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Cephalometric analysis is a standard tool for assessment and prediction of craniofacial growth, orthodontic diagnosis, and oral-
maxillofacial treatment planning. ,e aim of this study is to develop a fully automatic system of cephalometric analysis, including
cephalometric landmark detection and cephalometric measurement in lateral cephalograms for malformation classification and
assessment of dental growth and soft tissue profile. First, a novel method of multiscale decision tree regression voting using SIFT-
based patch features is proposed for automatic landmark detection in lateral cephalometric radiographs. ,en, some clinical
measurements are calculated by using the detected landmark positions. Finally, two databases are tested in this study: one is the
benchmark database of 300 lateral cephalograms from 2015 ISBI Challenge, and the other is our own database of 165 lateral
cephalograms. Experimental results show that the performance of our proposedmethod is satisfactory for landmark detection and
measurement analysis in lateral cephalograms.

1. Introduction

Cephalometric analysis is a scientific research approach for
assessment and prediction of craniofacial growth, ortho-
dontic diagnosis, and oral-maxillofacial treatment planning
for patients with malocclusion in clinical practice [1]. We
focus on 2D lateral cephalometric analysis, which is per-
formed on cephalometric radiographs in lateral view.
Cephalometric analysis has undergone three stages of de-
velopment: manual stage, computer-aided stage, and
computer-automated stage. Cephalometric analysis based
on radiographs was introduced by Broadbent [2] and
Hofrath [3] for the first time in 1931. In the first stage, it
consists of five steps to obtain the cephalometric analysis: (a)
placing a sheet of acetate over the cephalometric radiograph;
(b) manual tracing of craniofacial anatomical structures; (c)
manual marking of cephalometric landmarks; (d) measuring
angular and linear parameters using the landmark locations;
and (e) analysis/classification of craniomaxillofacial hard
tissue and soft tissue [4]. ,is process is tedious, time

consuming, and subjective. In the second stage, the first step
in traditional cephalometric analysis has been skipped since
the cephalometric radiograph is digitized. Furthermore, the
next two steps can be operated by computer, and the
measurement can be automatically calculated by software.
However, this computer-aided analysis is still time con-
suming and the results are not reproducible due to large
inter- and intravariability error in landmark annotation. In
the third stage, the most crucial step, i.e., identifying
landmarks, can be automatized by image processing algo-
rithms [5]. ,e automatic analysis has high reliability and
repeatability, and it can save a lot of time for the ortho-
dontists. However, fully automatic cephalometric analysis is
challenging due to overlaying structures and in-
homogeneous intensity in cephalometric radiographs as well
as anatomical differences among subjects.

Cephalometric landmarks include corners, line in-
tersections, center points and other salient features of an-
atomical structures. ,ey always have stable geometrical
locations in anatomical structures in cephalograms. In this
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study, 45 landmarks are used in lateral cephalograms (refer
to Table 1). ,e cephalometric landmarks play a major role
in calculating the cephalometric planes, which are the lines
between two landmarks in 2D cephalometric radiographs as
shown in Table 2. Furthermore, different measurements are
calculated using different cephalometric landmarks and
planes, and they are used to analyze different anatomical
structures [4]. Measurements can be angles or distance,
which are used to analyze skeletal and dental anatomical
structures, as well as soft tissue profile. To conduct a clinical
diagnosis, many analytic approaches have been developed,
including Downs analysis, Wylie analysis, Riedel analysis,
Steiner analysis, Tweed analysis, Sassouni analysis, Bjork
analysis, and so on [6].

Methods of automatic cephalometric landmark de-
tection are mainly separated into three categories: (1)
bottom-upmethods; (2) deformationmodel-basedmethods;
and (3) classifier/regressor-basedmethods.,e first category
is bottom-up methods, while the other two categories are
learning-based methods.

For bottom-up methods, two techniques were usually
employed, including edge detection and template matching.
Edge-based methods were to extract the anatomical con-
tours in cephalograms, and then the relative landmarks were
identified on the contours using prior knowledge. Levy-
Mandel et al. [7] first proposed the edge tracking method for
identifying craniofacial landmarks. First, input images were
smoothed by median filter and then edges were extracted by
Mero-Vassy operator. Second, contours are obtained by the
edge tracking technique based on the constraints of loca-
tions, endings, and breaking segments and edge linking
conditions. Finally, the landmarks are detected on contours
according to their definition in cephalometry. ,is method
was only tested by two high quality cephalometric radio-
graphs. Furthermore, 13 landmarks on noncontours were
not detected. A two-stage landmark detection method was
proposed by Grau et al. [8], which first extracted the major
line features in high contrast by line-detection module, such
as contours of jaws and nose, and then detected landmarks
by pattern recognition based on mathematical morphology.
Edge-based methods could only detect the landmarks on
contours and were not robust to noise, low contrast, and
occlusion. Template-matching-based methods were to find
a most likely region with the least distance to the template of
the specific landmark, and the center of the region was
considered as the estimated position of the specific land-
mark. ,erefore, not only the landmarks on contours, but
also the landmarks on noncontours can be detected. Ashish
et al. [9] proposed a template-matching method using
a coarse-to-fine strategy for cephalometric landmark de-
tection. Mondal et al. [10] proposed an improved method
from Canny edge extraction to detect the craniofacial an-
atomical structures. Kaur and Singh [11] proposed an au-
tomatic cephalometric landmark detection using Zernike
moments and template matching. Template matching based
methods had difficulty in choosing the representative
template and were not robust to anatomical variability in
individual. All these methods strongly depended on the
quality of images.

Subsequently, deformation model-based methods were
proposed for these limitations by using shape constraints.
Forsyth and Davis [12] reviewed and evaluated the ap-
proaches reported from 1986 to 1996 on automatic ceph-
alometric analysis systems, and they highlighted
a cephalometric analysis system presented by Davis and
Taylor, which introduced an appearance model into land-
mark detection. ,e improved algorithms of active
shape/appearance models were then used to refine cepha-
lometric landmark detection combining with template
matching, and higher accuracy was obtained [13–17]. Here,
shape or appearance models were learned from training data

Table 1: Description of cephalometric landmarks.

