
Pharmaceutics 2011, 3, 406-424; doi:10.3390/pharmaceutics3030406 

 

pharmaceutics 
ISSN 1999-4923 

www.mdpi.com/journal/pharmaceutics 

Article 

 

Self-Assembled Lipoplexes of Short Interfering RNA (siRNA) 
Using Spermine-Based Fatty Acid Amide Guanidines: Effect on 
Gene Silencing Efficiency 
 

Abdelkader A. Metwally and Ian S. Blagbrough * 

 

Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK 

 

 Author to whom correspondence should be addressed; E-Mail: prsisb@bath.ac.uk;  

Tel.: +44-1225-386795; Fax: +44-1225-386114. 

Received: 13 May 2011; in revised form: 20 June 2011 / Accepted: 5 July 2011 /  

Published: 13 July 2011 

 

 

Abstract: Four guanidine derivatives of N4,N9-diacylated spermine have been designed, 

synthesized, and characterized. These guanidine-containing cationic lipids bound siRNA 

and formed nanoparticles. Two cationic lipids with C18 unsaturated chains, N1,N12-

diamidino-N4,N9-dioleoylspermine and N1,N12-diamidino-N4-linoleoyl-N9-oleoylspermine, 

were more efficient in terms of GFP expression reduction compared to the other cationic 

lipids with shorter C12 (12:0) and very long C22 (22:1) chains. N1,N12-Diamidino-N4-

linoleoyl-N9-oleoylspermine siRNA lipoplexes resulted in GFP reduction (26%) in the 

presence of serum, and cell viability (64%). These data are comparable to those obtained 

with TransIT TKO. Thus, cationic lipid guanidines based on N4,N9-diacylated spermines 

are good candidates for non-viral delivery of siRNA to HeLa cells using self-assembled 

lipoplexes. 

Keywords: fatty acids; gene silencing; GFP; guanidine; lipoplexes; nanoparticles; self-

assembly; siRNA; spermine 
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1. Introduction 

Short interfering RNA (siRNA) is a synthetic double-stranded (ds) RNA of 21-25 nucleotides per 

strand. Post-transcriptional gene silencing by siRNA is an important biological tool in functional 

genomic studies. Sequence specific gene silencing by siRNA has many potential therapeutic 

applications [1]. In 1998, Fire, Mello and co-workers reported that genes can be silenced at the post-

transcriptional level by short ds RNA segments [2], a discovery that was awarded the 2006 Nobel 

Prize in medicine or physiology. Elbashir et al. proved in 2001 that gene silencing using siRNA is 

found in mammalian systems [3]. The optimum length of siRNA to affect post-transcriptional gene 

silencing in mammalian cells is typically less than 30 bp, as it avoids inducing non-specific mRNA 

degradation due to immune response (interferon) while maintaining sequence specific mRNA 

degradation [3]. The effector complex for mRNA degradation, the RNA induced silencing complex 

(RISC), is a complex of proteins and the siRNA with the complementary sequence to the target mRNA. 

The key protein in the degradation process is the Ago2 protein, one of the argonaute family of proteins, 

which contains a domain with RNase H (endonuclease) type activity. RISC assembly and function 

occur in the cytoplasm of the cell [4,5]. 

Figure 1. Some guanidines used in delivery of genes and other cargoes. 
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In order to achieve gene silencing mediated by siRNA, the siRNA should be delivered intact to the 

cytoplasm of the cell. Due to the negative charge of the siRNA phosphate backbone, and its 

susceptibility to degradation by various nucleases, a vector is needed to achieve efficient intracellular 

delivery of siRNA. Cationic lipids are currently under investigation for the non-viral delivery of 

lipoplexes of DNA and siRNA [6-8]. The polar (cationic) head-group can be an amine (primary, 

secondary, tertiary, and even quaternary e.g., imidazolium [9]) or guanidine functional group. 

Guanidines, the most basic functional group in biological chemistry, are positively charged at 

physiological pH 7.4 as they have pKa = 12.5 [10]. Guanidines have the extra advantage, being 

bidentate, of being able to form two hydrogen bonds with negatively charged groups e.g., carboxylates, 

phosphates or sulfates present on the carbohydrates associated with the cell membrane, and this 

advantage has been used in vectors e.g., R8, Arg8 [11,12] to transport cargoes across cell membranes. 

