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Abstract
A central task in the analysis of human movement behavior is to determine systematic pat-

terns and differences across experimental conditions, participants and repetitions. This is

possible because human movement is highly regular, being constrained by invariance prin-

ciples. Movement timing and movement path, in particular, are linked through scaling laws.

Separating variations of movement timing from the spatial variations of movements is a

well-known challenge that is addressed in current approaches only through forms of prepro-

cessing that bias analysis. Here we propose a novel nonlinear mixed-effects model for ana-

lyzing temporally continuous signals that contain systematic effects in both timing and path.

Identifiability issues of path relative to timing are overcome by using maximum likelihood

estimation in which the most likely separation of space and time is chosen given the varia-

tion found in data. The model is applied to analyze experimental data of human arm move-

ments in which participants move a hand-held object to a target location while avoiding an

obstacle. The model is used to classify movement data according to participant. Compari-

son to alternative approaches establishes nonlinear mixed-effects models as viable alterna-

tives to conventional analysis frameworks. The model is then combined with a novel factor-

analysis model that estimates the low-dimensional subspace within which movements vary

when the task demands vary. Our framework enables us to visualize different dimensions of

movement variation and to test hypotheses about the effect of obstacle placement and

height on the movement path. We demonstrate that the approach can be used to uncover

new properties of human movement.

Author Summary

When you move a cup to a new location on a table, the movement of lifting, transporting,
and setting down the cup appears to be completely automatic. Although the hand could
take continuously many different paths and move on any temporal trajectory, real move-
ments are highly regular and reproducible. From repetition to repetition movements vary,
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and the pattern of variance reflects movement conditions and movement timing. If
another person performs the same task, the movement will be similar. When we look
more closely, however, there are systematic individual differences. Some people will over-
compensate when avoiding an obstacle and some people will systematically move slower
than others. When we want to understand human movement, all these aspects are impor-
tant. We want to know which parts of a movement are common across people and we
want to quantify the different types of variability. Thus, the models we use to analyze
movement data should contain all the mentioned effects. In this work, we developed a
framework for statistical analysis of movement data that respects these structures of move-
ments. We showed how this framework modeled the individual characteristics of partici-
pants better than other state-of-the-art modeling approaches. We combined the timing-
and-path-separating model with a novel factor analysis model for analyzing the effect of
obstacles on spatial movement paths. This combination allowed for an unprecedented
ability to quantify and display different sources of variation in the data. We analyzed data
from a designed experiment of arm movements under various obstacle avoidance condi-
tions. Using the proposed statistical models, we documented three findings: a linearly
amplified deviation in mean path related to increase in obstacle height; a consistent asym-
metric pattern of variation along the movement path related to obstacle placement; and
the existence of obstacle-distance invariant focal points where mean trajectories intersect
in the frontal and vertical planes.

Introduction
When humans move and manipulate objects, their hand paths are smooth, but also highly flex-
ible. Humans do not move in a jerky, robot-like way that is sometimes humorously invoked to
illustrated “unnatural”movement behavior. In fact, humans have a hard time making “arbi-
trary”movements. Even when they scribble freely in three dimensions, their hand moves in a
regular way that is typically piecewise planar [1, 2]. Movement generation by the nervous sys-
tems, the neuro-muscular systems, and the body is constrained by implied laws of motion sig-
natures which are found empirically through invariances of movement trajectories and
movement paths. Among these, laws decoupling space and time are of particular importance.
For instance, the fact that the trajectories of the hand have approximately bell-shaped velocity
profiles across varying movement amplitudes [3] implies a scaling of the time dependence of
velocity. The 2/3 power law [4] establishes an analogous scaling of time with the spatial path of
the hand’s movement. Similarly, the isochrony principle [5] captures that the same spatial seg-
ment of a movement takes up the same proportion of movement time as movement amplitude
is rescaled. Several of these invariances can be linked to geometrical invariance principles [6].

These invariances imply that movements as a whole have a reproducible temporal form,
which can be characterized by movement parameters. Their values are specified before a move-
ment begins, so that one may predict the movement’s time course and path based on just an
initial portion of the trajectory [7]. Movement parameters are assumed to reside at the level of
end-effector trajectories in space and their neural encoding begins to be known [8–10]. The set
of possible movements can thus be spanned by a limited number of such parameters. More-
over, the choices of these movement parameters are constrained. For instance, in sequences of
movements, earlier segments predict later segments [11].

A key source of variance of kinematic variables is, of course, the time course of the move-
ment itself. The invariance principles suggest that this source of variance can be disentangled
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from the variation induced when the movement task varies. In this paper, we will first address
time as a source of variance, focussing on a fixed movement task, and then use the methods
developed to address how movements vary when the task is varied.

Given a fixed movement task, movement trajectories also vary across individuals. Individual
differences in movement, a personal movement style, are reproducible and stable over time, as
witnessed, for instance, by the possibility to identify individuals or individual characteristics
such as gender by movement information alone [12–14].

A third source of variation are fluctuations in how movements are performed from trial to
trial or across movement cycles in rhythmic movements. Such fluctuations are of particular
interest to movement scientists, because they reflect not only sources of random variability
such as neural or muscular noise, but also the extent to which the mechanisms of movement
generation stabilize movement against such noise. Instabilities in patterns of coordination have
been detected by an increase of fluctuations [15] and differences in variance among different
degrees of freedom have been used to establish priorities of neural control [16, 17].

A systematic method to disentangle these three sources of movement variation, time, indi-
vidual differences, and fluctuations, would be a very helpful research tool. Such a method
would decompose sets of observed kinematic time series into a common trajectory (that may
be specific to the task), participant-specific movement traits, and random effects. Given the
observed decoupling of space and time, such a decomposition would also separate the rescaling
of time across these three factors from the variation of the spatial characteristics of movement.

The statistical subfield that deals with analysis of temporal trajectories is the field of func-
tional data analysis. In the literature on functional data, the typical approach for handling con-
tinuous signals with time-warping effects is to pre-align samples under an oversimplified noise
model in the hope of eliminating the effects of movement timing [18]. In contrast, we propose
an analytic framework in which the decomposition of the signal is done simultaneously with
the estimation of movement timing effects, so that samples are continually aligned under an
estimated noise model. Furthermore, we account for both the task-dependent variation of
movement and for individual differences (a brief review of warping in the modeling of biologi-
cal motion is provided in the Methods section).

