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Abstract
Objective: This study was undertaken to review the reported performance of 
noninvasive wearable devices in detecting epileptic seizures and psychogenic no-
nepileptic seizures (PNES).
Methods: We conducted a systematic review and meta-analysis of studies reported up 
to November 15, 2021. We included studies that used video-electroencephalographic 
(EEG) monitoring as the gold standard to determine the sensitivity and false alarm 
rate (FAR) of noninvasive wearables for automated seizure detection.
Results: Twenty-eight studies met the criteria for the systematic review, of which 
23 were eligible for meta-analysis. These studies (1269 patients in total, median 
recording time = 52.9 h per patient) investigated devices for tonic–clonic seizures 
using wrist-worn and/or ankle-worn devices to measure three-dimensional accel-
erometry (15 studies), and/or wearable surface devices to measure electromyogra-
phy (eight studies). The mean sensitivity for detecting tonic–clonic seizures was 
.91 (95% confidence interval [CI] = .85–.96, I2 = 83.8%); sensitivity was similar be-
tween the wrist-worn (.93) and surface devices (.90). The overall FAR was 2.1/24 h 
(95% CI = 1.7–2.6, I2 = 99.7%); FAR was higher in wrist-worn (2.5/24 h) than in 
wearable surface devices (.96/24 h). Three of the 23 studies also detected PNES; the 
mean sensitivity and FAR from these studies were 62.9% and .79/24 h, respectively. 
Four studies detected both focal and tonic–clonic seizures, and one study detected 
focal seizures only; the sensitivities ranged from 31.1% to 93.1% in these studies.
Significance: Reported noninvasive wearable devices had high sensitivity but 
relatively high FARs in detecting tonic–clonic seizures during limited recording 
time in a video-EEG setting. Future studies should focus on reducing FAR, detec-
tion of other seizure types and PNES, and longer recording in the community.
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1   |   INTRODUCTION

Accurate seizure detection is paramount for optimizing 
care in patients with epilepsy. The current gold stand-
ard practice for evaluation of epilepsy is inpatient video-
electroencephalographic (EEG) monitoring (VEM), 
which is limited due to the high level of expertise and 
resources required and is impractical to be undertaken 
over long periods of time.1 In routine practice, reporting 
of seizures usually relies on patients or caregivers com-
pleting seizure diaries. However, seizure diaries are often 
unreliable, as patients or caregivers commonly do not rec-
ognize their seizures and many conditions can mimic epi-
leptic seizures, such as psychogenic nonepileptic seizures 
(PNES).2,3

The diagnostic delay in patients with epileptic sei-
zures and PNES carries a significant burden on patients, 
caregivers, and health services.4 Inaccurate knowledge of 
the seizure type and frequency can lead to inappropriate 
management and suboptimal seizure control.5  The con-
sequences of this include a decreased quality of life, with 
negative impacts on mental health and increased health 
care utilization.4 In addition, delayed epilepsy diagnosis 
and treatment may increase the risk of status epilepticus, 
myocardial infarction, and sudden unexpected death in 
epilepsy.4

Noninvasive wearable devices are expanding rapidly 
into the health care sector. Devices capable of automated 
seizure detection are a rapidly growing area of research. 
These devices typically measure motor and autonomic 
features of seizures, including three-dimensional (3D) 
accelerometry, surface electromyographic (EMG) signals, 
electrodermal activity (EDA), heart rate, and heart rate 
variability, using either wrist-worn or wearable surface de-
vices. Data collected by the device is analyzed by trained 
algorithms for automated seizure detection and classifi-
cation. In addition to providing more accurate seizure re-
cording for review during consultation, wearable devices 
with real-time detection may alert care providers to help 
prevent injuries or falls associated with seizures, partic-
ularly tonic–clonic seizures (TCS).6–9 Automated seizure 
detection with the use of noninvasive wearable devices 
therefore has the potential to assist clinicians in the diag-
nosis and management of patients with both epileptic and 
nonepileptic seizures in a timely manner.7,10,11

Recently, the International League Against Epilepsy 
(ILAE) and International Federation of Clinical 
Neurophysiology (IFCN) established a joint working 
group to formulate a guideline on the use of wearable de-
vices for automated seizure detection in patients with ep-
ilepsy.12  The working group systematically reviewed the 
published evidence up to October 2019. However, a meta-
analysis of studies in terms of sensitivities and false alarm 

rates (FARs) for different seizure types was not under-
taken. Furthermore, the guideline did not include studies 
of devices for detection of PNES.