These characteristics led to the design of many non-viral vectors for DNA and siRNA, varying from 
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cationic lipids incorporating guanidine head-groups [13-15] e.g., AtuFECT [15], to cationic polymers 

[16,17] and dendrimers [18,19], to carbohydrate derivatives [19,20], and hydrogels of guanidinylated 

hyaluronic acid [21]. The use of guanidinium-containing lipid based carriers for gene delivery dates 

back to 1996 where Lehn et al. synthesized two guanidinium cholesterol lipids: bis-

guanidiniumspermidine-cholesterol (BGSC) and bis-guanidinium-trencholesterol (BGTC), each 

containing two guanidine groups, which were synthesized and evaluated for their DNA transfection 

efficiencies in eukaryotic cells (Figure 1) [22] where they were found to be efficient DNA transfecting 

agents. Furthermore, BGTC was found to mediate transfection in an aqueous solution without the need 

to prepare it first in a liposomal form.  

In this work, spermine, a naturally occurring polyamine, was acylated with different fatty acids on 

its secondary amine groups and then guanidinylated at the terminal primary amine groups. The 

guanidinylated non-viral vectors were characterized and evaluated for their ability to deliver siRNA 

that targets green fluorescent protein (GFP) in HeLa cells that stably express GFP. 

2. Experimental Section 

2.1. Materials and general methods 

 

Dicyclohexylcarbodiimide (DCC), 1,3-di-Boc-2-(trifluoromethylsulfonyl)guanidine,  

4-dimethylamino-pyridine (DMAP), fatty acids, G418, hydrazine monohydrate,  

N-carbethoxyphthalimide, spermine, triethylamine (TEA), and trifluoroacetic acid (TFA) were 

purchased from Sigma-Aldrich (Gillingham, UK). All solvents were purchased from Fisher Scientific 

UK (Loughborough, UK). Cell culture media were purchased from Gibco (Invitrogen Ltd, Paisley, 

UK). HeLa cells stably expressing GFP were obtained from the Cell Service at Cancer Research UK 

(CRUK, London Research Institute, Clare Hall Laboratories, South Mimms, London, UK). NMR 

spectra were recorded in deuterio-chloroform using a Bruker Avance III spectrometer operating at 

400.13 MHz spectrometer for 1H. The high resolution (HR) time-of-flight mass spectra were obtained 

on a Bruker Daltonics micrOTOF mass spectrometer using electrospray ionisation (ESI). AllStars 

siRNA negative controls with/without an Alexa Fluor® 647 tag at the 3'-position were purchased from 

Qiagen (Crawley, UK) as was siRNA against GFP labelled with Alexa Fluor® 647 at the 3'-position of 

the sense strand, sequences:   

Sense strand: 5'-GCAAGCUGACCCUGAAGUUCAUTT-3', 

Anti-sense strand: 5'-AUGAACUUCAGGGUCAGCUUGCCG-3', 

Target DNA sequence: 5'-CGGCAAGCTGACCCTGAAGTTCAT-3'. 

 

2.2. Synthesis of N1,N12-diamidino-N4,N9-diacylated spermines 

 

N-Carbethoxyphthalimide (0.44 g, 2 mmol) was added to a solution of 1,12-diamino-4,9-

diazododecane (spermine) (0.20 g, 1 mmol) in DCM (10 mL). The solution was stirred 20 °C for 3 h 

then evaporated to dryness in vacuo and the residue was used directly in the following step. To a 

solution of 1,12-diphthalimido-4,9-diazadodecane in DCM (10 mL) and TEA (0.28 mL, 2 mmol) fatty 

acid chloride (2 mmol), or alternatively fatty acid (2 mmol), DMAP (0.24 g, 2 mmol), and DCC (0.4 g, 
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2 mmol) were added and stirred for 18 h under nitrogen atmosphere. To prepare, 1,12-diphthalimido 

-N4-linoleoyl-N9-oleoylspermine, first, 1,12-diphthalimido-N4-oleoylspermine was prepared by reacting 

1,12-diphthalimido-4,9-diazadodecane (1 mmol) with 1 (mmol) oleic acid using DCC as previously 

described [23]. After purifying the product over silica gel (DCM/MeOH 20:1 v/v then 10:1 v/v), it was 

further conjugated to linoleic acid (1 mmol) using DCC as the coupling agent. The solvent was then 

evaporated (for all of the prepared compounds) to dryness in vacuo and the residue was treated with 

hydrazine monohydrate (2 mL) in a mixture of DCM (15 mL) and THF (15 mL) and heated under 

reflux for 4 h. The solvent was then evaporated in vacuo to dryness and the residue purified over silica 

gel (DCM/MeOH 10:1 v/v then DCM/MeOH/NH4OH 20:10:1 v/v/v) to afford the N4,N9 fatty acid 

amides of spermine. HRMS of N4,N9-dierucoylspermine, N4,N9-dilauroylspermine, and N4,N9-

dioleoylspermine were found as previously described [23]. N4-Linoleoyl-N9-oleoyl-1,12-diamino-4,9-

diazadodecane HRMS m/z found (M+H)+ 729.6980, C46H89N4O2 requires (M+H)+ 729.6986. 