Symbol Description
N Nasion
Ns Soft tissue nasion
Prn Pronasale
Cm Columella
ANS Anterior nasal spine
A Subspinale
Sn Subnasale
Ss/A′ Upper pit of lips
UL Upper lip
Stoms Stomion superius
Stomi Stomion inferius
LL Lower lip
Si/B′ Lower pit of lips
Pos Soft tissue pogonion
Gs Soft tissue gnathion
Mes Soft tissue menton
Go Gonion
Me Menton
Gn Gnathion
Pg Pogonion
LIA Mandibular joint midpoint
B Supramental
Id Infradentale
LI Lower incisal incision
UI Upper incisal incision
FA Maxillary incisor’s facial axis
SPr Superior prosthion
UIA Root point of incisor
Or Orbitale

Se Internode of sphenoid wing with anterior cranial
fossa

L6A Root apex of mandibular first molar
UL5 Midpoint of tip of the second molar
L6E Buccal apex of mandibular first molar
UL6 Midpoint of tip of first molar
U6E Buccal apex of maxillary first molar
U6A Root apex of maxillary first molar
PNS Posterior nasal spine
Ptm Pterygomaxillary fissure
S Sella
Co Condylion
Ar Articulare
Ba Basion

Bolton Concave point of posterior incision of occipital
condyle

P Porion
ULI Midpoint of lower incisor and upper incisor

2 Journal of Healthcare Engineering



to regularize the searching through all landmarks in testing
data. However, it was difficult to initialize landmark posi-
tions for searching, because the initialization was always
achieved by traditional methods.

Recently, significant progress has been made for auto-
matic landmark detection in cephalograms by using super-
vised machine-learning approaches. ,ese machine-learning
approaches can be further separated into two classes: clas-
sification and regression models. A support vector machine
(SVM) classifier was used to predict the locations of land-
marks in cephalometric radiographs, while the projected
principal-edge distribution was proposed to describe edges as
the feature vector [18]. El-Feghi et al. [19] proposed a coarse-
to-fine landmark detection algorithm, which first used fuzzy
neural network to predict the locations of landmarks, and
then refined the locations of landmarks by template matching.
Leonardi et al. [20] employed the cellular neural networks
approach for automatic cephalometric landmark detection on
softcopy of direct digital cephalometric X-rays, which was
tested by 41 cephalograms and detected 10 landmarks.
Favaedi et al. [21] proposed a probability relaxation method
based on shape features for cephalometric landmark de-
tection. Farshbaf and Pouyan et al. [22] proposed a coarse-to-
fine SVM classifier to predict the locations of landmarks in
cephalograms, which used histograms of oriented gradients
for coarse detection and histograms of gray profile for re-
finement. Classifier-based methods were successfully used to
identify the landmark from the whole cephalograms, but
positive and negative samples were difficult to be balanced in
training data, and computational complexity is increased due
to pixel-based searching.

Many algorithms have been reported for automatic
cephalometric landmark detection, but results were difficult
to compare due to the different databases and landmarks.
,e situation has been better since two challenges were held

at 2014 and 2015 IEEE International Symposium on Bio-
medical Imaging (ISBI). During the challenges, regressor-
based methods were first introduced to automatic landmark
detection in lateral cephalograms. ,e challenges aimed at
automatic cephalometric landmark detection and using
landmark positions to measure the cephalometric linear and
angular parameters for automatic assessment of anatomical
abnormalities to assist clinical diagnosis. Benchmarks have
been achieved by using random forest (RF) [23] regression
voting based on shape model matching at the challenges. In
particular, Lindner et al. [24, 25] presented the algorithm of
random forest regression voting (RFRV) in the constrained
local model (CLM) framework for automatic landmark
detection, which obtained the mean error of 1.67mm, and
the successful detection rate of 73.68% in precision range of
2mm.,e algorithm of RFRV-CLMwon the challenges, and
the RF-based classification algorithm combined with Haar-
like appearance features and game theory [26] was in rank 2.
,e comprehensive performance analysis among those al-
gorithms for the challenges were reported in [27, 28]. Later,
Vandaele et al. [29] proposed an ensemble tree-based
method using multiresolution features in bioimages, and
the method was tested by three databases including
a cephalogram database of 2015 ISBI challenge. Now, public
database and evaluation are available to improve the per-
formance of automatic analysis system for cephalometric
landmark detection and parameter measurement, and many
research outcomes have been achieved. However, automatic
cephalometric landmark detection and parameter mea-
surement for clinical practice is still challenging.

In recent days, efforts have been made to develop au-
tomatic cephalometric analysis systems for clinical usages. In
this paper, we present a new automatic cephalometric
analysis system, including landmark detection and param-
eter measurement in lateral cephalograms, and the block
diagram of our system is shown in Figure 1. ,e core of this
system is automatic landmark detection, which is realized by
a new method based on multiresolution decision tree re-
gression voting. Ourmain contributions can be concluded in
four aspects: (1) we propose a new landmark detection
framework of multiscale decision tree regression voting; (2)
SIFT-based patch feature is first employed to extract the
local feature of cephalometric landmarks, and the proposed
approach is flexible when extending to detection of more
landmarks because feature selection and shape constraints
are not used; (3) two clinical databases are used to evaluate
the extension of the proposed method. Experimental results
show that our method can achieve robust detection when
extending from 19 landmarks to 45 landmarks; (4) auto-
matic measurement of clinical parameters is implemented in
our system based on the detected landmarks, which can
facilitate clinical diagnosis and research.

,e rest of this paper is organized as follows. Section 2
describes our proposed method of automatic landmark
detection based onmultiscale decision tree regression voting
and parameter measurement. Experimental results for 2015
ISBI Challenge cephalometric benchmark database and our
own database are presented in Section 3. ,e discussion of
the proposed system is given in Section 4. Finally, we

Table 2: Description of cephalometric planes.

Name Involving
landmarks

Description
in database1

Description
in database2

Reference planes
SN. Anterior cranial
base plane S-N L1L2 L39L1

FH. Frankfort horizontal
plane P-O L4L3 L44L29

Bolton plane Bolton-N — L43L1
Measurement planes
Palatal plane ANS-PNS L18L17 L5L37
Cranial base plane Ba-N — L42L1
MP. Mandibular plane Go-Me L10L8 L17L18
RP. Ramal plane Ar-Go L19L10 L41L17
NP. Facial plane N-Pg L2L7 L1L20
NA plane N-A L2L5 L1L6
AB. Subspinale to
infradentale plane A-B L5L6 L6L22

AP plane A-Pg L5L7 L6L20
Soft tissue measurement
planes
Facial plane of soft tissue Ns-Pos — L2L14
Ricketts esthetic plane Prn-Pos — L3L14
H plane UL-Pos L13L16 L9L14
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conclude this study with expectation of future work in
Section 5.