To fill the knowledge gap, we conducted an updated 
systematic review of studies investigating the sensitivity 
and FAR of noninvasive wearable devices for the detec-
tion of both epileptic seizures and PNES while subjects 
underwent inpatient VEM. In addition, we performed a 
meta-analysis of the sensitivity and FAR of these devices 
for the detection of TCS.

2   |   MATERIALS AND METHODS

We performed the review in accordance with the PRISMA 
(Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) guidelines (Figure 1). Our systematic 
review was prospectively registered on PROSPERO 
(International Prospective Register of Systematic Reviews; 
registration ID: CRD42019126849).

2.1  |  Systematic review

A systemic literature search was conducted up to April 
30, 2021. A second search was conducted on November 
10, 2021. We searched the databases PubMed and Embase 
using the terms “automated detection” OR “algorithm” 
AND “detection” OR “wearable” AND “detection” AND 
“epilepsy” OR “seizure”. The National Heart, Lung, 
and Blood Institute (NHLBI) quality assessment tool for 

Key Points
•	 Wrist-worn and wearable surface devices meas-

uring 3D accelerometry and/or surface EMG 
have high sensitivities but relatively high FARs 
in the automated detection of TCS

•	 Parameters that are not motion-based such as 
heart rate and/or heart rate variability need to 
be explored further through noninvasive and 
wearable devices to determine their potential in 
detecting both TCS and focal seizures

•	 Few studies have assessed wearable devices for 
detecting PNES

•	 Future revision of the ILAE-IFCN guideline 
may consider referring to the overall sensitivity 
and FAR for TCS as benchmarks for the evalua-
tion of future devices, and greater emphasis on 
developing devices with lower FAR and ability 
to detect other seizure types and PNES
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cross-sectional studies was used for the systematic as-
sessment of risk of bias. The inclusion criteria included 
(1) evaluation of a wearable and noninvasive device in 
patients with epilepsy or PNES, with a minimum of five 
participants; (2) primary measurement of interest for sei-
zure detection was not EEG (EEG can be included as an 
auxiliary measurement); (3) studies reported the sensitiv-
ity for the detection of seizures and FAR (as a measure 
over time); and (4) devices and algorithms must have been 
trained and evaluated using noninvasive video-EEG mon-
itoring as the gold standard comparator for the detection 
of epileptic seizures and PNES. We excluded studies that 
evaluated nonwearable or invasive devices, or wearable 
devices that measured EEG only.

The titles and abstracts were independently screened 
by two reviewers (V.N. and S.S.) using Covidence (Veritas 
Health Innovation). The full-text records identified during 
the screening were extracted and reviewed for inclu-
sion. Conflicts were resolved by a third reviewer (P.K.). 
Assessment of bias were performed by two reviewers (V.N. 

and S.S.), where disagreements were resolved by consen-
sus. V.N. extracted the data. The extracted data included 
(1) device type, (2) parameters measured, (3) seizure type 
detected, (4) total number of patients, (5) number of pa-
tients who experienced a seizure, (6) number of seizures 
recorded by VEM, (7) number of seizures detected by the 
device, (8) total recording time (hours), (9) sensitivity, (10) 
FAR, and (11) method of analysis utilized for the auto-
mated detection of seizures. To assess the risk of bias, two 
reviewers (V.N. and S.S.) graded each paper independently 
according to the NHLBI quality assessment tool.