The N1,N12-diamidino-N4,N9-diacylated spermines were prepared by reacting each of the prepared 

N4,N9-diacylated spermine (1 mmol) with 1,3-di-Boc-2-(trifluoromethylsulfonyl)guanidine (2 mmol) 

and TEA (2 mmol) in DCM (10 mL) at 20 °C for 24 h. The reaction mixture was then evaporated to 

dryness in vacuo and the residue was purified over silica gel (DCM/MeOH 100:1 v/v then 100:2 v/v) 

and the required fractions were concentrated. The residue was then added to DCM (6 mL), TFA (2 mL) 

was added, and the mixture stirred at 20 °C for 4 h. The reaction mixture was then evaporated to 

dryness in vacuo to afford the title compounds. N1,N12-Diamidino-N4,N9-dierucoylspermine 1, HRMS 

m/z, ESI found (M+H)+ 927.8795, C56H111N8O2 requires (M+H)+ 927.8825. N1,N12-Diamidino-N4,N9-

dilauroylspermine 2, HRMS m/z, ESI found (M+H)+ 651.5996, C36H75N8O2 requires (M+H)+ 651.6008. 

N1,N12-Diamidino-N4,N9-dioleoylspermine 3, HRMS m/z, ESI found (M+H)+ 815.7549, C48H95N8O2 

requires (M+H)+ 815.7573. N1,N12-Diamidino-N4-linoleoyl-N9-oleoylspermine 4, HRMS m/z, ESI 

found (M+H)+ 813.7384, C48H93N8O2 requires (M+H)+ 813.7416. 

 

2.3. Transfection studies of HeLa cells stably expressing GFP 

 

Cells were trypsinized at confluency 80–90%, seeded at a density of 65,000 cells/well in 24-well 

plates and incubated for 24 h at 37 °C, 5% CO2, prior to transfection. The lipoplexes were prepared by 

mixing the specified amounts of the transfection reagent in OptiMEM serum-free medium (50 L) 

with 15 L of siRNA (1 M) in OptiMEM serum-free medium. The solutions were mixed for  

2–3 s with a vortex mixer. On the day of transfection, the lipoplex solutions were added to wells 

containing DMEM (10% FCS) to make the final volume in each well 1 mL (i.e., 6,500 cells/100 L). 

The plates were then incubated for 48 h at 37 °C, 5% CO2. siRNA against GFP used in these 

experiments has 24 base-pairs, thus, each molecule of siRNA contains 48 negative charges 

corresponding to 48 negatively charged phosphate groups in the siRNA backbone. The synthesized 

spermine fatty acid amides each contain two terminal primary amine groups which will be positively 

charged at physiological pH 7.4, therefore, each vector molecule carries two positive charges. N/P 

ratio is calculated using the following equation:  

48

2
/





siRNAofmolesofnumber

lipidcationicofmoles ofnumber
PN  
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2.4. Flow cytometry (FACS) 

 

For analysis of delivery and then reduction of expression of GFP by flow cytometry, cells were 

trypsinized and resuspended in complete medium without phenol red. Cells were centrifuged  

(1000 rpm for 5 min), and washed twice by resuspending in PBS containing 0.1% BSA (1 mg/mL 

bovine serum albumin) and centrifugation (1000 rpm for 5 min). The collected cells was then 

resuspended in PBS and transferred to a flow cytometer tube (Becton Dickinson, UK). Cells (typically 

10,000–20,000 events) were then analyzed using a FACSCanto flow cytometer (Becton Dickinson, 

UK), equipped with an argon ion laser at 488 nm for excitation, a Long Pass (LP) filter at 502 nm and 

a detector at 530 nm (range /–15 nm) for fluorescence emission, helium/neon laser at 633 nm, and 

detector for the Alexa Fluor 647 at 660 nm (range /– 10 nm). GFP expression is calculated as:   

100% 
cellscontrolofcefluorescenGFP

cellsdtransfecteofcefluorescenGFP
GFP  

 

2.5. Confocal microscopy cell imaging 

 

Cells were trypsinized at confluency 80–90% and were seeded at a density of 65,000 cells/well in  

24-well plates that have a round-glass cover slip (12 mm in diameter) and were incubated for 24 h 

prior to transfection which was carried out as described above (section 2.3). After 48 h, the cell culture 

media in each well were aspirated and the cells washed with PBS (3  0.5 mL). The cell membrane 

was then stained with wheat germ agglutinin (WGA) conjugated to Alexa Fluor® 555. The 

concentration of WGA-Alexa Fluor® 555 working solution was adjusted to a concentration of  