Decomposition of time series into a common effect (the time course of the movement given
a fixed task), an individual effect, and random variation naturally leads to a mixed-effects for-
mulation [19]. The addition of nonlinear timing effects gives the model the structure of a hier-
archical nonlinear mixed-effects model [20]. We present a framework for maximum-
likelihood estimation in the model and demonstrate that the method leads to high-quality tem-
plates that foster subsequent analysis (e.g., classification). We then show that the results of this
analysis can be combined with other models to test hypotheses about the invariance of move-
ment patterns across participants and task conditions. We demonstrate this by using the indi-
vidual warping functions in a novel factor analysis model that captures variation of movement
trajectories with task conditions.

We use as of yet unpublished data from a study of naturalistic movement that extends pub-
lished work [21]. In the study, human participants transport a wooden cylinder from a starting
to a target location while avoiding obstacles at different spatial positions along the path. Earlier
work has shown that movement paths and trajectories in this relatively unconstrained, natural-
istic movement task clearly reflect typical invariances of movement generation, including the
planar nature of movement paths, spatiotemporal invariance of velocity profiles, and a local
isochrony principle that reflects the decoupling of space and time [21]. By varying the obstacle
configuration, the data include significant and non-trivial task-level variation. We begin by
modeling a one-dimensional projection of the time courses of acceleration of the hand in
space, which we decompose into a common pattern and the deviations from it that characterize
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each participant. The timing of the acceleration profiles is determined by individual time warp-
ing functions which are of higher quality than conventional estimates, since timing and move-
ment noise are modeled simultaneously. The high quality of the estimates is demonstrated by
classifying movements according to participant. Finally, the results of the nonlinear mixed
model are analyzed using a novel factor analysis model that estimates a low-dimensional sub-
space within which movement paths change when the task conditions are varied. This combi-
nation of statistical models makes it possible to separate and visualize the variation caused by
experimental conditions, participants and repetition. Furthermore, we can formulate and test
hypotheses about the effects of experimental conditions on movement paths. Using the pro-
posed statistical models, we document three findings: a linearly amplified deviation in mean
path related to increase in obstacle height; a consistent asymmetric pattern of variation along
the movement path related to obstacle placement; and the existence of obstacle-distance invari-
ant focal points where mean trajectories intersect in the frontal and vertical plane.

Software for performing the described types of simultaneous analyses of timing and move-
ment effects are publicly available through the pavpop R package [22]. A short guide on
model building and fitting in the proposed framework is available as Supporting Information,
along with an application to handwritten signature data.

Methods

Experimental data set
Ten participants performed a series of simple, naturalistic motor acts in which they moved a
wooden cylinder from a starting to a target position while avoiding a cylindric obstacle. The
obstacle’s height and positition along the movement path were varied across experiments (Fig 1).

The movements were recorded with the Visualeyez (Phoenix Technologies Inc.) motion
capture system VZ 4000. Two trackers, each equipped with three cameras, were mounted on
the wall 1.5 m above the working surface, so that both systems had an excellent view of the
table. A wireless infrared light-emitting diode (IRED) was attached to the wooden cylinder.
The trajectories of markers were recorded in three Cartesian dimensions at a sampling rate of
110 Hz based on a reference frame anchored on the table. The starting position projected to
the table was taken as the origin of each trajectory in three-dimensional Cartesian space.
Recorded movement paths for two experimental conditions are shown in Fig 2. The accelera-
tion profiles considered in the following sections were obtained by using finite difference
approximations of the raw velocity magnitude data, see Fig 3.

Obstacle avoidance was performed in 15 different conditions that combined three obstacle
heights S,M, or T with five distances of the obstacle from the starting position d 2 {15, 22.5, 30,
37.5, 45}. A control condition had no obstacle. The participants performed each condition 10
times. Each experimental condition provided n = 100 functional samples for a total of nf = 1600
functional samples in the dataset, leading to a total data size ofm = 175,535 observed time
points.

The present data set is described in detail in [23]. The experiment is a refined version of the
experiment described in [21].

Time warping of functional data
Not every movement has the exact same duration. Comparisons across movement conditions,
participants, and repetitions are hampered by the resulting lack of alignment of the movement
trajectories. For a single condition, this is illustrated in Fig 3(a) and 3(c), in which the duration
of the movement clearly varies from participant to participant but also from repetition to repe-
tition. Without alignment, it is difficult to compare movements. In an experiment such as the
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present, in which start and target positions are fixed, the standard solution for aligning samples
is to use percentual time; the onset of the individual movement corresponds to time 0% and the
end of the movement to time 100%. Such linear warping is based on detecting movement onset
and offset through threshold criteria. As can be seen in Fig 3(b) and 3(c), linear warping does
not align the characteristic features of the acceleration signals very well, however, as there is
still considerable variation in the times at which acceleration peaks. There is, in other words, a
nonlinear component to the variation of timing.

To handle nonlinear variation of timing, the signal must be time warped based on an esti-
mated, continuous, and monotonically increasing function that maps percentual time to
warped percentual time, such that the functional profiles of the signals are best aligned with
each other. Such warping has traditionally been achieved by using the dynamic-time warping
(DTW) algorithm [24] which offers a fast approach for globally optimal alignment under a pre-
specified distance measure (for reviews of time warping in the domains of biological movement
modeling see [25, 26]). DTW is both simple and elegant, but while it will often produce much
better results than cross-sectional comparison of time-warped curves [27–29], it does suffer
from some problems. In particular, DTW requires a pointwise distance measure such as
Euclidean distance. Therefore, the algorithm cannot take serially correlated noise effects in a
signal into account. As a result, basic unconstrained DTW will overfit in the sense of producing
perfect fits whenever possible, and for areas that cannot be perfectly matched, either stretch
them or compress them to a single point. In other words, DTW cannot model curves with sys-
tematic amplitude differences, and using DTW to naively compute time warped mean curves is

Fig 1. Obstacle avoidance paradigm. Participants move the cylindrical objectO from the starting platform
(green) to the target platform by lifting it over an obstacle. Obstacles of three different heights, small (S),
medium (M), and tall (T), were used in the experiment, and the distance from starting position to obstacle d
was varied.

doi:10.1371/journal.pcbi.1005092.g001
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Fig 3. Surface plots of acceleration profiles ordered by repetition (y-axis) in the experiment with
d = 30, T. The figures display (a) raw acceleration in recorded time, (b) raw acceleration in percentual time,
(c) smoothed acceleration in recorded time, and (d) smoothed acceleration in percentual time. The plots allow
visualization of the variation across participants and repetitions.

doi:10.1371/journal.pcbi.1005092.g003

Fig 2. Recorded paths of the hand-held object in space for two experimental conditions: (a) d = 15, S,
(b) d = 30, T.

doi:10.1371/journal.pcbi.1005092.g002
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in general problematic [30, 31]. This lacking ability to model serial correlated effects can be
somewhat mitigated by restricting the DTW step pattern, in particular through a reduced
search window for the warping function and constraints on the maximal step sizes. These are,
however, hard model choices, they are restrictions on the set of possible warping functions,
and they are a difficult to interpret since they seek to fix a problem in amplitude variation by
penalizing warping variation. Instead, a much more natural approach would be to use a data
term that models the amplitude variation encountered in data, and to impose warp regulariza-
tion by using a cost function that puts high cost on undesired warping functions. In the follow-
ing sections, we will propose a model with these properties, which, in addition, allows for
estimating the data term, warp regularization and their relative weights from the data.