2.2  |  Meta-analysis

A meta-analysis was performed on the studies detecting 
TCS. A meta-analysis could not be done on the studies 
detecting PNES or focal seizures owing to insufficient 
number of studies. We used random-effects meta-analysis 
with DerSimonian and Laird method to estimate pooled 

F I G U R E  1   PRISMA (Preferred 
Reporting Items for Systematic Reviews 
and Meta-Analyses) flow diagram 
showing identification, screening, 
eligibility, and included studies. Reasons 
for excluding studies included the use of 
invasive rather than noninvasive devices, 
results not being compared to video-
electroencephalographic monitoring 
diagnoses, only pediatric patients being 
included, and studies involving fewer 
than five patients.
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sensitivity and FAR for epileptic seizures with motor ac-
tivity. FAR was presented as the average FAR within 24 h 
in each study. We subsequently stratified the studies by 
device type (wrist-worn or wearable surface device) and 
parameter used (3D accelerometry, surface EMG signals, 
or EDA).

We performed meta-regression to further explore the 
sources of heterogeneity. Heterogeneity was assessed 
using I2. We calculated the change in I2 values to assess 
the proportion of the observed variability in the observed 
effect size for a group of experiments explained by device 
type (wrist-worn vs. surface), number of parameters (uni-
modal vs. multimodal), and study duration (total and per 
patient).

We performed Egger test on publication bias for both 
sensitivity and FAR. Freeman–Tukey double arcsine 
transformation was used on sensitivity data.

All statistical analyses were performed by using 
STATA version 16 (StataCorp), with user-written packages 
"metaprop" for meta-analysis of proportions.

3   |   RESULTS

We screened 3389 publications, of which 3316 were ex-
cluded as they were not relevant. A further 45  studies 
were excluded due to the use of invasive devices, no de-
vices used, measuring the wrong or insufficient outcomes, 
reviews, conference abstract, using only EEG as a param-
eter, enrolling less than five patients, wrong patient popu-
lation, and wrong study design. A total of 28 studies met 
eligibility criteria for inclusion into the systematic review. 
Eleven of these were published after the publication of the 
ILAE-IFCN guideline.6–8,13–20 Twenty-three of these were 
eligible for meta-analysis, focusing on the detection of 
TCS including focal to bilateral TCS (FBTCS) and/or gen-
eralized TCS (GTCS). Three of the 28 studies also detected 
PNES and were included in the descriptive analyses. Four 
studies detected TCS, focal aware seizures (FAS), and 
focal impaired awareness seizures (FIAS). One study de-
tected only FAS and FIAS. All studies were included in 
the descriptive analyses. We performed a quality assess-
ment using the NHLBI tool and rated eight studies as good 
and 20 studies as fair, as seen in Table S1.

3.1  |  Meta-analysis of TCS and 
clonic seizures

The characteristics of the 23 studies included are summa-
rized in Table 1. Of these, 14 studies utilized a wrist-worn 
device, measuring 3D accelerometry, with three studies 
measuring both 3D accelerometry and EDA. One study 

utilized a wrist-  and ankle-worn device, measuring 3D 
accelerometry, heart rate, and surface EMG. Eight stud-
ies utilized a wearable surface device, measuring surface 
EMG signals. Two studies used both a wearable and a 
wrist-worn device, measuring 3D accelerometry and EDA. 
A total of 1269 patients were enrolled into these 23 stud-
ies (median = 58, interquartile range [IQR] = 16–76). The 
total recording time was 66109.7 h. This corresponded to 
a median recording time of 52.9 h (IQR = 34.8–73.6) per 
patient during the period of assessment under VEM.

Of the 1269 patients, 388 (30.6%) experienced seizures 
during the recording period. The median number of pa-
tients who had seizures during VEM was 11. A total of 
1248  motor seizures were recorded during VEM (me-
dian = 22, IQR = 17–31). Of the 1248 motor seizures, 54 
(4.3%) were specified to be FBTCS, 86 (6.9%) were defined 
as clonic seizures, and the remaining 1108 (88.8%) were 
GTCS. Of the 1248 motor seizures, 1061 (85%) were de-
tected by the wearable device through automated seizure 
detection. Breaking this down, 53 (98.1%) FBTCS, 86 
(100%) clonic seizures, and 922 (83.2%) GTCS were de-
tected by the wearable and noninvasive device.