5 µg/mL in Hank’s balanced salt solution without phenol red. The cells were incubated for 10 min in 

the dye working solution at 37 °C, 5% CO2 in the dark. The cells were washed with PBS (3  0.5 mL) 

and then fixed with 4% paraformaldehyde in PBS solution for 20 min at 20 °C in the dark. The cover 

slips were then removed from each well, washed with PBS (2  0.5 mL), left to dry briefly in air, and 

then mounted on glass slides using Mowiol (polyvinyl alcohol) solution as the mounting media and 

left in the dark at 20 °C (18 h) to allow hardening of the mounting media. The cells were examined 

using a Carl Zeiss laser scanning microscope LSM 510 meta, with GFP excitation 488 nm, emission  

505–550 nm (band pass filter), Alexa Fluor® 555 excitation 543 nm, emission 560–615 nm (band pass 

filter), and Alexa Fluor® 647 excitation 633 nm, emission 657–753 nm (meta detector). 

 

2.6. Cell viability assay 

 

Cells were seeded at a density of 6,500 cells per well of 96-well plates. The transfection was carried 

out using the same protocol as transfecting the 24-well plates with the exception of reducing the 

amount of lipoplexes such that each well contains 1.5 pmol siRNA in a final volume of 100 L/well. 

After 44 h, alamarBlue® [24] (10 L) was added to each well. After incubation (3.5 h), the absorbance 

of each well was measured at 570 nm and 600 nm and calculations were carried out according to the 

standard protocol provided by the supplier. 
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2.7. Particle size and zeta potential measurements 

 

Lipoplexes were prepared by adding siRNA solution (75 L, 1 M) in HEPES (pH 7.4, 10 mM) to 

HEPES (250 µL) containing the specified amount of transfection reagent followed by vortex mixing 

for 4 s. Samples were then diluted to a final volume of 3 mL by HEPES buffer. Samples were mixed 

for 10 s directly before measurements. Measurements were carried out using Malvern Zetasizer Nano 

S90 using refractive index 1.59, viscosity 0.89 cP, dielectric constant 79, and temperature set to 25 °C 

with equilibrium time 3 min. Z-Average diameter in nm and zeta potential in mV were recorded as 

averages of three and six measurements respectively. 

 

2.8. siRNA binding (RiboGreen intercalation assay) 

RiboGreen (Invitrogen) working solution was prepared by diluting RiboGreen stock solution 1 to 

400 in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5 diluted 1 to 20 in RNase free water). 

RiboGreen working solution (40 μL) was added to each well of a 96-well plate (black bottom) 

containing free siRNA (1 pmol) or complexed with lipospermines in TE buffer at the lipid/siRNA 

ratios that showed the best reduction in GFP expression. Each well contained a final volume of 120 µL. 

The fluorescence was measured using FLUOstar Optima Microplate Reader (BMG-LABTECH),  

ex = 480 nm and em = 520 nm. The amount of siRNA available to interact with the lipid vector was 

calculated by subtracting the values of RiboGreen background fluorescence (RiboGreen without 

siRNA) from those obtained for each measurement, and expressed as a percentage of the control that 

contained naked siRNA only according to the following equation:  

% free siRNA = 100  RiboGreen fluorescence of complexes/RiboGreen fluorescence of naked siRNA 

3. Results and Discussion 

3.1. Synthesis of N1,N12-diamidine derivatives of spermine 

 

We have designed a series of novel lipoguanidines based upon our recently published 

lipopolyamines [23] in order to investigate the SAR of replacing primary amines with guanidine 

functional groups. These are formally called di-imidamides of alkanes and the nomenclature also 

permits N-aminoiminomethyl. Where we have referred to them as guanidines, they are more correctly 

N-amidines of spermine. 

Our four lipoguanidines will be investigated in terms of their efficiency and their effect on cell 

viability as non-viral vectors for siRNA delivery. An amidine group was attached to each of the two 

terminal primary amines of spermine to result in the di-guanidines (N1,N12-diamidino-amines). Three 

fatty acids of different chain length and saturation were used to synthesise the lipoguanidines 1, 2, and 

3 by acylation at N4 and N9 of spermine. The fourth lipoguanidine 4 was synthesized by acylating 

sequentially using two different long-chain fatty acids (linoleic and oleic) to N4and N9. 
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Figure 2. Synthesis of N1,N12-diamidino-N4,N9-diacylated spermines. a: N-

Carbethoxyphthalimide, DCM; b: fatty acid, DCC, TEA; c: hydrazine monohydrate, 

DCM/THF 1:1 mixture; d: 1,3-di-Boc-2-(trifluoromethylsulfonyl)guanidine, TEA, DCM; e: 

TFA, DCM. 