2. Method

2.1. Landmark Detection. It is well known that cephalo-
metric landmark detection is the most important step in
cephalometric analysis. In this paper, we propose a new
framework of automatic cephalometric landmark detection,
which is based on multiresolution decision tree regression
voting (MDTRV) using patch features.

2.1.1. SIFT-Based Patch Feature Extraction

(1). SIFT Feature. Scale invariant feature transform (SIFT) is
first proposed for key point detection by Lowe [30]. ,e
basic idea of SIFT feature extraction algorithm consists of
four steps: (1) local extrema point detection in scale-space by
constructing the difference-of-Gaussian image pyramids; (2)
accurate key point localization including location, scale, and
orientation; (3) orientation assignment for invariance to
image rotation; and (4) key point descriptor as the local
image feature. ,e advantage of SIFT features to represent
the key points is affine invariant and robust to illumination
change for images. ,is method of feature extraction has
been commonly used in the fields of image matching and
registration.

(2) SIFT Descriptor for Image Patch. Key points with dis-
cretized descriptors can be used as visual words in the field of
image retrieval. Histogram of visual words can then be used
by a classifier to map images to abstract visual classes. Most
successful image representations are based on affine in-
variant features derived from image patches. First, features
are extracted on sampled patches of the image, either using
a multiresolution grid in a randomized manner, or using
interest point detectors. Each patch is then described using
a feature vector, e.g., SIFT [30]. In this paper, we use the
SIFT feature vectors [31] to represent image patches, which
can be used by a regressor to map patches to the dis-
placements from each landmark.

,e diagram of SIFTfeature descriptor of an image patch
is illustrated in Figure 2. An image patch centered at location
(x, y) will be described by a square window of length 2W + 1,
where W is a parameter. For each square image patch P
centered at position (x, y) of length 2W + 1, the gradient Px

and Py of image patch P is computed by using finite dif-
ferences. ,e gradient magnitude gm is computed by

gm �
�������
P2

x + P2
y


, (1)

and the gradient angle ga (measured in radians, clockwise,
starting from the X axis) is calculated by

ga � arctan
Py

Px

. (2)

Each square window is separated into 4 × 4 adjacent
small windows, and the 8-bin histogram of gradients (di-
rection angles started from 0 to (2π) is extracted in each
small window. For each image patch, 4 × 4 histograms of
gradients are concatenated to the resulting feature vector f
(dimension � 128). Finally, the feature f of image patch P can
be described as SIFT descriptor. ,e example of SIFT-based
patch feature extraction in a cephalogram is shown in
Figure 3.

2.1.2. Decision Tree Regression. Decision tree is a classical
and efficient statistical learning algorithm and has been
widely used to solve classification and regression problems
[32, 33]. Decision trees predict responses to data. To predict
a response, query the new data by the decisions from the root
node to a leaf node in the tree. ,e leaf node contains the
response. Classification trees give responses that are nom-
inal, while regression trees give numeric responses. In this
paper, CART (classification and regression trees) [34],
a binary tree, is used as the regressors Rl to learn the
mapping relationship between the SIFT-based patch feature
vectors f and the displacement vectors d(dx, dy) from the
centers of the patches to the position of each landmark in the
training images. ,e regressors Rl are then used to predict
the displacements d using patch feature vectors of the test
image. Finally, the predicted displacements are used to
obtain the optimal location of each landmark via voting. One
advantage of the regression approach is to avoid balancing
positive and negative examples for the training of classifiers.
Another advantage of using regression, rather than classi-
fication, is that good results can be obtained by evaluating
the region of interest on randomly sampling pixels rather
than at every pixel.

(1) Training. In training process, a regression tree Rl can be
constructed for each landmark l via splitting. Here, opti-
mization criterion and stopping rules are used to determine
how a decision tree is to grow. ,e decision tree can be
improved by pruning or selecting the appropriate
parameters.

,e optimization criterion is to choose a split to min-
imize the mean-squared error (MSE) of predictions com-
pared to the ground truths in the training data. Splitting is
the main process of creating decision trees. In general, four
steps are performed to split node t. First, for each obser-
vation fj (i.e., the extracted feature in the training data), the
weighted MSE εt of the responses (displacements d) in node
t is computed by using

εt � 
j∈T

dj − dt 
2

N
, j � 1, . . . , N, (3)

whereT is the set of all observation indices in node t andN is
the sample size. Second, the probability of an observation in
node t is calculated by

Landmark
detection

Parameter
measurementCephalogram Result analysis

Figure 1: Block diagram of automatic cephalometric analysis
system.
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P(T) � 
j∈T

wj, (4)

where wj is the weight of observation j. In this paper, set wj

� 1/N. ,ird, all elements of the observation are sorted in

ascending order. Every element is regraded as a splitting
candidate. TU is the unsplit set of all observation indices
corresponding tomissing values. Finally, the best way to split
node t using fj is determined by maximizing the reduction
in MSE Δεt among all splitting candidates. For all splitting

Image Geometry descriptor

…0
12

3
4

5 6
7

8
910

11
12

13 14
15

Bin indexes when stacked

y

x

ŷ

x̂

Figure 2: Diagram of SIFT feature descriptor of an image patch.
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Figure 3: SIFT-based patch feature extraction. (a) Original image showing a patch. (b) Geometry descriptor. (c) ,e extracted feature vector.
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candidates in the observation fj, the following steps are
performed:

(1) Split the observations in node t into left and right
child nodes (tL and tR, respectively).

(2) Compute the reduction in MSE Δεt. For a particular
splitting candidate, tL and tR represent the observation
indices in the sets TL and TR, respectively. If fj does
not contain any missing values, then the reduction in
MSE Δεt for the current splitting candidate is

Δεt � P(T)εt −P TL( εtL
−P TR( εtR

. (5)

If fj contains any missing values, then the reduction in
MSE Δεt

′ is

Δεt
′ � P T−TU( εt −P TL( εtL

−P TR( εtR
, (6)

where T−TU is the set of all observation indices in
node t that are not missing.