To illustrate the difference between DTW and the proposed method, consider the example
displayed in Fig 4 where the recorded z-coordinates (elevation) of one participant’s 10 move-
ments in the control condition (without obstacle) are plotted in recorded time (a) and percen-
tual time (b). These samples have been aligned using DTW by iteratively estimating a
pointwise mean function and aligning the samples to the mean function (10 iterations). The
three rows of Fig 5 display the results of the procedure using three different step patterns. We
first note the strong overfitting of the symmetric and asymmetric step patterns, where the
sequences with highest elevation are collapsed to minimize the residual. Secondly, we note the
jagged warping functions that are results of the discrete nature of the DTW procedure. For
comparison, we fitted a variant of the proposed model with a continuous model for the warp-
ing function controlled by 13 basis functions. We modeled both amplitude and warping effects
as random Gaussian processes using simple, but versatile classes of covariance functions (see
Supporting Information), and estimated the internal weighting of the effect directly from the
samples. The results are displayed in Fig 6. We see that the warped elevation trajectories seem
perfectly aligned, and that the corresponding warping functions are relatively simple, with the
majority of variation being near the end of the movement. It is evident from the figures that
both the alignment is much more reasonable, and the warping functions are much simpler
than the warping functions found using DTW.

Fig 4. Elevation (z-dimension) in (a) observed time and (b) percentual time for one participant’s (no.10)
repetitions of the control condition without obstacle plotted on different time scales.

doi:10.1371/journal.pcbi.1005092.g004

Timing and Movement Path Separation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005092 September 22, 2016 7 / 27



Fig 5. The elevation trajectories from Fig 4 warped with dynamic time warping using different step
patterns. (a)-(b) Symmetric step pattern denotes the so-calledWhite-Neely step pattern that has no local
constraints, (c)-(d) asymmetric step pattern denotes a slope-constrained step pattern where local slopes are
required to be between 0 and 2, and (e)-(f) Sakoe-Chiba step pattern denotes the asymmetric step pattern
proposed in [24, Table I] with a slope constraint of 2.

doi:10.1371/journal.pcbi.1005092.g005
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Two questions naturally arise. Firstly, are the warping functions unique? Other warping
functions could perhaps have produced similarly well-aligned data. Secondly, do we want per-
fectly aligned trajectories? There is still considerable variation of the amplitude in the warped
z-coordinates of the movement trajectories in Fig 4(c), for instance. Some of the variation visi-
ble in the unwarped variant in Fig 4(b) could be due to random variations in amplitude rather
than timing.

Using the time-warping functions that were determined by aligning the z-coordinates of the
movements to now warp the trajectories for the x- and y-coordinates (Fig 7), we see that the

Fig 6. The elevation trajectories from Fig 4 warped with the proposedmodel (a), and the corresponding
predicted warping functions (b).

doi:10.1371/journal.pcbi.1005092.g006

Fig 7. The other two spatial coordinates of the movements from Fig 4 warped with the warping functions
from Fig 6, that were estimated from the elevation component z. (a) displays the warped x-coordinate
trajectories and (b) displays the warped y-coordinate trajectories.

doi:10.1371/journal.pcbi.1005092.g007
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alignment obtained is not perfect. Conversely, were we to use warping functions determined
for the x- or y-coordinate to warp the z-coordinate we would encounter similarly imperfect
alignment. Thus, we need a method that avoids over-aligning, and represents a trade-off
between the complexity of the warping functions and of the amplitude variation in data. In the
next section, we introduce a statistical model that handle this trade-off in a data-driven fashion
by using the patterns of variation in the data to find the most likely separation of amplitude
and timing variation.

Statistical modeling of movement data to achieve time warping. In the following, we
describe inference for a single experimental condition. For a given experimental condition—an
object that needs to be moved to a target and an obstacle that needs to be avoided—we assume
there is a common underlying pattern in all acceleration profiles; all np = 10 participants will
lift the object and move it toward the target, lifting it over the obstacle at some point. This
assumption is supported by the pattern in the data that Fig 3 visualizes. We denote the hypoth-
esized underlying acceleration profile shared across participants and repetitions by θ. In addi-
tion to this fixed acceleration profile, we assume that each participant, i, has a typical deviation
φi from θ, so that the acceleration profile that is characteristic of that participant is θ + φi. Such
a systematic pattern characteristic of each participant is apparent in Fig 3(c) and 3(d). The indi-
vidual trials (repetitions) of the movement deviate from this characteristic profile of the indi-
vidual. We model these deviations as additive random effects with serial correlations so that for
each repetition, j, of the experimental condition we have an additive random effect xij that
causes deviation from the ideal profile. Finally we assume that the data contains observation
noise εij tied to the tracking system and data processing.

Time was implicit, up to this point, and the observed acceleration profile was decomposed
into additive, linear contributions. We now assume, in addition, that each participant, i, has a
consistent timing of the movement across repetitions, that is reflected in the temporal deforma-
tion of the acceleration profile (Fig 3(a) and 3(c)) and is captured by the time warping function
νi. On each repetition, j, of the condition, the timing of participant, i, contains a random varia-
tion of timing around νi captured by a random warping function vij (see Fig 3).

Altogether, we have described the following statistical model of the observed acceleration
profiles across participants:

yijðtÞ ¼ ðyþ φiÞ � ðni þ vijÞðtÞ þ xijðtÞ þ εijðtÞ ð1Þ

where � denotes functional composition, t denotes time, y; φi; ni : R ! R are fixed effects
and vij, xij and εij are random effects. The serially correlated effect xij is assumed to be a zero-
mean Gaussian process with a parametric covariance function S : R� R ! R; the random-
ness of the warping function vij is assumed to be completely characterized by a latent vector of
nw zero-mean Gaussian random variables wij with covariance matrix σ2C; and εij is Gaussian
white noise with variance σ2.

