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Simple Summary: The use of diverse omics platforms and small sample sizes in current studies of
cancer chemoresistance limits consensus regarding the molecular mechanisms underlying chemore-
sistance and the applicability of those study findings. We built transcriptome data for chemotherapy-
resistant breast cancer samples for two cohorts and conducted pathway and subpathway analyses that
revealed the activation of several molecular pathways associated with chemoresistance in Cushing’s
syndrome, human papillomavirus infection, proteoglycans in cancer, fluid shear stress, and focal
adhesion that have not been reported in the resistance of breast cancer to chemotherapy. However,
analysis of a subset of triple-negative breast cancer samples revealed activation of the identical
chemoresistance pathways.

Abstract: Chemoresistance has been a major challenge in the treatment of patients with breast cancer.
The diverse omics platforms and small sample sizes reported in the current studies of chemoresistance
in breast cancer limit the consensus regarding the underlying molecular mechanisms of chemoresis-
tance and the applicability of these study findings. Therefore, we built two transcriptome datasets for
patients with chemotherapy-resistant breast cancers—one comprising paired transcriptome samples
from 40 patients before and after chemotherapy and the second including unpaired samples from
690 patients before and 45 patients after chemotherapy. Subsequent conventional pathway analysis
and new subpathway analysis using these cohorts uncovered 56 overlapping upregulated genes
(false discovery rate [FDR], 0.018) and 36 downregulated genes (FDR, 0.016). Pathway analysis
revealed the activation of several pathways in the chemotherapy-resistant tumors, including those of
drug metabolism, MAPK, ErbB, calcium, cGMP-PKG, sphingolipid, and PI3K-Akt, as well as those
activated by Cushing’s syndrome, human papillomavirus (HPV) infection, and proteoglycans in
cancers, and subpathway analysis identified the activation of several more, including fluid shear
stress, Wnt, FoxO, ECM-receptor interaction, RAS signaling, Rap1, mTOR focal adhesion, and cellular
senescence (FDR < 0.20). Among these pathways, those associated with Cushing’s syndrome, HPV
infection, proteoglycans in cancer, fluid shear stress, and focal adhesion have not yet been reported
in breast cancer chemoresistance. Pathway and subpathway analysis of a subset of triple-negative
breast cancers from the two cohorts revealed activation of the identical chemoresistance pathways.
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1. Introduction
1.1. Genomics Studies of Chemoresistance in Breast Cancer

Recently published U.S. breast cancer statistics [1] indicate that about one in eight
women in the U.S. will develop invasive breast cancer, and diagnosis of an estimated
276,480 new cases was expected in 2020. Triple-negative breast cancer (TNBC) accounts for
15 to 20% of cases and a disproportionate 35% of breast cancer deaths [2]. Chemotherapy
has been the primary treatment for patients with TNBC, and neoadjuvant chemotherapy
(NACT) for early-stage TNBC can make breast-conserving surgery more feasible, providing
important prognostic information based on response. In large clinical trials, approximately
half of patients with TNBC have residual cancer after NACT [3,4], and approximately
40% of those with residual disease will develop distant metastasis [5]. Targeted treat-
ment options are limited for patients whose TNBC becomes resistant to chemotherapy,
despite recent FDA approvals of chemo-immunotherapy for cancer that is PDL1+ [6],
PARP1 inhibitors olaparib and talazoparib for patients with BRAC1/2 mutations [7–9],
and antibody-drug conjugates for late-line therapy [10]. Several ongoing Phase III clin-
ical trials built upon compelling results of Phase II studies target androgen receptors
(AR)(NCT02750358), immune checkpoints, such as PD-L1 (NCT02954874, NCT03036488),
TROP2 (NCT03498716, NCT03197935, NCT03281954, NCT03125902, NCT03371017), and
AKT (NCT03337724). One Phase II study showed a 19% benefit rate with the AR inhibitor,
enzalutamide [11], and a second demonstrated a 33.3% response rate using the TROP2 in-
hibitor, sacituzumab [10]. Another trial investigating the AKT inhibitor, ipatasertib, claimed
improved median progression-free survival (PFS) of 6.2 months compared to 4.9 months
among patients receiving standard chemotherapies [12]. Nevertheless, potential benefit
rates of 19 to about 33% are rather modest, and while we certainly hope for the success of
the Phase III clinical trials of these drugs, more translational research is critically needed to
identify new targets or drugs for patients with chemotherapy-resistant breast cancers.