(3) Choose the splitting candidate that yields the largest
MSE reduction. In this way, the observations in node
t are split at the candidate that maximize the MSE
reduction.

To stop splitting nodes of the decision tree, two rules can
be followed: (1) it is pure of the node that the MSE for the
observed response in this node is less than the MSE for the
observed response in the entire data multiplied by the tol-
erance on quadratic error per node and (2) the decision tree
reaches to the setting values for depth of the regression de-
cision tree, for example, the maximum number of splitting
nodes max_splits.

,e simplicity and performance of a decision tree should
be considered to improve the performance of the decision
tree at the same time. A deep tree usually achieves high
accuracy on the training data. However, the tree is not to
obtain high accuracy on a test data as well. It means that
a deep tree tends to overfit, i.e., its test accuracy is much less
than its training accuracy. On the contrary, a shallow tree
does not achieve high training accuracy, but can be more
robust, i.e., its training accuracy could be similar to that of
a test data. Moreover, a shallow tree is easy to interpret and
saves time for prediction. In addition, tree accuracy can be
obtained by cross validation, when there are not enough data
for training and testing.

,ere are two ways to improve the performance of
decision trees by minimizing cross-validated loss. One is to
select the optimal parameter value to control depth of de-
cision trees. ,e other is postpruning after creating decision
trees. In this paper, we use the parameter max_splits to
control the depth of resulting decision trees. Setting a large
value for max_splits lends to growing a deep tree, while
setting a small value formax_splits yields a shallow tree with
larger leaves. To select the appropriate value for max_splits,
the following steps are performed: (1) set a spaced set of
values from 1 to the total sample size formax_splits per tree;
(2) create cross-validated regression trees for the data
using the setting values for max_splits and calculate the
cross-validated errors; and (3) the appropriate value of

max_splits can be obtained by minimizing the cross-
validated errors.

(2) Prediction. In prediction process, you can easily predict
responses for new data after creating a regression tree Rl.
Suppose f_new is the new data (i.e., a feature vector
extracted from a new patch P_new in the test cephalogram).
According to the rules of the regression tree, the nodes select
the specific attributes from the new observation f_new and
reach the leaf step by step, which stores the mean dis-
placement d_new. Here, we predict the displacement from
the center of patch P_new to the landmark l using SIFT
feature vector by the regressor Rl.

2.1.3. MDTRV Using SIFT-Based Patch Features

(1) Decision Tree Regression Voting (DTRV). As illustrated in
Figure 4, the algorithm of automatic cephalometric land-
mark detection using decision tree regression voting
(DTRV) in single scale consists of training and testing
processes as a supervised learning algorithm. ,e training
process begins by feature extraction for patches sampled
from the training images. ,en, a regression tree is con-
structed for each landmark with inputting feature vectors
and displacements (f, d). Here, f represents the observations
and d represents the targets for this regression problem. ,e
testing process begins by the same step of feature extraction.
,en, the resulting f_new is used to predict the displacement
d_new by regressor Rl. In the end, the optimal landmark
position is obtained via voting. ,e voting style includes
single unit voting and single weighted voting. As mentioned
in [35], these two styles perform equally well in application
of voting optimal landmark positions for medical images. In
this paper, we use the single unit voting.

(2) MDTRV Using SIFT-Based Patch Features. Finally, a new
framework of MDTRV using SIFT-based patch features is
proposed by using a simple and efficient strategy for accurate
landmark detection in lateral cephalograms. ,ere are four
stages in the proposed algorithm of MDTRV, which are
iteratively performed in the scales of 0.125, 0.25, 0.5, and 1.
When the scale is 0.125, the training K patches with K
displacements are randomly sampled in a whole cephalo-
gram for a specific landmark l(l � 1, . . . , L). ,e decision
tree regressor R1

l is created by using these training samples.
For prediction, SIFT features are extracted for K′ testing
patches sampled in the whole cephalogram, and K′ dis-
placements are predicted by regressor R1

l using extracted
features. ,e optimal position of the specific landmark l is
obtained via voting through all predicted displacements.
When the scale is 0.25, 0.5, or 1, only the patch sampling rule
is different from the procedure in scale of 0.125. ,at is, the
training and testing patches are randomly sampled in the
(2S + 1) × (2S + 1) neighborhood of true and initial landmark
positions. ,e estimated landmark position is used as the
initial landmark position in the next scale of testing process.
,e optimal position of the specific landmark l in scale of 1 is
refined by using Hough forest [36], which is regarded as the
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final resulting location. ,is multiresolution coarse-to-fine
strategy has greatly improved the accuracy of cephalometric
landmark detection.

2.2. Parameter Measurement. Measurements are either
angular or linear parameters calculated by using cephalo-
metric landmarks and planes (refer to Tables 1 and 2).
According to geometrical structure, measurements can be
classified into five classes: the angle of three points, the angle
of two planes, the distance between two points, the distance
from a point to a plane, and the distance between two points
projected to a plane. All measurements can be calculated
automatically in our system as described in the following.

2.2.1.8e Angle of8ree Points. Assume point B is the vertex
among three points A, B, and C, then the angle of these three
points is calculated by

∠ABC � arccos
a2 + c2 − b2

2ac
  ×

180
π

 , (7)

and
a � ‖A−B‖,

b � ‖A−C‖,

c � ‖B−C‖,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where ‖A−B‖ �

��������������������

(xA − xB)2 + (yA −yB)2


represents the
Euclidean distance of A and B.

2.2.2. 8e Angle between Two Planes. As the cephalometric
radiographs are 2D images in this study, the planes are
projected as straight lines. ,us, the planes are determined
by two points. ,e angle between two planes AB and CD is
calculated by

∠AB � arctan
yA −yB

xA − xB

  ×
180
π

 ,

∠CD � arctan
yC −yD

xC −xD

  ×
180
π

 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

∠ABCD � |∠AB−∠CD|. (10)

2.2.3. 8e Distance between Two Points. ,e distance be-
tween two points is calculated using the following equation:

|AB| � ‖A−B‖ × ratio, (11)

ratio is a scale indicator that can be calculated by the
calibrated gauge in the lateral cephalograms and its unit is
mm/pixel.