 

Figure 3. N1,N12-Diamidine derivatives of different lipospermines. 
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The synthesis of the guanidinylated N4,N9-diacylated spermine conjugates started with the synthesis 

of the N4,N9-difatty acids spermine derivatives (Figure 2). The symmetrical lipospermines; i.e., those 

with the same fatty acid chains conjugated to positions N4 and N9 of the spermine chain was carried out 

as described previously [23]. For the synthesis of the unsymmetrical N4-linoleoyl-N9-oleoylspermine, 

the primary amine groups of spermine were selectively protected with the phthalimide protecting 

group (2 eq. of N-carbethoxyphthalimide in CH2Cl2). Then one oleoyl chain was conjugated to one of 

the free secondary amine groups of spermine (1 eq. oleic acid, 1 eq. DCC, and 1 eq. DMAP). 

Purification of the mono-acylated spermine was followed by flash chromatography. The second 

linoleoyl chain was added using DCC coupling of linoleic acid to the 1,12-diphthalimido-N9-oleoyl-

4,9-diazadodecane (1 eq. linoleic acid, 1 eq. DCC, and 1 eq. DMAP). Deprotection of the phthalimide 

protecting groups then followed by refluxing in hydrazine monohydrate in DCM/THF 1:1 mixture to 

obtain N4-linoleoyl-N9-oleoylspermine, which was purified by flash chromatography [23]. The 

guanidinylation of amines typically involves an electrophilic amidine group as part of the 

guanidinylating reagent [25]. 1,3-Di-Boc-2-(trifluoromethylsulfonyl)guanidine was used as it can carry 

out the guanidinylation of primary and secondary amines under mild conditions [25,26]. The 

guanidinylation was carried out on the di-acylated spermine derivatives and deprotection of the Boc 

protected guanidine group was carried out using TFA to obtain the trifluoroacetate salts of the 

synthesized compounds (Figure 3).  

 

3.2. Lipoplex particle size and ζ-potential 

 

The lipoplexes prepared at the cationic lipid/siRNA ratios for each guanidinylated lipid which 

resulted in the best reduction in GFP expression were chosen to be characterized for their particle size 

and ζ-potential (Table 1). Particle size measurement using dynamic light scattering showed that the 

particle size varied from 132–575 nm. The two cationic lipids 3 and 4 which are acylated with 

unsaturated C18 fatty acids (dioleoyl and linoleoyl/oleoyl respectively) and which showed the best 

reduction in GFP expression, had particle sizes of 303 and 158 nm respectively. The particle size of 

the C22 (dierucoyl) conjugate 1 was the smallest (132 nm) while the short chain C12 (dilauroyl) 

conjugate 2 had the largest particle size of 575 nm. Lipoplex size has been identified as an important 

factor in transfection efficiency, although not the only determinant factor [27]. Lipoplexes within size 

range 200–300 nm have been previously reported [28]. Although the size of the lipoplexes will 

determine the main route of entry with smaller lipoplexes (<300 nm) likely to enter via clathrin 

mediated endocytosis, and larger particles (>500 nm) entering cells via caveoli mediated endocytosis 

[28,29], one recent report shows that the actual entry route for functional siRNA mediated gene 

silencing might possibly be fusion with the plasma membrane rather than the endocytosis pathway [30]. 

The ζ-potentials measurements showed that all the lipoplexes had positive values within the range 28-

50 mV. Cationic lipids 3 and 4 had the similar ζ-potential of 45 mV. Positive ζ-potential is important 

in promoting stability of the prepared lipoplexes by enhancing repulsion between the nanoparticles. 

Although having positive ζ-potential will promote interaction between the positively charged 

lipoplexes and the negatively charged groups present on the cell membrane surface, it was reported 

that in the presence of serum, the lipoplexes actually acquire a negative ζ-potential [28] while still 

maintaining efficient transfection efficiency.  
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Table 1. N1,N12-Diamidine derivatives of different lipospermines. The fatty acids are 

described by two numbers separated by a colon, first the chain length and then the number 

of double bonds. Particle size and ζ-potential of guanidinylated lipospermines were 

measured at the cationic lipid/short interfering RNA (siRNA) ratios that showed best 

reduction in GFP expression. 

Name of compound Fatty acid 
Description 
of fatty acid 

Particle size 
(nm) ± SD 

Zeta-potential 
(mV) ± SD 

N1,N12-Diamidino-N4,N9-
dierucoylspermine 1 

Erucic 22:1 132 ± 4 50 ± 1 

N1,N12-Diamidino-N4,N9-
dilauroylspermine 2 

Lauric 12:0 575 ± 61 28 ± 3 

N1,N12-Diamidino-N4,N9-
dioleoylspermine 3 

Oleic 18:1 303 ± 6 45 ± 3 

N1,N12-Diamidino-N4-linoleoyl-
N9-oleoylspermine 4 

Linoleic and
Oleic 

18:2 and 
18:1 

158 ± 24 45 ± 3 

3.3. siRNA binding (RiboGreen intercalation assay) 

 

An siRNA binding assay was used to evaluate the ability of the synthesized guanidinylated lipids 1, 

2, 3, and 4 to complex and bind siRNA. The assay depends on the increased fluorescence (approx. 