The results of the meta-analysis are summarized in 
Figures 2 and 3, categorized by device type. Figure 2 shows 
the results of the sensitivities. The mean sensitivity for the 
detection of FBTCS, TCS, and clonic seizures was .91 (95% 
confidence interval [CI] = .85–.96, I2 = 83.8%). The subto-
tal sensitivity for studies utilizing wrist-worn devices was 
.93 (95% CI = .85–.99, I2 = 84%). The subtotal sensitivity 
for studies utilizing wearable surface devices was  .9 (95% 
CI = .71–1.00, I2 = 85.3%).

Figure 3 shows the results for the FARs. The total num-
ber of false alarms in the 23 studies was 8569. The over-
all FAR of the 23 studies was 2.1/24 h (95% CI = 1.7–2.6, 
I2 = 99.7%). The subtotal FAR of the studies that utilized 
wrist and ankle worn devices was 2.5/24 h (95% CI = 1.95–
3.1, I2 = 99.8%), and the subtotal FAR of the studies that 
utilized a wearable surface device was .96/24  h (95% CI 
=  .25–1.66, I2 = 99.1%).

For the 23  studies detecting TCS, a regression-based 
Egger test for the sensitivities and FARs yielded p =  .58 
and p  <  .001, respectively. A meta-regression was per-
formed to determine whether device type (wrist-worn 
vs. surface), number of parameters (unimodal vs. multi-
modal), and recording duration were possible sources of 
heterogeneity of the reported sensitivities and FARs. For 
sensitivities, I2  changes were .005 increase for both de-
vice type and number of parameters, .016 reduction for 
total recording duration, and .021 reduction for recording 
time per patient. For FAR, I2 changes were .0001 increase 
for device type, <.0001 increase for number of parame-
ters,  .0004 reduction for total recording duration, and .012 
reduction for recording time per patient.
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3.2  |  TCS and focal seizures: 
Descriptive analysis

Four studies included the detection of both TCS and focal 
seizures, using a wearable surface device to measure heart 
rate and heart rate variability. A total of 189 patients 
were included in these four studies (median = 35, IQR 
= 27.25–55). The total recording time was 6187  h. This 
corresponded to a median recording time of 28.5 h (IQR 
= 24–42.7) per patient during the period of assessment 
under VEM. A total of 224 focal seizures and TCS were 
recorded during VEM (median = 38, IQR = 24–70). Of 
the 224 seizures, 166 seizures were detected by the wear-
able and noninvasive device, with an overall sensitivity of 
74.1%. The total number of false alarms in the four studies 
was 259 (median = 46, 95% CI = 37.3–73.6). The overall 
FAR of the four studies was .04/24 h.

3.3  |  Focal seizures: Descriptive analysis

One study included the detection of focal seizures only. A 
wearable surface device was used, measuring heart rate 
and heart rate variability. Eleven patients were recruited, 
and each patient had a seizure during their admission. 
Forty-seven focal seizures were recorded during VEM, 
and 33 (70.2%) of these were detected by the device. FAR 
was reported to be 50.6/24 h. The characteristics of this 
study detecting focal seizures as well as the four studies 
detecting TCS and focal seizures can be seen in Table 2.

3.4  |  PNES: Descriptive analysis

All three studies that investigated PNES utilized a wrist-
worn device, measuring 3D accelerometry. A total of 58 
patient participated in these three studies (median = 16, 
IQR = 16–21). The total recording time was 3394.6 h. This 
corresponded to a median recording time of 25.4 h (IQR 
= 22.7–72.7) per patient during the period of assessment 
under VEM.

Of the 58 patients, 17 (29.3%) patients had seizures 
during the recording period. The median number of 
patients who had seizures during their VEM admission 
was six. A total of 62 seizures were recorded during VEM 
(median = 21, IQR = 14.5–27). The overall sensitivity 
of the three studies was 62.9%, as 39 of the 62 seizures 
were detected by the wearable and noninvasive device 
through automated seizure detection. The total number 
of false alarms in the three studies was 112, with an over-
all FAR of .79/24 h. The characteristics of the studies de-
tecting psychogenic nonepileptic seizures can be seen in 
Table 3.Fi
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4   |   DISCUSSION