2.2.4. 8e Distance from a Point to a Plane in the Horizontal
Direction. ,e plane AB is defined as

y + k1x + k0 � 0. (12)

,us, the distance of point C to the plane AB is cal-
culated by

|C · AB| �
yC + k1xC + k0�����

1 + k2
1







× ratio. (13)

2.2.5. 8e Distance between Two Points Projected to a Plane.
,e calculation of the distance between two points projected
to a plane is illustrated in Figure 5. In order to calculate the
distance between two points projected to a plane, first we use
Equations (4)–(12) to determine the plane AB. ,en, we
calculate the distance from two points C and D to the plane
AB as c1 and c2 by Equations (4)–(13). ,ird, the distance c0
between two points C and D is calculated by Equations
(4)–(11). Finally, the distance |C · AB · D| between two
points C and D projected to the plane AB is represented as c

and is calculated by

c �

�����������

c20 − c1 − c2( 
2



× ratio. (14)

3. Experimental Evaluation

3.1. Data Description

3.1.1. Database of 2015 ISBI Challenge. ,e benchmark
database (database1) included 300 cephalometric radio-
graphs (150 for TrainingData, 150 for Test1Data), which is
described in Wang et al. [28]. All of the cephalograms were
collected from 300 patients aged from 6 to 60 years old. ,e

Feature extraction

Regression tree
construction

d

f

Feature extraction
f_new d_new

Prediction Voting

R1

Ground truth of
landmarks

Training patches

Testing patches

Testing process

Training process

Landmark
positions

P (x, y)

Figure 4: Algorithm of decision tree regression voting.
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image resolution was 1935 × 2400 pixels. For evaluation, 19
landmarks were manually annotated by two experienced
doctors in each cephalogram (see illustrations in Figure 6);
the ground truth was the average of the annotations by both
doctors, and eight clinical measurements were used for
classification of anatomical types.

3.1.2. Database of Peking University School and Hospital of
Stomatology. ,e database2 included 165 cephalometric
radiographs as illustrated in Table 3 (the IRB approval
number is PKUSSIRB-201415063). ,ere were 55 cephalo-
grams collected from 55Chinese adult subjects (29 females, 26
males) who were diagnosed as skeletal class I (0 < ANB < 4)
with minor dental crowding and a harmonious.,e other 110
cephalograms were collected from the 55 skeletal class III
patients (ANB < 0) (32 females, 23 males), who underwent
combined surgical orthodontic treatment at the Peking
University School and Hospital of Stomatology from 2010 to
2013. ,e image resolutions were different in the range from
758 × 925 to 2690 × 3630 pixels. For evaluation, 45 landmarks
weremanually annotated by two experienced orthodontists in
each cephalogram as shown in Figure 7; the ground truth was
the average of annotations by both doctors, and 27 clinical
measurements were used for future cephalometric analysis.

3.1.3. Experimental Settings. In the initial scale of landmark
detection, for training, K � 50; for prediction, K′ � 400. In
the other scales, the additional parametersW and S are set to
48 and 40, separately. Because the image resolutions are
different, preprocessing is required to rescale all the images
to the fixed width of 1960 pixels in database2. For database2,
we test our algorithm by using 5-fold cross validation.

3.2. Landmark Detection

3.2.1. Evaluation Criterion. ,e first evaluation criterion is
the mean radial error with the associated standard deviation.
,e radial error E, i.e., the distance between the predicted
position and the true position of each landmark, is defined as

Ei � Ai −Bi

����
���� × ratio, ai ∈ A, bi ∈ B, 1≤ i≤M, (15)

where A, B represent the estimated and true positions of
each landmark for all cephalograms in the dataset; Ai, Bi are
the corresponding positions in set A and B, respectively; and

M is the total number of cephalograms in the dataset. ,e
mean radial error (MRE) and the associated standard de-
viation (SD) for each landmark are defined as

MRE � mean(E) �


M
i�1Ei

M
,

SD �

���������������


M
i�1 Ei −MRE( 

2

M− 1
.

 (16)

,e second evaluation criterion is the success detection
rate with respect to the 2.5mm, 3mm, 5mm, and 10mm
precision ranges. If Ei is less than a precision range, the
detection of the landmark is considered as a successful
detection in the precision range; otherwise, it is considered
as a failed detection. ,e success detection rate (SDR) pz

with precision less than z is defined as

pz �
Ei < z 

M
× 100%, 1≤ i≤M, (17)

where z denotes four precision ranges used in the evaluation,
including 2.0mm, 2.5mm, 3mm, and 4mm.

3.2.2. Experimental Results

(1) Results of database1. Experimental results of cephalo-
metric landmark detection using database1 is shown in
Table 4. ,e MREs of landmarks L10, L4, L19, L5, and L16
are more than 2mm. ,e other 14 landmarks are all within
the MRE of 2mm, in which 3 landmarks are within the MRE
of 1mm. ,e average MRE and SD of 19 landmarks are
1.69mm and 1.43mm, respectively. It shows that the de-
tection of cephalometric landmarks is accurate by our
proposed method. ,e SDRs are 73.37%, 79.65%, 84.46%,
and 90.67% within the precision ranges of 2.0, 2.5, 3.0, and
4.0mm, respectively. In 2mm precision range, the SDR is
more than 90% for four landmarks (L9, L12, L13, L14); the
SDR is between 80% and 90% for six landmarks (L1, L7, L8,
L11, L15, L17); the SDR is between 70% and 80% for two
landmarks (L6 and L18); the SDRs for the other seven
landmarks are less than 70%, where the SDR of landmark
L10 is the lowest. It can be seen from Table 4 that the
landmark L10 is the most difficult to detect accurately.

Comparison of our method with three state-of-the-art
methods using Test1data is shown in Table 5. ,e difference
between MRE of our proposed method and RFRV-CLM in
[24] is less than 1 pixel, which means that their performance
is comparable within the resolution of image.