Most patients with breast cancer undergo NACT, and response to chemotherapy is
assessed at the time of surgical pathology as either pathologic complete response (pCR)
or residual disease (RD), and RD is further defined using Miller–Payne or residual cancer
burden (RCB) scoring [13]. Patients with complete response do not typically receive ad-
ditional therapy and are monitored for tumor recurrence, which occurs in only 10 to 15%
of patients [14,15]. On the other hand, the near-50% risk of recurrence for patients with
residual disease after NACT has generated great interest in evaluating whether the addition
of other agents might improve pCR rates and long-term outcomes. Transcriptome profiling
at diagnosis (i.e., baseline), right after NACT, or at recurrence reflects dramatically different
states of chemotherapy resistance. In a patient with residual disease after chemotherapy,
the baseline transcriptome represents the predisposed intrinsic resistance before NACT,
whereas the transcriptome right after NACT shows the chemotherapy-induced intrinsic
resistance. The transcriptome at recurrence, i.e., acquired resistance, is much more com-
plicated and may be attributable to chemotherapy after a period of dormancy, follow-up
radiation, or other cancer therapies.

Table 1 delineates several clinical genomic studies that attempted to investigate the
mechanisms of chemotherapy resistance among patients with breast cancer. These studies
differed completely with respect to primary clinical endpoints, resistance mechanisms, or
genomic platforms. Limited sample sizes also constrained the statistical power of their
findings. Consequently, neither gene targets nor biomarkers overlapped among these
studies of chemotherapy resistance in TNBC.
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Table 1. Clinical genomic studies of chemotherapy resistance in breast cancer.

Publications
2010–2018

Clinical Endpoint and Sample
Size

Genomic
Platform

Primary Genes and
Pathways Discovered

Balko et al. 2012 [16]
Balko et al. 2014 [17]
Balko et al. 2016 [18]

Relapse-free survival (RFS)
n = 74

Targeted
RNA and DNA sequencing

DUSP4 low expression, MYC high
expression, and JAK2 amplification

were associated with RFS.

Lips et al. 2015 [19]
Pathologic complete response

(pCR) and RFS
n = 56

Targeted
DNA sequencing

No statistically
significant genes

Kim et al. 2018 [20] pCR was not defined after NACT
n = 20

Bulk DNA sequencing,
single nucleus

RNA- seq/DNA-seq

Chemoresistance gene signatures
are enriched in EMT, CDH1, AKT1,

hypoxia, angiogenesis, and
extracellular matrix degradation

signaling pathways.

Laura et al. 2013 [21] pCR
n = 106 Affymetrix

Significant genes enriched in Wnt,
HIF1, p53,

and Rho GTPases signaling pathways
were associated with poor response to

chemotherapy drugs.

Korde et al. 2010 [22] pCR
n = 21 Affymetrix

MAP-2, MACF1,VEGF-B, and EGFR
showed high expression in patients
without pCR after chemotherapy.

Silver et al. 2010 [23] pCR
n = 28 Affymetrix

BRCA1 promoter methylation
and E2F3 activation contribute to

good cisplatin response.

Stover et al. 2015 [24] pCR
n = 446

Affymetrix,
Agilent

Low proliferation and
immune-predicted resistance, with

stem-like phenotype and
Ras-Erk were associated with

chemotherapy resistance.