This systematic review and meta-analysis has several im-
portant findings that may be considered in future revi-
sion of the ILAE-IFCN guideline. First, our meta-analysis 
quantified the overall reported sensitivity and FAR of 
wearable devices for detecting TCS. These may be used 
as benchmarks for evaluation of future devices. Second, 
the limited evidence suggests that wearable devices may 
have the potential to detect not only TCS but also PNES. 
Discussion of the use of these devices for detecting PNES 
may be considered in a future guideline. Third, given the 
high sensitivity but also relatively high FAR for detect-
ing TCS, future effort should focus on reducing FAR as 
a priority. Fourth, our systematic review found only one 
report that specifically studied focal (non-TCS) seizures, 
with low sensitivity and high FAR, concurring with the 
ILAE-IFCN recommendation on the need to improve de-
vice performance especially for seizures without general-
ized convulsions.

For the detection of TCS, 3D accelerometry was the 
most commonly utilized parameter to identify ictal motor 
manifestations. The high sensitivity obtained from 3D 

accelerometry reflects the utility of this measure for de-
tection of TCS. Although there are multiple methods to 
analyze 3D accelerometry tracings produced by TCS, we 
found that the threshold applied to differentiate acceler-
ometry tracings between seizures and normal activity was 
similar across the 21 studies included in the meta-analysis. 
All studies empirically used .2 g as the lower threshold to 
classify seizure activity based on the lower bound (a value 
that is less than or equal to every element of a set of data) 
of the collected 3D accelerometry data, where g represents 
the gravitational force. This leaves very little space for false 
negatives, as most if not all seizure activity is recorded, 
and may account for the large proportion of studies re-
porting high sensitivities. Surface EMG also yielded high 
sensitivities of up to 100% for TCS. However, more studies 
are needed to establish whether surface EMG alone, or 
the combination of surface EMG and 3D accelerometry, 
is more sensitive and specific for the automated detection 
of TCS.

3D accelerometry was the only parameter used for the 
automated detection of PNES in the three studies included 
in the meta-analysis. This is in line with the previous find-
ing that time frequency analysis of 3D accelerometry data 

F I G U R E  2   Forest plot of sensitivities 
of noninvasive wearables for detecting 
tonic–clonic seizures, overall and 
stratified by device type. The red dotted 
line indicates the estimated overall 
sensitivity at .911. The hollow blue 
diamonds are centered at the estimates 
of the overall or subgroup sensitivity, and 
the widths of the diamonds represent the 
corresponding 95% confidence intervals 
(CIs).
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from a wrist-worn device was effective in differentiating 
between TCS and PNES.10,11 However, due to the wide 
range of sensitivities these studies demonstrated, the util-
ity of other parameters such as surface EMG, heart rate, 
and heart rate variability needs to be explored. This will 
assist in establishing which parameters and thus which 
algorithms will achieve consistently high sensitivities and 
low FARs.

There were four studies identified that detected both 
focal seizures and TCS and one separate study that fo-
cused on reporting only focal seizures, all using heart 
rate and heart rate variability. Although the first four 
studies demonstrated FARs of <2/24 h, the sensitivities 
ranged from 39% to 93%.20–23  The one study detecting 
only focal seizures measured the same parameters and 
demonstrated a much higher FAR that would be im-
practical for long-term use.19 The results from these five 
studies present a mixed picture about the potential of 
heart rate and heart rate variability in the automated 

detection of focal seizures as well as of both focal sei-
zures and TCS.

The ability of noninvasive and wearable devices to 
detect TCS has shown great promise. However, it is im-
portant to note that most of these studies have not re-
ported whether and how many focal seizures the same 
set of patients were experiencing alongside TCS. It will 
be helpful if future studies collect and report these data. 
This will help to emphasize the high number of patients 
who experience both focal seizures and TCS and there-
fore the need for a noninvasive and wearable device 
that has a high sensitivity and low FAR for detecting 
both focal seizures and TCS separately. We hope to see 
a change in the significant gap between the evidence we 
have for wearable devices in detecting TCS and in focal 
seizures.