Furthermore, we conduct the comparison with the top
two methods in 2015 ISBI Challenge of cephalometric
landmark detection in terms of MRE, SD, and SDR as il-
lustrated in Table 6. Our method achieves the SDR of 73.37%
within the precision range of 2.0mm, which is similar to the
SDR of 73.68% of the best method. ,e MRE of our pro-
posed method is 1.69mm, which is comparable to that of
method of RFRV-CLM, but the SD of our method is less
than that of method of RFRV-CLM. ,e results show that

D

AB

C

c1

c2

c0

c

Figure 5: ,e distance calculation between two points projected to
a plane.
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our method is accurate for landmark detection in lateral
cephalograms and is more robust.

(2) Results of database2. Two examples of landmark de-
tection in database2 are shown in Figure 8. It can be ob-
served from the figure that the predicted locations of 45
landmarks in cephalograms are near to the ground truth
locations, which shows the success of our proposed algo-
rithm for landmark detection.

For the quantitative assessment of the proposed algo-
rithm, the statistical result is shown in Table 7.,eMRE and
SD of the proposed method to detect 45 landmarks are
1.71mm and 1.39mm, respectively. ,e average SDRs of 45
landmarks within the precision range 2.0mm, 2.5mm,
3mm, and 4mm are 72.08%, 80.63%, 86.46%, and 93.07%,
respectively. ,e experimental results in database2 show
comparable performance to the results of database1. It

indicates that the proposed method can be successfully
applied to the detection of more clinical landmarks.

3.3. Measurement Analysis

3.3.1. Evaluation Criterion. For the classification of ana-
tomical types, eight cephalometric measurements were
usually used. ,e description of these eight measurements
and the methods for classification are explained in Tables 8
and 9, respectively.

One evaluation criterion for measurement analysis is the
success classification rate (SCR) for these 8 popular methods
of analysis, which is calculated using confusion matrix. In
the confusion matrix, each column represents the instances
of an estimated type, while each row represents the instances
of the ground truth type. ,e SCR is defined as the averaged
diagonal of the confusion matrix.

For evaluation, the performance of the proposed system
for more measurement analysis in database2, another cri-
terion, the mean absolute error (MAE), is calculated by

MAE �


M
i�1

Vi −Vi




M
, (18)

where Vi is the value of angular or linear measurement
estimated by our system and Vi is the ground truth mea-
surement obtained using human annotated landmarks.
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Figure 6: Cephalogram annotation example showing the 19 landmarks in database1. (a) Cephalogram annotation example. (b) Description
of 19 landmarks.

Table 3: ,e description of database2.

Female Male
Class I 29 26

Class III Pretreatment 32 23
Posttreatment 32 23

Total number of cephalograms 165
Total number of patients 110
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3.3.2. Experimental Results

(1) Results of database1. Using the detected 19 landmarks, 8
cephalometric measurements are calculated for classification
of anatomical types in database1. ,e comparison of our
method to the best twomethods is given in Table 10, where we
have achieved the best classification results for two mea-
surements of APDI and FHI. ,e average SCR obtained by
our method is 75.03%, which is much better than the method
in [26] and is comparable to the method of RFRV-CLM [24].

(2) Results of database2. According to the detected 45
landmarks, 27 measurements are automatically calculated by
our system using database2, including 17 angular and 10
linear measurements, which are illustrated in Table 11.

,e MAE and MAE∗ of 27 measurements are illustrated
in Table 12. Here, the MAE represents the performance of
measurement analysis of our automatic system. ,e MAE∗
represents interobserver variability calculated between the
ground truth values obtained by the two experts. For angular
measurements, the difference between MAE and MAE∗ is
within 0.5° for 9/17 measurements; the difference between
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Figure 7: Cephalogram annotation example showing landmarks in database2. (a) Cephalogram annotation example. (b),e description of
45 cephalometric landmarks.

Table 4: ,e experimental results of 19 landmark detection in
Test1Data.

Landmark MRE
(mm)

SD
(mm)

SDR (%)
2.0mm 2.5mm 3.0mm 4.0mm

L1 1.31 1.26 86.67% 92.67% 94.67% 97.33%
L2 1.92 2.05 68.00% 72.00% 79.33% 88.67%
L3 1.81 1.74 66.67% 81.33% 88.00% 95.33%
L4 3.11 2.59 50.00% 54.00% 59.33% 67.33%
L5 2.24 1.56 56.00% 66.00% 75.33% 86.67%
L6 1.59 1.39 72.00% 78.67% 84.00% 94.00%
L7 1.23 0.87 80.67% 91.33% 96.67% 99.33%
L8 1.08 0.88 88.67% 95.33% 96.67% 98.67%
L9 0.87 0.75 91.33% 93.33% 98.00% 99.33%
L10 3.98 2.33 23.33% 29.33% 38.00% 53.33%
L11 0.97 0.89 87.33% 92.00% 96.00% 98.67%
L12 0.90 1.70 94.67% 94.67% 96.00% 96.67%
L13 1.02 0.71 92.00% 95.33% 98.00% 100.00%
L14 0.89 0.61 93.33% 98.67% 100.00% 100.00%
L15 1.18 1.16 85.33% 92.00% 93.33% 98.00%
L16 2.14 1.48 50.00% 60.67% 72.67% 90.67%
L17 1.16 0.85 86.00% 92.67% 94.67% 98.67%
L18 1.77 1.51 72.00% 79.33% 86.00% 92.67%
L19 2.97 2.77 50.00% 54.00% 58.00% 67.33%
Average 1.69 1.43 73.37% 79.65% 84.46% 90.67%

Table 5: Comparison of our method with three methods in term of
MRE using Test1Dtata.

Method [24] [26] [29] Ours
MRE (pixels) 16.74 18.46 17.79 16.92

Table 6: Comparison of our method to two methods in terms of
MRE, SD, and SDR using Test1Dtata.

Method MRE
(mm)

SD
(mm)

SDR (%)
2.0mm 2.5mm 3.0mm 4.0mm

[24] 1.67 1.65 73.68% 80.21% 85.19% 91.47%
[26] 1.84 1.76 71.72% 77.40% 81.93% 88.04%
Ours 1.69 1.43 73.37% 79.65% 84.46% 90.67%
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MAE and MAE∗ is within 1° for 12/17 measurements, and
the difference betweenMAE andMAE∗ is within 2° for 16/17
measurements. In particular, theMAE of ZAngle is less than
MAE∗. ,e other one measurement has the difference of
2.24°. For linear measurements, the difference betweenMAE
and MAE∗ is within 0.5mm for 9/10 measurements. ,e
other one measurement has the difference of 1.16mm. ,e
results show that our automatic system is efficient and ac-
curate for measurement analysis.