1.2. Pathway Analysis of Genomics Profiles

Pathway analysis is an important method for exploring the functions of signaling
pathways using transcriptomic data, and gene set enrichment analysis (GSEA) is the most
classical approach to pathway analysis [25]. GSEA tests whether differentially expressed
genes are overexpressed in a particular pathway as compared with expression in the rest
of the genome [25]. Several computational methods integrate regulation mechanisms into
the analysis of pathway activity, taking into consideration the topological structures of the
signaling pathways. The review of Ma et al. reports many salient examples of methods to
analyze pathway enrichment, including SPIA, CePa, NetGSA, TopologyGSA, DEGraph,
CAMERA, PRS, PathNet, and others [26]. Recent developments in pathway analysis have
delved further in order to consider subpathways. Amadoz’s team reviewed subpathway
analysis methods that integrate topology data, including Hipathia, MinePath, PathiVar,
Pathome, Pathiways, DEAP, TopologyGSA, subSPIA, and others [27]. However, despite
these advancements, there remains a significant need to improve subpathway analysis.
In this paper, our pathway and subpathway analyses focus on signaling transduction.
We are interested in whether a molecular signal can be transmitted from upstream to
downstream in a pathway or its subpathways, and we use the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways as examples. None of the existing subpathway
analyses clearly or adequately characterize the subpathways from a pathway because
the analyses were designed to detect the altered signaling transduction among different
conditions rather than the strength of the signaling transduction.

We focus here on acquired chemotherapy resistance in patients with breast cancer,
comparing transcriptome profiles before and after chemotherapies. To address the challenge
of small sample sizes in previous genomic studies of breast cancer, we have integrated data
from various sources, and we hope our pathway and subpathway analyses will overcome
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the lack of overlapping genes among those earlier studies to offer more robust insight into
the mechanisms underlying breast cancer resistance to chemotherapy.

2. Methods
2.1. Data Collection and Integration

We queried datasets of the Gene Expression Omnibus (GEO) [28] using “breast cancer”
and “chemo” as keywords, which generated 7991 breast cancer-related datasets, and
downloaded their data description files, each of which included topic, abstract, platform,
and sample size. We then wrote a Python program that excluded data from both animal
studies and in vitro experiments and then manually reviewed and curated data regarding
drug resistance status (Miller–Payne score of one to four signifying drug sensitivity and
five reflecting drug resistance), ER/PR/HER2 status, age, and race. We also collected
microarray gene expression platforms, including GPL96 and GPL570. In the end, we
collected 37 datasets for 815 breast cancer samples from the GEO.

We also queried the ArrayExpress database using the keyword “breast cancer,” which
yielded 3975 experiments, excluded data from both animal studies and non-Affymetrix
platforms, and then excluded all duplicated IDs in GEO, ultimately collecting 87 breast
cancer samples from ArrayExpress.

After collecting all relevant data from GEO and ArrayExpress, we created three
cohorts of patient data. The first included 40 paired tumor samples (before and after
chemotherapy), each pair obtained from a single patient with breast cancer. The second
included unpaired tumor samples (before and after chemotherapy) from different patients
matched by age, race, and ER/PR/HER status (Table 2). The third included all the TNBC
samples from the previous two cohorts. We chose the Affymetrix U133A microarray
platform for data analysis.

Table 2. Matching scheme for the second cohort of breast cancer samples pre- and post-chemotherapy. *

Group Demographics
Clinical Status Pre-Chemo Percentage (%) Post-Chemo Percentage (%)

Age < 55, Race = white
ER+ PR+ HER2+ 15 2.18 1 2.22

Age < 55, Race = white
ER+PR-/ER-PR+/ER-PR-HER2- 89 12.90 5 11.11

Age < 55, Race = white
ER+PR-/ER-PR+/ER-PR-HER2+ 21 3.04 2 4.44

Age < 55, Race = white
ER-PR-HER2- 46 6.67 7 15.56

Age < 55, Race = non-white
ER+PR+HER2+ 22 3.19 1 2.22

Age < 55, Race = non-white
ER+PR-/ER-PR+/ER-PR-HER2- 52 7.53 6 13.33

Age < 55, Race = non-white
ER+PR-/ER-PR+/ER-PR-HER2+ 35 5.07 4 8.89

Age < 55, Race = non-white
ER-PR-HER2- 48 6.96 4 8.89

Age > 55, Race = white
ER+PR+HER2+ 31 4.49 0 0

Age > 55, Race = white
ER+PR-/ER-PR+/ER-PR-HER2- 94 13.62 6 13.33

Age > 55, Race = white
ER+PR-/ER-PR+/ER-PR-HER2+ 30 4.35 3 6.66
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Table 2. Cont.