Compared to conventional methods for achieving time warping, the proposed model (1)
models amplitude and warping variation between repetition as random effects, which enables
separation of the effects from the joint likelihood. Conventional approaches for warping model
warping functions as fixed effects and do not contain amplitude effects [18]. The idea of model-
ing warping functions as random effects have previously been considered by [32–34] where
warps were modeled as random shifts or random polynomials. None of these works however
included amplitude variation. Recently, some works have considered models with random
affine transformations for warps and amplitude variation in relation to growth curve analysis
[35, 36]. A generalization that does not require affine transformations for warp and amplitude
variation is presented in [37]. The presented model (1) is a hierarchical generalization of the
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model presented in [37]. In the context of aligning image sequences in human movement anal-
ysis, morphable models [29, 38] model an observed movement pattern as a linear combination
of prototypical patterns using both nonlinear warping functions (estimated using DTW) and
spatial shifts. Thus morphable models are similar to the warping approaches that model both
warp and amplitude effects as fixed [39].

Maximum likelihood estimation of parameters. Model (1) has a considerable number of
parameters, both for linear and nonlinear dependencies on the underlying state variable accel-
eration. The model also has effects that interact. This renders direct simultaneous likelihood
estimation intractable. Instead we propose a scheme in which fixed effects and parameters are
estimated and random effects are predicted iteratively on three different levels of modeling.

Nonlinear model At the nonlinear level, we consider the original model (1), and simulta-
neously perform conditional likelihood estimation of the participant-specific warping func-
tions and predict the random warping functions from the negative log posterior. All other
parameters remain fixed.

Fixed warp model At the fixed warp level, we fix the participant-specific warping effect νi at
the conditional maximum likelihood estimate, and the random warping function vij, at the
predicted values. The resulting model is an approximate linear mixed-effects model with
Gaussian random effects xij and εij, that allows direct maximum-likelihood estimation of
the remaining fixed effects, θ and φi.

Linearized model At the linearized level, we consider the first-order Taylor approximation of
model (1) in the random warp vij. This linearization is done around the estimate of νi plus
the given prediction of vij from the nonlinear model. The result is again a linear mixed-
effects model, for which one can compute the likelihood explicitly, while taking the uncer-
tainty of all random effects—including the nonlinear effect vij—into account. At this level
all variance parameters are estimated using maximum-likelihood estimation.

The estimation/prediction procedure is inspired by the algorithmic framework proposed
in [37]. The estimation procedure is, however, adapted to the hierarchical structure of data
and refined in several respects. On the linearized model level, the nonlinear Gaussian random
effects are approximated by linear combinations of correlated Gaussian variables around the
mode of the nonlinear density. The linearization step thus corresponds to a Laplace approxi-
mation of the likelihood, and the quality of this approximation is approximately second
order [40].

Let yij be the vector of themij observations for participant i’s jth replication of the given
experimental condition, and let yi denote the concatenation of all functional observations of
participant i in the experimental condition, and y the concatenation all these observations
across participants. We denote the lengths of these vectors bymi andm. Furthermore, let σ2Sij,
σ2Si and σ

2S denote the covariance matrices of xij = (xij(tk))k, xi = (xij)j, and x = (xi)i respectively.
We note that the index set for k depends on i and j since the covariance matrices Sij vary in size
due to the different durations of the movements and because of possible missing values when
markers are occluded.

We note that all random effects are scaled by the noise standard deviation σ. This parametri-
zation is chosen because it simplifies the likelihood computations, as we shall see. Finally, we

denote the norm induced by a full-rank covariance matrix A by kzk2A ¼ z>A�1z.
Fixed warp level. We model the underlying profile, θ, and the participant-specific varia-

tion around this trajectory, φi, in the common (warped) functional basisΦ 2 R
m�K , with

weights c = (c1, . . ., cK) for θ and di = (di1, . . ., diK) for φi. We assume that the participant-
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specific variations, φi, are centered around θ and thus
P

idi ¼ 0 2 R
K . Furthermore, the square

magnitude of the weights, di, is penalized with a weighting factor η. This penalization helps
guiding the alignment process in the direction of the highest possible level of detail in the com-
mon profile θ when the initial alignment is poor.

For fixed warping functions νi and vij, the negative log likelihood function in θ = Fc is pro-
portional to

‘ðcÞ ¼ ky �Φck2
InþS

where In denotes the n × n identity matrix. This yields the estimate

ĉ ¼ ðΦ>ðIm þ SÞ�1ΦÞ�1Φ>ðIm þ SÞ�1y:

The penalized negative profile log likelihood for the weights di for φi is proportional to

‘ðdiÞ ¼ kyi �Φiðĉ þ diÞk2Imi
þSi

þ Zd>
i di;

which gives the maximum likelihood estimator

d̂ i ¼ ðΦ>
i ðImi

þ SiÞ�1Φi þ ZIKÞ�1Φ>
i ðImi

þ SiÞ�1ðyi �ΦiĉÞ:

Nonlinear level. Similarly to the linear mixed-effects setting [41], it is natural to predict
nonlinear random effects from the posterior [20], since these predictions correspond to the
most likely values of the random effects given the observed data. Recall that the Gaussian vari-
ables, wij, parametrize the randomness of the repetition-specific warping function vij. Since the
conditional negative (profile) log likelihood function in νi given the random warping function
vij and the negative (profile) log posterior for wij coincide, we propose to simultaneously esti-
mate the fixed warping effects νi and predict the random warping effects vij from the joint con-
ditional negative log likelihood/negative log posterior which is proportional to

pðni;wijÞ ¼
X

j

kyij � ðŷ þ φ̂ iÞ � ðni þ vijÞðtkÞkk2InijþSij
þ
X

j

kwijk2

c : ð2Þ

Since the variables wij can be arbitrarily transformed through the choice of warping function
vij, the assumption that variables are Gaussian is merely one of computational convenience.

Linearized level. We can write the local linearization of model (1) in the random warping
parameters wij around a given prediction w0

ij as a vectorized linear mixed-effects model

y � ϑþ Zðw � w0Þ þ x þ ε ð3Þ

with effects given by

ϑ ¼ fðyþ φiÞ � ðni þ v0ijÞðtkÞgijk 2 R
m;

Z ¼ diagðZijÞij; Zij ¼ f@tðyþ φiÞ � ðni þ v0ijÞðtkÞðrwv
0
ijðtkÞÞ>gk 2 R

mi�nw ;

w ¼ ðwijÞij � N npnw
ð0; s2

Inp
� CÞ; x � N mð0; s2SÞ; ε � N mð0; s2

ImÞ;

where v0ij indicates that the warping function is evaluated at the prediction w0
ij, diag(Zij)ij is the

block diagonal matrix with the Zij matrices along its diagonal, and� denotes the Kronecker
product.
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Altogether, twice the negative profile log likelihood function for the linearized model (3) is

‘ðs2;C; SÞ ¼ m log s2 þ log detV þ s�2ky � ϑ̂ þ Zw0k2V ð4Þ

where V ¼ Sþ ZðIn � CÞZ> þ Im.
Modeling of effects and algorithmic approach. So far, the model (1) has only been pre-

sented in a general sense. We now consider the specific modeling choices. The acceleration
data has been rescaled using a common scaling for all experimental conditions, such that the
span of data values has length 1 and the global timespan is the interval [0, 1].