1000-fold) of bound RiboGreen dye compared to the free (unbound) dye which is practically non-

fluorescent [31]. The loss of fluorescence compared to control siRNA indicates the binding of siRNA 

to cationic lipids and hence prevention of RiboGreen binding with siRNA which leads to reduction of 

fluorescence compared to the control (free) siRNA [32,33]. The four cationic lipids 1-4 efficiently 

bound siRNA and the normalised fluorescence, relative to free siRNA (100%), was reduced to: 5 ± 2 

(1), 12 ± 3 (2), 0 ± 1 (3), and 8 ± 2 (4). These results prove that the guanidinylated lipids are able to 

efficiently bind siRNA. 

 

3.4. Transfection with siRNA and evaluating delivery and knock-down 

 

HeLa cells that was previously transfected to stably express GFP was used to evaluate the siRNA 

delivery and sequence specific knock-down of GFP expression. The siRNA against GFP used was 

labelled with Alexa Fluor 647 (AF647) in the 3'-position of the anti-sense strand to enable 

simultaneous tracking of the siRNA delivery and reduction of GFP expression by measuring the 

fluorescence of the AF647 and the GFP during the FACS analysis. A healthy population of sample 

cells were gated before recording the fluorescence during FACS.  

The normalized fluorescence of AF647 measured 48 h post transfection was measured as an 

estimate for the delivered amount of siRNA. Figure 4 shows that, for each cationic lipid, there is a 

general trend of increasing fluorescence by increasing the amount of the lipid. Cationic lipid 2 data are 

not shown due to the very low siRNA delivery. With respect to 1, 3, and 4, there was a significant 

statistical difference between the geometric mean AF647 fluorescence measured at 3 and 6 µg/well 
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(N/P = 10 and 20 respectively) with p < 0.05. There was also a significant statistical difference 

between the amounts of siRNA delivered (geometric mean fluorescence of AF647) by 3 and 4  

(p < 0.05) with lipoplexes formulated at 6 µg/well (N/P = 20). There was no significant statistical 

difference between 1 and 4 at 6 µg/well (p = 0.33). These results show that, given that 1, 3, and 4 have 

two guanidine head-groups in the form of trifluoroacetate salts in common, the C18 (18:1 and 18:2) 

unsaturated fatty acids conjugated at positions N4 and N9 of the parent spermine provided the optimum 

chain length for siRNA delivery compared to the C12 (12:0) and C22 (22:1) chains.  

 

Figure 4. Delivery of siRNA (15 nM, 15 pmol/well) against GFP (labelled with Alexa 

Fluor® 647 at the 3'-position of the sense strand) using 1, 3, and 4. Values are presented as 

means of normalized geometric mean fluorescence of AF647 ± SD (n = 6).  
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Figure 5. Reduction in GFP expression in HeLa cells after transfection with lipoplexes of 

1, 2, 3, and 4 at different cationic lipid/siRNA ratios. siRNA concentration is kept constant 

(15 nM, 15 pmol/well). Values are presented as mean ± SD (n = 6). Commercial TransIT 

TKO (T) is shown for comparison. 
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Figure 5 shows that the best reduction of GFP expression was achieved by 4 followed by 3. At  

6 µg/well, GFP expression was reduced to 26% and 43% for 4 and 3 respectively (p < 0.05). Lipid 1 

did not show any practically significant reduction in GFP (reduced to 85%) at 6 µg/well (N/P = 18). 

Lipid 2 resulted in GFP reduction to 46% at 6 µg/well (N/P = 26), however, this reduction cannot be 

evaluated without considering the high toxicity of 2 which will affect the expression of GFP, as will be 

discussed later. Lipids 3 and 4 with C18 (18:1 and 18:2) resulted in the best knock-down of GFP 

expression, which might be attributed to the fusogenic ability of unsaturated fatty acids (in cis-

configuration) which favours (L to HII) transition as they can promote both membrane fusion and 

endosomal escape [23,34,35]. The chain length is an important factor that affects the efficiency of GFP 

knock-down because although the C22 (22:1) has one centre of unsaturation, lipid 1 resulted in less 

reduction in GFP (85%) compared to 3 (43%) and 4 (26%) with significant statistical difference 

between the compared means (p < 0.05) at 6 µg/well. The chain length affect siRNA delivery and 

siRNA mediated knock-down in a different manner, as evident from comparing the delivery of 1, 3, 

and 4 and their GFP reduction at a concentration of 6 µg/well. Although 1 and 4 resulted in similar 

siRNA delivery efficiencies, lipid 4 was much better than 1 in terms of GFP reduction (to 26% and 

85% respectively). These differences in gene silencing efficiency compared with cellular uptake of the 

lipoplexes may reflect the multi-step processes of gene silencing and/or more than one mechanism of 

cell entry [30].  