Group Demographics
Clinical Status Pre-Chemo Percentage (%) Post-Chemo Percentage (%)

Age > 55, Race = white
ER-PR-HER2- 55 7.97 6 13.33

Age > 55, Race = non-white
ER+PR+HER2+ 51 7.39 0 0

Age > 55, Race = non-white
ER+PR-/ER-PR+/ER-PR-HER2- 30 4.34 0 0

Age > 55, Race = non-white
ER+PR-/ER-PR+/ER-PR-HER2+ 25 3.62 0 0

Age > 55, Race = non-white
ER-PR-HER2- 46 6.67 0 0

* The matching scheme delineated in the table allowed us to detect genes expressed differentially between the
pre- and post-chemotherapy samples—genes that would not be confounded with the indicated demographic
and clinical factors.

2.2. Differential Gene Expression Analysis and Pathway Analysis

Analysis of differential gene expression. A gene will be called “present” if at least
one probe is present [29]. We analyzed gene expression before and after chemotherapy by
comparing the odds of gene presence over gene absence. We used McNemar’s test when
the dataset comprised paired transcriptome data from the same patient [30] and the chi-
square test for comparison in a non-paired transcriptome dataset [31]. We also calculated
the fold-change of gene expression, with a fold-change higher than one indicating the
upregulation of gene expression after chemotherapy.

Downloading KEGG pathways: The KEGG pathway database provides an R package
(KEGGx) for processing .hxml files, which we used to download 294 pathways. We then
removed compound-only and non-human pathways, finally selecting 65 pathways for this
project (Table S1).

We performed pathway enrichment analysis on overlapping genes between the
14,529 genes in the Affymetrix microarray platform and the 8988 genes in 65 pathways
and performed hypergeometric distribution-based enrichment analysis to test whether
expression of a particular gene was greater in a given pathway than its expression in all
other pathways. The particular genes undergoing analysis were chosen from lists of either
differentially expressed, upregulated, or downregulated genes.

2.3. Analysis of Subpathway Data

Subpathway definitions: A single-chain signaling pathway starts from one entry node
(i.e., a gene node without parent) and ends in an end node (i.e., a gene node without a child).
The creation of such a single-chain signaling subpathway depends on the topology of the
pathway. Figure 1 illustrates three different schemes for defining single-chain signaling
subpathways—canonical, binding, or looping.

The subpathways of a canonical pathway (Figure 1A) are composed of all the pos-
sible paths from a node to an end node. In a pathway with a binding event (Figure 1B),
i.e., B and C, three different subpathways are created—(A, B, D), (A, C, D), and
(A, B+C, D). This setup reflects our assumption that this pathway is active if at least
one of B or C is present when B and C have a binding event. Figure 1C characterizes how a
subpathway is created when there is a looping event, B-C-D-E-B. We lump all the genes in
the loop together into one node if all the genes in the node are active. Otherwise, the loop
will not be active.
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Activation and inhibition: Table 3 shows the 16 types of relationships delineated
in KEGG grouped into two relationship types—induction (defined as 1) and inhibition
(defined as −1) [32,33].

Table 3. Between-node relationships in pathways.

Name Relationship Value

Activation --> 1

Inhibition --| −1

Expression --> 1

Repression --| 1

Indirect effect ..> 1

State change . . . 1

Binding/association --- 1

Dissociation -+- −1

Missing interaction -/- 1

Phosphorylation +p 1

Dephosphorylation −p −1

Glycosylation +g 1

Ubiquitination +u 1

Methylation +m 1

Calculation of subpathway impact score. The perturbation factor (PF) of the gene g is
calculated in Equation (1):

PF(g) = ∆E(g)·χ2 + βug·PF(u) (1)

In Equation (1), ∆E(g) represents a log-fold change of gene expression after chemother-
apy over its expression before chemotherapy, and χ is the chi-square statistic calculated by
either McNemar’s test (paired dataset) or chi-square statistics (unpaired sample dataset).
The second term on the right-hand side of Equation (1) is the PF of the gene u directly
upstream of the target gene g. It is weighted by the factor βug, which indicates the type of
interaction: βug = 1 for induction and −1 for inhibition, as shown in Table 2.
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The impact factor of this subpathway is calculated in Equation (2):

IF(subpath) = log

(
1

Ppath

)
+

∑g∈subpath|PF(g)|∣∣∆E
∣∣× Nde(subpath)

(2)

In Equation (2), Ppath represents the probability of hypergeometric distribution of the
number of significant genes over the number of genes in the pathway. PF is the result of
Equation (1). Nde is the number of differentially expressed (DE) genes in a subpathway,
and a larger IF score indicates the greater importance of the subpathway.