To model the amplitude effects, we use a cubic B-spline basis F with K knots [42].
We require that the fixed warping function νi is an increasing piecewise linear homeomor-

phism parametrized by nw equidistant anchor points in (0, 1), and assume that vij is of the form

vijðtÞ ¼ t þ E ijðtÞ;

where E ijðtÞ is the linear interpolation at t of the values wij placed at the nw anchor points in

(0, 1). In the given experimental setting, the movement path is fixed at the onset and the end of
the movement. The movement starts when the cylindrical object is lifted and ends when it is
placed at its target position. Thus, we would expect the biggest variation in timing to be in the
middle of the movement (in percentual time). These properties can be modeled by assuming
that wij is a discretely observed zero-drift Brownian bridge with scale σ2 γ2 [43], which means
that the covariance matrix σ2C is given by point evaluation of the covariance function

Cðt; t0Þ ¼ s2g2 tð1� t0Þ

for t� t0. When predicting the warps from the negative log posterior we restrict the search
space to warps νi and νi + vij that are increasing homeomorphic maps of the domain [0, 1] onto
itself. The conditional distribution of νij given this restriction is slightly changed. For the used
numbers of anchor points nw and the estimated variance parameters the difference is however
minuscule, and we use the original Brownian model as a high-quality approximation of the
true distribution.

We assume that the sample paths of the serially correlated effects xij are continuous and that
the process is stationary [44]. A natural choice of covariance is then the Matérn covariance
with smoothness parameter μ, scale σ2τ2 and range 1/α [45], since it offers a broad class of sta-
tionarity covariance functions.

Finally, in order to consistently penalize the participant-specific spline across experimental
conditions with varying variance parameters, we will use penalization weights that are normal-
ized with the variance of the amplitude effects, η = λ/(1 + τ2).

The algorithm for doing inference in model (1) is outlined in Algorithm 1. We have found
that imax = jmax = 5 outer and inner loops are sufficient for convergence. A wide variety of these
types of models can be fitted using the pavpop R package [22]. A short guide on model build-
ing and fitting is available as Supporting Information.

Algorithm 1Maximum likelihood estimation for model (1)
1: procedure MLE (y, η, τ2, α, γ2)

2: Compute ŷ and φ̂1; . . . ; φ̂m assuming an identity warp ⊳ Initialize
3: for i = 1, . . ., imax do ⊳ Outer iterations
4: for j = 1, . . ., jmax do ⊳ Inner iterations
5: Estimate and predict warping functions by minimizing the posterior

Eq (2)
6: if Estimates and predictions do not change then break
7: end if
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8: Recompute ŷ and φ̂1; . . . ; φ̂m

9: end for
10: Estimate variance parameters by minimizing the linearized likeli-

hood Eq (4)
11: end for

12: return ŷ, φ̂1; . . . ; φ̂m, n̂1; . . . ; n̂m, ŝ2, Ẑ, t̂2, â, ĝ2 ⊳ Maximum likelihood
estimates

13: end procedure

In the following we consider two approaches, with (1) samples parametrized by recorded
time (Fig 3a) and (2) samples parametrized by percentual time (Fig 3b). Parameters for the lat-
ter case will be denoted by a subscript p.

The number of basis functions K, the number of warping anchor points nw, and the regulari-
zation parameter λ were determined by the average 5-fold cross-validation score on each of
three experimental conditions (d = 30 cm and obstacle heights S,M, and T). The models were
fitted using the method described in the previous section, and the quality of the models was
evaluated through the accuracy of classifying the participant from a given movement in the test
set, using posterior distance between the sample and the combined estimates for the fixed effects
(θ + φi) � νi. The cross-validation was done over a grid of the following values μ, μp 2 {0.5, 1, 2},
K 2 {8, 13, 18, 23, 28, 33}, Kp 2 {8, 9, . . ., 18}, nw, nwp 2 {0, 1, 2, 3, 5, 10}, λ, λp 2 {0, 1, 2, 3}. The
best values were found to be μ = 2, K = 23, nw = 2, λ = 2 and μp = 1 Kp = 12, nwp = 1, λp = 0. We
note that the smoothness parameter μ = 2 is on the boundary of the cross-validation grid. The
qualitative difference between second order smoothness μ = 2 (corresponding to twice differen-
tiable sample paths of amplitude effects) and higher order is so small, however, that we chose to
ignore higher order smoothness. Furthermore, λp = 0 indicates that we do not need to penalize
participant-specific amplitude effects when working with percentual time. The reason is most
likely that the samples have better initial alignment in percentual time. The estimated partici-
pant-specific acceleration profiles using percentual time can be seen in Fig 8.

A simulation study that validates the method and implementation on data simulated using
the maximum likelihood estimates of the central experimental condition (d = 30.0 cm, medium
obstacle) is available as Supporting Information.

Results

Identification of individual differences
A first assessment of the strength of the statistical model (1) is to examine the extent to which
the model captures individual differences. Proper modeling of systematic individual differences
is not only of scientific interest per se, but also provides perspective for interpreting any
observed experimental effects. To validate the capability of the model to capture systematic
individual differences, we use the model to identify an individual from the estimated individual
templates. Such identification of individuals is becoming increasingly relevant also in a practi-
cal sense with the recent technological advances in motion tracking systems, and the growing
array of digital sensors in handheld consumer electronics. Consistent with the framing of
model (1), we perform identification of individual participants on the basis of the data from a
single experimental condition. This is, in a sense, a conservative approach. Combining data
across the different conditions of the experimental tasks would likely provide more discrimina-
tive power given that personal movement styles tend to be reproducible.

The classification of the movement data is based on the characteristic acceleration profile
computed for each participant. For this to work it is important that individual movement dif-
ferences are not smoothed away. The hyperparameters of the model were chosen with this
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requirement in mind. In the following, we describe alternative methods we considered. For all
approaches, the stated parameters have been chosen by 5-fold cross-validation on the experi-
mental conditions with obstacle distance d = 30.0 cm. The grids used for cross-validation are
given as Supporting Information section. Recall that subscript p indicates the use of percentuall
time.