Patients with epilepsy generally preferred higher sen-
sitivities over lower FARs.24  The reported sensitivity of 
>90% from our meta-analysis is in line with the needs 

F I G U R E  3   Forest plot of false alarm rate of noninvasive wearables for detecting tonic–clonic seizures, overall and stratified by device 
type. The red dotted line indicates the estimated overall false alarm rate at 2.125/24 h. The hollow blue diamonds are centered at the 
estimates of the overall or subgroup false alarm rates, and the widths of the diamonds represent the corresponding 95% confidence intervals 
(CIs).
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and experiences of patients with epilepsy.24–26 However, 
the FAR of >2/24  h did not meet user expectations. A 
study found that patients with epilepsy desired FARs that 
ranged 1–2 per month for patients with a lower seizure 
frequency and 1–2 per week for those with a higher sei-
zure frequency.26 Future studies should focus on reducing 
the FAR.

A few major caveats need to be acknowledged in the 
some of the studies included in this systematic review. 
Some studies restricted analyses of the algorithms devel-
oped for automated seizure detection to only patients who 
had seizures or who displayed ictal tachycardia or brady-
cardia during their period of recording under VEM.20,21 
Preselecting these patients introduces bias into these 
studies and could result in grossly underestimating the 
true FARs and overestimating the sensitivities of these al-
gorithms and devices. Another major source of bias is the 
overlap between the testing and training sets of patients to 
develop and then test the algorithm during retrospective 
data analyses. Both introduce bias, as these algorithms 
were not predefined or run real-time and instead were 
specifically catered to the patients included in these stud-
ies, in a VEM setting. Therefore, the results of the algo-
rithm and respective device would not accurately reflect 
the sensitivity and FAR in a non-VEM setting, such as the 
patients' home environments, and with an entirely new 
group of patients.

The regression-based Egger test results found no sig-
nificant small-study effect or publication bias for the sen-
sitivities of the 23 studies detecting TCS. The results for 
the FARs of these studies indicate significant small-study 
effects. This suggests that the results of the smaller stud-
ies differ systematically from the results of the remaining 
larger studies. This may be due to the two studies that 
had very high FARs (53.2/24 h and 6.9/24 h, respectively) 
but relatively short total recording person-time (64.8 and 
402 h, respectively) compared to the rest of the studies.18,27 
It may also suggest potential publication bias toward 
larger studies reporting lower FARs.

There were limitations encountered in this systematic 
review and meta-analysis. Most studies detecting motor 
epileptic seizures did not specify whether the TCS were 
purely tonic–clonic or encompassed focal to bilateral TCS, 
tonic seizures, or clonic seizures. For this reason, we could 
not analyze the ability of the parameters or the algorithms 
to detect specific motor seizure types. There was a high 
level of heterogeneity in sensitivity and FAR within stud-
ies detecting TCS. However, our findings demonstrate that 
device type, number of parameters, total recording dura-
tion, and recording duration per patient did not contribute 
toward study heterogeneity. The variability in the algo-
rithms used to analyze the data collected by the devices 
may underlie study heterogeneity. To avoid increasing 

heterogeneity further, we did not include studies that 
utilized invasive EEG measurements in the training data-
set.22 As intracranial recordings may detect seizures that 
occur in deeper structures but are missed on scalp EEG, 
these studies may be incorporated in future systematic re-
views and meta-analyses.28

Wrist-worn or wearable surface devices could continue 
to be utilized to measure 3D accelerometry and/or surface 
EMG signals for detecting TCS. 3D accelerometry for PNES 
detection and heart rate/heart rate variability for focal sei-
zures also showed promising results. However, more well-
designed studies that explore parameters that do not rely on 
motion for detecting focal seizures and PNES are required to 
confirm these preliminary findings. Using promising, pre-
defined algorithms in studies with larger groups of patients 
who have not been preselected will decrease heterogeneity 
and increase the quality of the study. This will further justify 
the use of the same algorithms in multicenter clinical set-
tings, as demonstrated in recent studies.6,8,29 Studies should 
clearly report the total recording time by the device used, de-
vice deficiency time, recording time per patient, total number 
of false alarms, and FAR, as it will allow for accurate analyses 
of the device, parameter, and algorithm used. Standardized 
reporting will facilitate the assessment and establishment of 
clinical guidelines for the use of noninvasive and wearable 
devices for the automated detection of both epileptic seizures 
and PNES.
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