4. Discussion

,e interobserver variability of human annotation is ana-
lyzed. Table 13 shows that the MRE and SD between an-
notations by two orthodontists are 1.38mm and 1.55mm for
database1, respectively [27]; for database2, the MRE and SD
between annotations of two orthodontists are 1.26mm and
1.27mm, respectively. Experimental results show that the
proposed algorithm of automatic cephalometric landmark

detection can achieve the MRE of less than 2mm and the SD
almost equal to that of manual marking. ,erefore, the
performance of automatic landmark detection by the pro-
posed algorithm is comparable to manual marking in term of
the interobserver variability between two clinical experts.
Furthermore, the detected landmarks are used to calculate the
angular and linearmeasurements in lateral cephalograms.,e
satisfactory results of measurement analysis are presented in
experiments based on the accurate landmark detection. It
shows that the proposed algorithm has the potential to be
applied in clinical practice of cephalometric analysis for or-
thodontic diagnosis and treatment planning.

,e detection accuracy of some landmarks is lower than
the average value, and there are mainly three main reasons: (i)
some landmarks are located at the overlaying anatomical
structures, such as landmarksGo, UL5, L6E, UL6, andU6E; (ii)
some landmarks have large variability of manual marking due
to large anatomical variability among subjects especially in
abnormality, such as landmarks A, ANS, Pos, Ar, Ba, and
Bolton; and (iii) structural information is not obvious due to
little intensity variability in the neighborhood of some land-
marks in images, such as landmarks P, Co, L6A, and U6A.

,e proposed system follows clinical cephalometric
analysis procedure, and the accuracy of the system can be
evaluated by the manual marking accuracy. ,ere are several
limitations in this study. On one hand, except for the algo-
rithm, the data effects to the performance of the system in-
clude three aspects: (i) the quality of the training data; (ii) the
size of the training dataset; and (iii) the shape and appearance
variation exhibited in the training data. On the other hand,
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Figure 8: Examples of automatic cephalometric landmark detection. (a) Example of detection in Class I. (b) Example of detection in Class III.

Table 7: ,e statistical results of automatic cephalometric land-
mark detection in database2.

No. of 5-
fold

MRE
(mm)

SD
(mm)

SDR (%)
2.0mm 2.5mm 3.0mm 4.0mm

1 1.72 1.35 72.49% 81.32% 87.04% 93.37%
2 1.72 1.38 71.38% 79.94% 85.63% 92.73%
3 1.66 1.32 74.31% 82.06% 87.44% 93.37%
4 1.77 1.36 69.67% 78.96% 85.32% 92.93%
5 1.68 1.54 72.53% 80.88% 86.87% 92.96%
Average 1.71 1.39 72.08% 80.63% 86.46% 93.07%
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performance of the system depends on consistency between
the training data and the testing data, similarly as any su-
pervised learning-based methods.

5. Conclusion

In conclusion, we design a new framework of landmark
detection in lateral cephalograms with low-to-high resolu-
tions. In each image resolution, decision tree regression
voting is employed in landmark detection. ,e proposed
algorithm takes full advantage of image information in
different resolutions. In lower resolution, the primary local
structure information rather than local detail information
can be extracted to predict the positions of anatomical

structure involving the specific landmarks. In higher reso-
lution, the local structure information involves more detail
information, and it is useful for prediction positions of
landmarks in the neighborhood. As demonstrated in ex-
perimental results, the proposed algorithm has achieved
good performance. Compared with state-of-the-art methods
using the benchmark database, our algorithm has obtained
the comparable accuracy of landmark detection in terms of
MRE, SD, and SDR. Tested by our own clinical database, our
algorithm has also obtained average 72% successful de-
tection rate within precision range of 2.0mm. In particular,
45 landmarks have been detected in our database, which is
over two times of the number of landmarks in the bench-
mark database. ,erefore, the extensibility of the proposed

Table 8: Description of cephalometric measurements in database1 [28].

No. Measurement Description in mathematics Description in words
1 ANB ∠L5L2L6 ,e angle between the landmark 5, 2, and 6
2 SNB ∠L1L2L6 ,e angle between the landmark 1, 2, and 6
3 SNA ∠L1L2L5 ,e angle between the landmark 1, 2, and 5

4 ODI ∠L5L6L8L10 + ∠L17L18L4L3
,e arithmetic sum of the angle between AB plane
(L5L6) to mandibular plane (L8L10) and the angle of

palatal plane (L17L18) to FH plane (L4L3)

5 APDI ∠L3L4L2L7 + ∠L2L7L5L6 + ∠L3L4L17L18

,e arithmetic sum of the angle between FH plane
(L3L4) to facial plane (L2L7), the angle of facial plane
(L2L7) to AB plane (L5L6), and the angle of FH plane

(L3L4) to palatal plane (L17L18)

6 FHI |L1L10|/|L2L8|

,e ratio of posterior face height (PFH, the distance
from L1 to L10) to anterior face height (AFH, the

distance from L2 to L8)

7 FHA ∠L1L2L10L9 ,e angle between SN plane (L1L2) to mandibular
plane (L10L9)

8 MW |L12L11|, x(L12)<x(L11),

−|L12L11|, otherwise.
When the x ordinate of L12 is less than L11’s, theMW

is |L12L11|; otherwise, MW is −|L12L11|.

Table 9: Eight standard cephalometric measurement methods for classification of anatomical types [28].

No. Measurement Type 1 Type 2 Type 3 Type 4
1 ANB 3.2°∼5.7° class I (normal) >5.7° class II <3.2° class III —

2 SNB 74.6°∼78.7° normal
mandible <74.6° retrognathic mandible >78.7° prognathic mandible —

3 SNA 79.4°∼83.2° normal maxilla >83.2° prognathic maxilla <79.4° retrognathic maxilla —
4 ODI Normal: 74.5° ± 6.07° >80.5° deep bite tendency <68.4° open bite tendency —
5 APDI Normal: 81.4° ± 3.8° <77.6° class II tendency >85.2° class III tendency —
6 FHI Normal: 0.65∼0.75 >0.75 short face tendency <0.65 long face tendency —

7 FHA Normal: 26.8°∼31.4° >31.4° mandible high angle
tendency

<26.8° mandible lower angle
tendency —

8 MW Normal: 2mm∼4.5mm MW � 0mm edge to edge MW <0mm anterior cross bite
MW
>4.5mm

large over jet

Table 10: Comparison of our method to two methods in term of SCR using Test1Data.