Fig 8. Estimated fixed effects (θ + φi) � νi in the 15 obstacle avoidance experiments using percentual
time. The dashed trajectory shows the estimate for θ. The average percentual warped time between two
white vertical bars corresponds to 0.2 seconds.

doi:10.1371/journal.pcbi.1005092.g008
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Nearest Participant (NP) NP classification classifies using the minimum combined pointwise
L2 distance to all samples for every individual in the training set.

Modified Band Median (MBM)MBM classification estimates templates using the modified
band median proposed in [46], which under mild conditions is a consistent estimator of the
underlying fixed amplitude effects warped according to the modified band medians of the
warping functions. Classification is done using L2 distance to the estimated templates. In the
computations we count the number of bands defined by J = 4 curves [46, Section 2.2]. MBMp

used Jp = 2.

Robust Manifold Embedding (RME) RME classification estimates templates using the robust
manifold embedding algorithm proposed in [47], which, assuming that data lies on a low-
dimensional smooth manifold, approximates the geodesic distance and computes the
empirical Fréchet median function. Classification is done using L2 distance to the estimated
templates.

Dynamic TimeWarping (DTW) DTW classification estimates templates by iteratively time
warping samples to the current estimated personal template (5 iterations per template)
using an asymmetric step pattern (slopes between 0 and 2). The template is modeled by a B-
spline with 33 degrees of freedom. DTWp used 16 degrees of freedom.

Fisher-Rao (FR) FR classification estimates templates as Karcher means under the Fisher-Rao
Riemannian metric [48] of the data represented using a single principal component [49].
Čencov’s theorem states that the Fisher-Rao distance is the only distance that is preserved
under warping [50], and in practice the distance is computed by using a dynamic time warp-
ing algorithm on the square-root slope functions of the data. Classification is done using L2

distance to the estimated templates.

Elastic Fisher-Rao (FRE) FRE classification estimates templates analogously to FR, but classi-
fies using the weighted sum of elastic amplitude and phase distances [51, Definition 1 and
Section 3.1]. The phase distance was weighted by a factor 1.5. FREp uses two principal com-
ponents and a phase distance weight of 1.

Timing and Motion Separation (TMS) The proposed TMS classification estimates templates
of the fixed effects (θ + φi) � νi using Algorithm 1. Classification is done using least distance
measured in the negative log posterior Eq (2) as a function of the test samples. The parame-
ters were set as described in the previous section.

We evaluate classification accuracy using 5-fold cross-validation, which means that eight
samples are available in the training set for every participant. The folds of the cross-validation
are chosen chronologically, such that the first fold contains replications 1 and 2, the second
contains 3 and 4 and so on. The results are available in Table 1. We see that TMS and TMSp
achieve the highest classification rates, followed by FREp, FRp and RMEp. Thus, the model
enables identification of individual movement style. Furthermore, we note that there is little
effect of using percentual time for the proposed method, which for all other methods gives a
considerable boost in accuracy. This suggests that the TMS methods align data well without
the initial linear warping and the endpoint constraints of percentual time.

Factor analysis of spatial movement paths
In the previous section, the proposed modeling framework was shown to give unequalled accu-
racy of modeling the time series data for acceleration. In this section we use the warping func-
tions obtained to analyze the spatial movement paths and their dependence on task conditions.
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Temporal alignment of the spatial positions along the path for different repetitions and partici-
pants is necessary to avoid spurious spatial variance of the paths. The natural alignment of two
movement paths is the one that matches their acceleration signatures. In other words, spatial
positions along the paths at which similar accelerations are experienced should correspond to
the same times. Thus, each individual spatial trajectory was aligned using the time warping pre-
dicted from the TMSp-results of the previous section. Every sample path was represented by 30
equidistant sample points in time at which values were obtained by fitting a three-dimensional
B-splines with 10 equidistantly spaced knots to each trajectory.

As an exemplary study, we analyze how spatial paths depend on obstacle height. We do this
separately for each distance, so that we perform five separate analyses, one for each obstacle
placement. In each analysis we have 10 participants with 10 repetitions for each of 3 obstacle

heights. The three-dimensional spatial positions along the movement path, yijh 2 R
30�3,

depend on participant i = 1,. . .,10, repetition j = 1,. . .,10 and height h = 1,2,3.
We are interested in understanding how the space-time structure of movement captured in

the 30 by 3 dimensions of the trajectories, yijh, varies when obstacle height is varied. We seek to
find a low-dimensional affine subspace of the space-time representation of the movements
within which movements vary, once properly aligned. That subspace provides a low-dimen-
sional model of movement paths on the basis of which we can analyze the data.

We identify the low-dimensional subspace based on a novel factor analysis model. In anal-
ogy to principal component analysis (PCA), q so-called loadings are estimated that represent
dominant patterns of variation along movement trajectories. In contrast to PCA, the factor
analysis model does not only model the residual-variance of independent paths around the
mean, but also allows one to include covariates from the experimental design, for example by
taking the repetition structure of participants and systematic effects of obstacle height into
account. In other words, the proposed factor analysis model is a generalization of PCA suitable
for addressing the question at hand while obeying the study design.

The idea is to use the mean movement trajectory, θ 2 R
30�3, of one condition, the lowest

obstacle height, as a reference. The movement trajectories yijh (30 time steps and 3 Cartesian

Table 1. Classification accuracies of various methods. Bold indicates best result(s), italic indicates that the given experiments were used for training.

