine, resembles EIDD and 
possesses a hydroxy tetrahydrofuran core with a heterocyclic 
nitrogen compound.

Conclusion

In this study, a multimodal restricted Boltzmann machine 
(mm-RBM) was employed to cluster two types of drug data: 
a fingerprint and DEGs. The first type of data was a binary 
data showing the chemical structures. The second one was 
extracted from drug-induced perturbations in cell lines.

In the proposed multimodal RBM model, first, the intrin-
sic correlations within each input modality were encoded 
using the modality-specific hidden variables. Next, the intra-
modality features were fused by merging unknown variables, 
and a typical representation of cross-platform features was 
formed. The proposed approach indicates that data integra-
tion yields significant clusters. Therefore, the clusters con-
sisting of drugs used for curing COVID-19 were chosen to 
discover medications which may prove useful in treating the 
disease. The introduced drugs, which have antiviral proper-
ties, are similar to advanced drugs that have been applied to 
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control COVID-19. Although the outcomes are significant 
and seem to yield a satisfactory explanation for the recent 
pandemic, further clinical research such as in vitro or in vivo 
tests need to be carried out.
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