Method
,e success classification rates, SCR (%)

ANB SNB SNA ODI APDI FHI FHA MW Average
[24] 64.99% 84.52% 68.45% 84.64% 82.14% 67.92% 75.54% 82.19% 76.30%
[26] 59.42% 71.09% 59.00% 78.04% 80.16% 58.97% 77.03% 83.94% 70.96%
Ours 58.61% 78.85% 59.86% 76.59% 83.49% 82.44% 77.18% 83.20% 75.03%
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Table 11: Description of cephalometric measurements in
database2.

Name Description in
mathematics Description in words

8e angles of three points (unit: °)

SNA ∠L39L1L6 ,e angle of landmarks L39, L1,
L6

SNB ∠L39L1L22 ,e angle of landmarks L39, L1,
L22

ANB ∠L6L1L22 ,e angle of landmarks L6, L1,
L22

SNPg ∠L39L20L1 ,e angle of landmarks L39, L20,
L1

NAPg ∠L1L6L20 ,e angle of landmarks L1, L6,
L20

NSGn ∠L1L39L19 ,e angle of landmarks L1, L39,
L19

Ns-Prn-Pos ∠L2L3L14 ,e angle of landmarks L2, L3,
L14

Cm-Sn-UL ∠L4L7L9 ,e angle of landmarks L4, L7,
L9

LL-B′-Pos ∠L12L13L14 ,e angle of landmarks L12, L13,
L14

Angle of
the jaw ∠L41L17L18 ,e angle of landmarks L41, L17,

L18
Angle of
convexity ∠L2L7L14 ,e angle of landmarks L2, L7,

L14
8e angles between two planes (unit: °)

FH-SN ∠L44L29L39L1 ,e angle between FH plane
(L44L29) and SN plane (L39L1)

UI-SN ∠L28L25L39L1 ,e angle between upper incisor
(L28L25) and SN plane (L39L1)

LI-FH ∠L24L21L44L29
,e angle between lower incisor
axis (L24L21) and FH plane

(L44L29)

UI-LI ∠L28L25L24L21 ,e angle between upper and
lower incisors (L28L25, L24L21)

H angle ∠L9L14L8L14 ,e angle between H plane
(L9L14)and NB plane (L8L14)

Z angle ∠L44L29L9L14
,e rear lower angle between FH
plane (L44L29) and H plane

(L9L14)
8e distances between two points (unit: mm)

N-Me |L1L18|
,e forward height, the distance
between landmarks L1, L18

N-ANS |L1L5|

,e up-forward height, the
distance between landmarks L1,

L5

ANS-Me |L5L18|

,e down-forward height, the
distance between landmarks L5,

L18

Stoms-UI |L10L25|
,e vertical distance between

landmarks L10, L25
8e distances from the point to the plane in the horizontal direction
(unit: mm)

UI-AP |L25L6L20|
,e distance between landmark

L25 to AP plane (L6L20)

LI-AP |L24L6L20|
,e distance from landmark L24

to AP plane (L6L20)

UL-EP |L9L3L14|
,e distance from landmark L9

to EP plane (L3L14)

Table 12: Result of our method for 27 measurements in terms of
MAE and MAE∗ using database2.

Name MAE MAE∗ MAE-MAE∗

8e angles of three points (unit: °)
SNA 1.95 1.70 0.24
SNB 1.57 1.17 0.39
ANB 1.29 1.08 0.21
SNPg 1.59 1.20 0.39
NAPg 2.83 2.44 0.39
NSGn 1.42 0.96 0.47
Ns-Prn-Pos 1.68 1.10 0.58
Cm-Sn-UL 5.52 3.80 1.72
LL-B′-Pos 3.95 3.44 0.51
Angle of the jaw 3.20 1.66 1.54
Angle of convexity 2.67 1.86 0.81
8e angles between two planes (unit: °)
FH-SN 2.00 1.96 0.04
UI-SN 4.71 2.81 1.90
LI-FH 3.34 2.27 1.07
UI-LI 6.90 4.66 2.24
H angle 0.94 0.80 0.14
Z angle 1.69 1.86 -0.17
8e distances between two points (unit: mm)
N-Me 1.37 1.10 0.27
N-ANS 1.57 1.34 0.24
ANS-Me 1.06 0.96 0.10
Stoms-UI 0.75 0.42 0.33
8e distances from the point to the plane in the horizontal direction
(unit: mm)
UI-AP 0.96 0.71 0.25
LI-AP 0.96 0.76 0.20
UL-EP 0.50 0.36 0.14
LL-EP 0.45 0.39 0.05
Max.E 2.06 1.79 0.27
8e distances between two points projected to a plane (unit: mm)
Wits 4.70 3.53 1.16
MAE∗: interobserver variability.

Table 11: Continued.

Name Description in
mathematics Description in words

LL-EP |L12L13L14|
,e distance from landmark L12

to EP plane (L3L14)

Max.E |L6L5L37|

Maxillary length, the distance
from landmark L6 to palatal

plane (L5L37)
8e distances between two points projected to a plane (unit: mm)

Wits |L6L32L34L22|

,e distance between the two
landmarks L6 and L22 projected
to functional jaw plane (L32L34)

Table 13: ,e interobserver error of manual marking between
doctor1 and doctor2.

Interobserver variability
MRE (mm) SD (mm)

database1 1.38 1.55
database2 1.26 1.27
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algorithm is confirmed using this clinical dataset. In addi-
tion, automatic measurement of clinical parameters has also
achieved satisfactory results. In the future, we will put more
efforts to improve the performance of automatic analysis in
lateral cephalograms so that the automatic system can be
utilized in clinical practice to obtain objective measurement.
More research will be conducted to reduce the computa-
tional complexity of the algorithm as well.

Data Availability

,e database1 of 2015 ISBI Challenge is available at http://
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