d obstacle NP NPp MBM MBMp RME RMEp DTW DTWp FR FRp FRE FREp TMS TMSp

15.0 cm S 0.36 0.48 0.53 0.43 0.55 0.57 0.52 0.52 0.47 0.54 0.62 0.51 0.70 0.76

M 0.36 0.46 0.38 0.45 0.41 0.43 0.49 0.56 0.36 0.49 0.47 0.46 0.69 0.66

T 0.41 0.47 0.41 0.46 0.49 0.50 0.43 0.43 0.32 0.56 0.49 0.49 0.64 0.62

22.5 cm S 0.36 0.49 0.34 0.46 0.37 0.50 0.45 0.44 0.44 0.51 0.50 0.51 0.70 0.68

M 0.38 0.44 0.42 0.53 0.46 0.55 0.38 0.42 0.32 0.45 0.42 0.55 0.62 0.74

T 0.36 0.49 0.45 0.54 0.46 0.57 0.40 0.53 0.48 0.57 0.53 0.64 0.61 0.64

30.0 cm S 0.27 0.29 0.37 0.47 0.41 0.45 0.43 0.44 0.40 0.43 0.46 0.55 0.63 0.65

M 0.30 0.42 0.38 0.46 0.40 0.45 0.34 0.49 0.36 0.48 0.46 0.47 0.65 0.65

T 0.37 0.44 0.42 0.50 0.50 0.45 0.44 0.44 0.37 0.50 0.39 0.43 0.74 0.69

37.5 cm S 0.28 0.45 0.41 0.49 0.42 0.51 0.45 0.50 0.36 0.51 0.39 0.56 0.69 0.74

M 0.26 0.33 0.33 0.37 0.35 0.41 0.40 0.49 0.35 0.37 0.32 0.53 0.57 0.62

T 0.31 0.43 0.38 0.43 0.40 0.46 0.37 0.29 0.50 0.48 0.49 0.55 0.63 0.65

45.0 cm S 0.25 0.38 0.33 0.45 0.32 0.42 0.34 0.51 0.32 0.45 0.37 0.41 0.68 0.65

M 0.29 0.31 0.29 0.38 0.38 0.39 0.43 0.43 0.36 0.48 0.38 0.45 0.53 0.57

T 0.29 0.39 0.45 0.48 0.48 0.57 0.38 0.45 0.39 0.44 0.44 0.47 0.66 0.58

average 0.323 0.418 0.393 0.460 0.427 0.482 0.417 0.463 0.387 0.484 0.449 0.487 0.649 0.660

doi:10.1371/journal.pcbi.1005092.t001
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coordinates; participant i; repetition j; and experimental condition with height h) are then rep-
resented through their deviation from the reference path. We estimate the hypothesized low-
dimensional affine subspace in which these deviations lie. That subspace is spanned by the q

orthonormal (30 × 3)-dimensional columns of the loadings matrixW 2 R
ð30�3Þ�q. We assume

a mixed-effect structure on the weights for the loadings that takes into account both the cate-
gorical effect of obstacle-height and random effects of participant and repetition. This amounts
to a statistical model

yijh ¼ θ þ ðXhbþ
X3

l¼1

Zi;glðj;hÞ;lÞW> þ εij; ð5Þ

where Xh 2 R
1�2 represents the covariate design that indicates obstacle heights: S: X1 = (0,0);

M: X2 = (1,0); and T: X3 = (0,1). The parameters, b 2 R
2�q, are the weights for the loadings that

account for the systematic deviation of obstacle heights,M and T from the reference height, S.
gl is the factor that describes the lth level random effects design (participant, participants’ reac-

tion to obstacle-height change, and repetition). Zi;glðj;hÞ;l 2 R
1�q are independent latent Gaussian

variables with zero-mean and a covariance structure modeled with three q × q covariance
matrices, each describing the covariance between loadings within a level of the random-effect

design. εij 2 R
30�3 is zero-mean Gaussian noise with diagonal covariance matrix Λ with one

variance parameter per dimension.
The loading matrixW is identifiable in a similar way as for usual PCA. Firstly, the scaling of

W is identified by the assumption thatW>W is the q-dimensional identity matrix. Secondly,
the rotation ofW is identified by the assumption that the total variance of the latent variables
for a single curve

X3

l¼1

VarðZi;glðj;hÞ;lÞ;

is a diagonal matrix. This identifies the loading matrixW with probability 1.
The models were fitted using maximum likelihood estimation by using an ECM algorithm

[52] that had been accelerated using the SQUAREMmethod [53].
Fig 9 shows the percentage of explained variance for various values of q across different

obstacle distances. For q> 8, the average percentage of variance explained by the ninth loading
ranges from 1% to 2% and the combined percentage of variance explained by the loadings
beyond number eight remains under 3%. From this perspective, q = 8 seems like a reasonable
choice, with the loadings explaining 97.1% of the variance, meaning that the error term εij
should account for the remaining 2.9%. In the following, all results are based on the model
with q = 8.

Modeling obstacle height. The fitted mean trajectories for the three different obstacle
heights at distance d = 30.0 cm can be found in Fig 10. A striking feature of the mean paths is
the apparent linear scaling of elevation, but also of the lateral excursion with height. (The dif-
ference in the frontal plane, not shown, was very small, but follows a similar pattern). This
leads to the hypothesis that the scaling of the mean trajectory with obstacle height can be
described by a one-parameter regression model in height increase (X1 = 0, X2 = 7.5, X3 = 15)
rather than a more generic two-parameter ANOVA model.

We fitted both models for every obstacle distance and performed likelihood-ratio tests. The
p-values can be found in Table 2. They were obtained by evaluating twice the difference in log
likelihood for the two models using a χ2-distribution at q = 8 degrees of freedom. We see that
no p-values are significant, so there is no significant loss in the descriptive power of the linear
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Fig 9. Percentage of variance explained by individual loadings under different total number of loadings q and
obstacle distance.

doi:10.1371/journal.pcbi.1005092.g009

Fig 10. Mean paths for the three obstacle heights (green: small; yellow: middle, orange: tall) at obstacle distance
d = 30.0 cm.

doi:10.1371/journal.pcbi.1005092.g010

Table 2. p-values for the hypothesis of linearly amplified path changes in obstacle height increase factor.

Obstacle distance 15.0 cm 22.5 cm 30.0 cm 37.5 cm 45.0 cm

p-value 0.478 0.573 0.093 0.764 0.362

doi:10.1371/journal.pcbi.1005092.t002
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scaling model compared to the ANOVA model. The remaining results in the paper are all
based on the model with a regression design.

Discovering the time-structure of variance along movement trajectory. A strength of
our approach to time warping is that we can estimate variability more reliably. In addition to
observation noise, we model three sources of variation in the observed movement trajectories:
individual differences in the trajectory, individual differences caused by changing obstacle
height, and variation from repetition to repetition. The variances described from these three
sources are independent of obstacle height. In Figs 11 and 12, two spatial representations of the
mean movement path for the medium obstacle height are shown. The five distances of the
obstacle from the starting position are shown in the five rows of the figures. The three columns
show variance originating from individual differences in the trajectory, individual differences
caused by changing obstacle height, and variation from repetition to repetition (from left to
right). Variance is illustrated at eight equidistant points in time along the mean path by ellip-
soids that mark 95% prediction for each level of variation.

Note the asymmetry of the movements with respect to obstacle position, both in terms of
path and variation. This asymmetry reflects the direction of the movement. Generally, variability
is higher in the middle of the movement than early and late in the movement. Individual differ-
ences caused by change in obstacle height (middle column) are small and lie primarily along the
path. That is, individuals adapt the timing of the movement differently as height is varied. Indi-
vidual differences in the movement path itself (left column) are largely differences in movement
parameters: individuals differ in the maximal elevation and in the lateral positioning of their
paths, not as much in the time structure of the movements. Variance from trial to trial (right col-
umn) is more evenly distributed, but is largest along the path reflecting variation in timing.