Also, lipid 3 resulted in better GFP reduction when compared to 1 (to 43% and 85% respectively) 

despite the fact that 1 resulted in higher siRNA delivery compared to 3 (p < 0.05). The importance of 

chain length and chain unsaturation of cationic lipids has been previously reported to be among the 

most significant factors that affect transfection efficiency because of the effect on the hydrophobic 

volume of lipid and its hydrophilic/lipophilic ratio which will in turn affect the properties of the formed 

lipoplexes [36]. 

When compared to the commercial transfecting agent TransIT TKO, the reduction in GFP 

expression obtained with lipoplexes of 4 (26%) was the same as that obtained with TransIT TKO 

(24%), i.e., there was no significant statistical difference (p = 0.30). 

The increases in fluorescence shown in Figure 4 reflect increases in siRNA delivery with increasing 

concentrations of cationic lipids in the lipoplexes up to an N/P ratio of 20 (6 μg/well). Figure 5 shows 

the corresponding reduction in GFP expression. These data were obtained from gated FACS analyses 

of the healthy populations of HeLa cells (parent gate), representative examples of which are shown in 

Figure 6 together with the percentage of cells transfected. In order to evaluate siRNA delivery, the 

AF647 gate was set-up to include cells that have fluorescence signals higher than the auto-

fluorescence of control cells detected at  = 660 nm. The GFP gate was set to calculate the geometric 

mean fluorescence of GFP. 

The effects of transfecting HeLa cells using 3 and 4 with scrambled siRNA on lipoplex delivery and 

GFP expression are shown in Figure 7. Qiagen report that their scrambled siRNA lacks any homology 

to mammalian genes. Figure 7 shows that the GFP expression was practically not affected by the 

transfection process while the scrambled siRNA was delivered in comparable amounts (i.e., 

comparable normalized fluorescence) to delivery of the siRNA against GFP. Thus, cationic lipids 3 

and 4 deliver two different siRNAs with similar efficiency. These results prove that GFP reduction 

after transfection with siRNA against GFP (shown as averaged data in Figure 5 and as representative 
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examples in Figure 6) is due to sequence specific gene silencing and not due to any toxic effects of the 

cationic lipid vectors.  

Figure 6. Gated FACS analysis of delivery of siRNA (15 nM, 15 pmol/well) against GFP 

(labelled with Alexa Fluor® 647 at the 3'-position of the sense strand) and GFP expression 

in HeLa cells 48 h post transfection with lipoplexes of 3 and 4 (6 µg/well) at an siRNA 

concentration of 15 pmol/well. The AF647 gate (red) shows 75% of parent-gated cells with 

3, and 92% of parent-gated cells with 4. The GFP gate (green) shows silencing to ~40% 

and ~25% respectively measured by geometric mean fluorescence relative to control (top 

line).  

       
Control 

       
siRNA lipoplexes with cationic lipid 3 

 

       
siRNA lipoplexes with cationic lipid 4 

 

 



Pharmaceutics 2011, 3                   

 

 

418

Figure 7. Scrambled AllStars siRNA (with an Alexa Fluor® 647 tag at the 3'-position)  

(15 nM, 15 pmol/well) was delivered with cationic lipids 3 and 4 (at 6 g/well). Delivery 

of tagged siRNA (left) is expressed as AF647 normalized geometric mean fluorescence ± 

SD (n = 6) measured at  = 660 nm. GFP percentage expression (right) (absence of 

silencing as a negative control) 48 h post transfection is measured at  = 530 nm. 
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3.5. Confocal microscopy cell imaging 

 

Figure 8 shows confocal microscope images of HeLa cells after transfection with 3 and 4 using 

siRNA against GFP or scrambled siRNA at 6 µg/well of cationic lipid which is the amount of lipid that 

resulted in the best reduction of GFP expression with respect to each of the cationic lipids. 

Figure 8a shows control HeLa cells. Figure 8b shows the reduction of GFP expression after 

transfection with siRNA against GFP using 3 at 6 µg/well. Figure 8c is the same as 8b, but only the red 

channel is turned on to track better the delivery of the AF647 labelled siRNA against GFP. It can be 

seen that the AF647 fluorescence (red) is distributed throughout the cell and concentrated in some cell 

areas. Figure 8d shows that lipoplexes of 3 did not cause reduction in GFP expression when using 

scrambled siRNA which was delivered to HeLa cells successfully as shown in Figure 8g. These results 

prove that the siRNA was delivered successfully to the HeLa cells and that the reduction in GFP 

expression is due to sequence specific knock-down of GFP and not due to any toxic effects of the 

cationic lipid vectors. The same conclusion can be obtained when examining the transfection of HeLa 

cells with 4 as shown in Figure 8e with 8h, and 8f with 8i. 
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Figure 8. Confocal microscopy cell imaging. GFP fluorescence (green), cell membrane 

stained with WGA-Alexa Fluor® 555 (blue), and Alexa Fluor® 647 (red) represents 

tagged siRNA delivery. (a) non-transfected HeLa cells (control); (b) reduction in GFP 

expression after transfection with siRNA against GFP delivered with 3 (6 µg/well); (c) as b, 

but only the red channel; (d): as b, but using scrambled siRNA; (e) reduction in GFP 

expression after transfection with siRNA against GFP delivered with 4 (6 µg/well); (f) as e, 

but using scrambled siRNA; (g): as d, but only the red channel; (h) as e, but only the red 

channel; (i) as f, but only the red channel.  
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3.6. Cell viability assay 

 

Following transfection with cells seeded at a density of 65,000 cells/well in 24-well plates, i.e. 

65,000 cells/1 mL, cell viability was assayed in 96-well plates with 6,500 cells/0.1 mL [23,37]. The 

ratio of cells to the amount of cationic lipids used, the concentration of cationic lipids (0.6 g/0.1 mL) 

and of siRNA (15 nM) were exactly as used in the transfection experiments [23,38]. Figure 9 shows 

that 1, 3, and 4 resulted in more than 64% cell viability. There were no statistical significant difference 

between the cell viability of 3 and 4 (p = 0.32) with cell viabilities of 70% and 64% respectively. The 

best cell viability, obtained by 1 (83%), was significantly different (p < 0.05) from the cell viability of 

3 and 4. Whilst diacylated C12 (12:0) 2 is a new compound, the very high toxicity of its parent 

diamine, N4,N9-dilauroylspermine, has been previously reported in both HtTA cells [39] and HeLa 

cells [23] with scrambled siRNA. There were no significant differences between cell viability of 

TransIT TKO (76%) and 3 (64%), p = 0.12, or between TransIT TKO and 4 (70%), p = 0.41. There is 

a probability that the counter ion, trifluoroacetate in this case, has a contributing negative effect on cell 

viability as been reported before [40] where the presence of residual TFA in the concentration range 

108 to 107 M resulted in reduction of cell proliferation of osteoblasts, chondrocytes, and neonatal 

mice calvariae.  

 

Figure 9. Comparison of cell viability of HeLa cells after transfection with lipoplexes at 

their optimal cationic lipid/siRNA ratios and compared with the commercially available 

transfection agent TransIT TKO (T). Values are presented as mean ± SD (n = 6). 

Experiments were carried out at: 0.6 g/well synthesized cationic lipids, 1.5 pmol 

siRNA/well (15 nM), and 6,500 cells/well.  
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4. Conclusions 

The four synthesized diguanidinylated diacylated spermine-based cationic lipids were able to bind 

siRNA efficiently and to form particles with sizes in the nanometre range (132–575 nm). Saturated 

shorter chain (C12:0) 2 showed relatively high toxicity when compared with the longer chain  

(C18-C22) N1,N12-diamidino-N4,N9-diacylated spermine derivatives. Transfection with self-assembled 

siRNA lipoplexes of 3 and 4 resulted in the sequence specific knock-down of GFP in HeLa cells, 

exhibiting comparable (low) toxicity to the commercial transfecting agent TransIT TKO. Lipid 4 with 
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one linoleoyl and one oleoyl chain, acylated on positions N4 and N9 respectively of the N1,N12-

diamidinospermine, was the best transfecting agent. Lipoplexes of lipid 4 showed the same efficiency, 

in HeLa cells, in terms of reduction of GFP expression as TransIT TKO. 
In this article, we have described the synthesis of four novel spermine‐derived fatty acid amide 

guanidines applied to the self-assembly of siRNA lipoplexes which were then tested in GFP expressing 

HeLa cells. The major conclusions include detection of siRNA complexation in the lipoplexes, cellular 

uptake, toxicity, and gene silencing efficiency even in the presence of serum. This is a structure-

activity relationship (SAR) study in siRNA delivery of which there are few reported; a recent 

contribution being the design, synthesis, and analysis of spermine-siRNA conjugates containing two 

oleylamine carbamate chains [41]. 
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