These descriptions are corroborated by the comparisons of the amounts of variance
explained by the three effects in Fig 13. The obstacle distance of 45, in which the obstacle is
close to the target lead to the largest variance in movement trajectory, with most of the increase
over other conditions coming from repetition and individual differences caused by change in
obstacle height. This suggests that this experimental condition is more difficult than the others,
and perhaps much more so for the tall obstacle. Apart from this condition, we see that the larg-
est source of variation is individual differences in movement trajectory. The second largest
source of variation is repetition. Individual differences caused by change in obstacle height
were are systematically the smallest source of variance.

Trajectory focal points. A final demonstration of the strength of the method of analysis is
illustrated in Fig 14, which shows the mean paths for all obstacle distances and all obstacle
heights. For each obstacle height, the paths from different obstacle distances intersect both in
the frontal and the vertical plane. These focal points occur approximately at the same distance
along the imagined line connecting start and end position. This pattern is clearly visible in the
front view of the mean trajectories in Fig 14. Due to the limited variation of the path in the hor-
izontal plane (Fig 14 top view), this effect is less clear in the horizontal plane. This pattern may
reflect a scaling law, a form of invariance of an underlying path generation mechanism.

Discussion
We have proposed a statistical framework for the modeling of human movement data. The
hierarchical nonlinear mixed-effects model systematically decomposes movements into a com-
mon effect that reflects the variation of movement variables with time during the movement,
individual effects, that reflect individual differences, variation from trial to trial, as well as mea-
surement noise. The model amounts to a nonlinear time-warping approach that treats all
sources of variances simultaneously.
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Fig 11. Illustration of the experimental setup for the medium height obstacle at all obstacle distances
(rows) with the mean trajectory plotted. Along the trajectory eight equidistant points (in percentual warped
time) are marked, and at each point 95% prediction ellipsoids are drawn. The three columns represent the
random effects tied to participant, subjective reaction to height change and repetition, respectively.

doi:10.1371/journal.pcbi.1005092.g011
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We have outlined a method for performing maximum likelihood estimation of the model
parameters, and demonstrated the approach by analyzing a set of human movement data on
the basis of acceleration profiles in arm movements with obstacle avoidance. The quality of the
estimates was evaluated in a classification task, in which our model was better able to determine
if a sample movement came from a particular participant compared to state-of-the-art tem-
plate-based curve classification methods. These results indicate that the templates that emerge
from our nonlinear warping procedure are both more consistent and richer in detail.

We used the nonlinear time warping obtained from the acceleration profiles to analyze the
spatial movement trajectories and their dependence on task conditions, here the dependence
on obstacle height and obstacle placement along the path. We discovered that the warped
movement path scales linearly with increasing obstacle height. Furthermore, we separated the
variation around the mean paths into three levels: individual differences of movement trajec-
tory, individual differences caused by change in obstacle height, and trial to trial variability.
This combination of models uncovered clear and coherent patterns in the structure of variance.
Individual differences in trajectory and variance from trial to trial were the largest sources of

Fig 12. Top-view of the experimental setup from the top for the medium height obstacle at all obstacle distances with
the mean trajectory plotted. Along the trajectory eight equidistant points (in percentual warped time) are marked, and at
each point 95% prediction ellipsoids are drawn. The ordering is the same as in Fig 11.

doi:10.1371/journal.pcbi.1005092.g012

Timing and Movement Path Separation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005092 September 22, 2016 22 / 27



variance, with individual differences being primarily at the level of movement parameters such
as elevation and lateral extent of the movement while variance from trial to trial contained a
larger amount of timing variance. We documented a remarkable property of the movement
paths when obstacle distance along the path is varied at fixed obstacle height: all paths intersect
at a single point in space.

Fig 14. Front and top view of the mean trajectories for the 15 obstacle avoidance setups.Green lines correspond to low
obstacles, yellow to medium obstacles and orange to tall obstacles.

doi:10.1371/journal.pcbi.1005092.g014

Fig 13. Amount of variance explained by random effects.

doi:10.1371/journal.pcbi.1005092.g013

Timing and Movement Path Separation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005092 September 22, 2016 23 / 27



We believe that the approach we describe enhances the power of time series analysis as
demonstrated in human movement data. The nonlinear time warping procedure makes it
possible to obtain reliable estimates of variance along the movement trajectories and is strong
in extracting individual differences. This advantage can be leveraged by combining the non-
linear time warping with factor analysis to extract systematic dependencies of movements on
task conditions at the same time as tracking individual differences, both base-line and with
respect to the dependence on task conditions, as well as variance across repetitions of the
movement.

Recent theoretical accounts have used the analysis of variance across repetitions of move-
ments to uncover coordination among the many degrees of freedom of human movement sys-
tems [17]. Differences in variance between the subspace that keeps hypothesized relevant task
variables invariant and the subspace within which such task variables vary support hypotheses
about the task-dependent structure of the underlying control systems. Because variance is
modulated in time differently across the two subspaces, a more principled decomposition of
time dependence and variance from trial to trial would give such analyses new strength.
Because this application requires the extension of the proposed method to multivariate time
series, it is beyond the scope of this paper. Together with the considerable practical interest in
identifying individual differences, these theoretical developments underscore that the method
proposed here is timely and worth the methodological investment.

Supporting Information
S1 Text. Supporting information contains a primer on model building using the proposed
framework, an example analysis with accompanying R code, a simulation study that evalu-
ates the proposed algorithm for maximum likelihood estimation, and the different parame-
ter grids used for cross-validation in the paper.
(TEX)

S1 Fig. Twelve acceleration functions corresponding to repetitions of a signature being
written.
(TIFF)

S2 Fig. The aligned acceleration functions from S1 Fig (a), along with the predicted warp-
ing functions (b).
(TIFF)

S3 Fig. Densities of the integrated square estimation errors (L2 errors) for the common and
participant-specific mean functions in the simulation study. The left panel shows results for
ordinary least square (OLS) estimation and the right panel shows the results for the proposed
model and estimation algorithm. Both models were fitted using the correctly specified spline
model for the mean. Note that the density is displayed on squareroot scale.
(TIFF)

S4 Fig. Densities of the difference between the estimated and the true participant-specific
warping parameters across participants.
(TIFF)

S5 Fig. Densities of the estimated variance parameters in the simulated experimental set-
ups. Dashed red lines indicate the true values of the parameters.
(TIFF)
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