Empirical p-value for subpathway impact scores: The gene expression samples are
randomly permutated between before and after chemotherapy. In the paired set, the
before and after samples are permutated in the same patient, the permutated samples
undergo subpathway analysis, and subpathway impact factor scores are calculated for each
subpathway. This permutation analysis is performed 10 times. An empirical distribution of
subpathway impact factor scores is then formed for a set of subpathways with the same
length, and the p-value of our designated subpathway analysis is calculated as the tail
probability, i.e., percentile, from the empirical distribution with the same length.

3. Results
3.1. Genes Expressed Differentially between Pre- and Post-Chemotherapy among Patients with
Breast Cancer

In the paired-sample breast cancer cohort, post-chemotherapy samples demonstrated
significant upregulation of 152 genes (p < 0.05) and significant downregulation of 112
genes compared with expression in their paired pre-chemotherapy samples (Figure 2). In
the unpaired sample cohort, 1616 genes were significantly upregulated, and 1108 genes
were significantly downregulated. The paired and unpaired cohorts together demon-
strated the upregulation of 56 overlapped genes (FDR, 0.018) and the downregulation of
36 (FDR, 0.016) (Table S2). Further analysis of pathway enrichment among the upregulated
genes in the paired and unpaired samples demonstrated enrichment in both paired and
unpaired samples among their overlapped signaling pathways, including drug metabolism,
MAPK, ErbB, calcium, cGMP-PKG, sphingolipid, PI3K-Akt, Cushing’s syndrome, HPV
infection, and proteoglycans in cancers (p < 0.05) (Table 4).
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Table 4. Pathway analysis of upregulated genes in paired and unpaired sample cohorts. *

Pathway Name
Number of
Genes in
Pathway

DE Genes
in Paired
Samples

DE Genes
in Unpaired

Samples

p-Value
(Paired

Samples)

p-Value
(Unpaired
Samples)

Drug metabolism 133 13 41 9.74 × 10−07 0.00041

MAPK signaling pathway 278 26 37 9.99 × 10−12 0.00228

ErbB signaling pathway 131 14 15 1.25 × 10−07 0.00615

Calcium signaling pathway 170 20 43 4.44 × 10−11 0.01012

cGMP-PKG signaling pathway 188 26 13 9.78 × 10−16 1.075 × 10−06

Sphingolipid signaling pathway 137 13 40 1.35 × 10−06 0.00134

PI3K-Akt signaling pathway 416 16 32 0.00287 1.52 × 10−11

Cushing’s syndrome 194 30 17 2.14 × 10−19 2.70 × 10−05

Human papillomavirus infection 387 22 18 2.43 × 10−06 1.81 × 10−17

Proteoglycans in cancer 332 16 44 0.000330 0.000977

* This table presents enriched pathways overlapped in both paired and unpaired sample cohorts.

3.2. Pathways and Their Statistically Significantly Activated Subpathways from Pre- to
Post-Chemotherapy in Both Paired and Unpaired Breast Cancer Sample Cohorts

Subpathway impact analysis was performed separately for both paired and unpaired
chemotherapy-resistant breast cancer samples; findings of the two analyses were combined;
the overlapping upregulated subpathways were selected, and their false discovery rates
were calculated. Table 5 details 12 pathways with significantly overlapped and upregulated
subpathways (FDR < 0.20). In each pathway and its overlapped subpathways, we further
reported significantly upregulated genes.

Table 5. Significantly upregulated subpathways and their associated genes in both paired and
unpaired drug-resistant breast cancer samples.

Pathway Name

Number of
Subpathways

(p < 0.05,
Paired)

Number of
Subpathways

(p < 0.05,
Un-Paired)

Overlapped
Upregulated
Subpathways

(Same Direction)

False
Discovery Rate

(Overlap)

Significant
Genes

(Up-Regulated) *

Fluid shear stress and
atherosclerosis 1085 1694 277 0.10 MAP3K5

MAPK signaling pathway 1947 1541 358 0.11 MAP2K2, MAP3K1,
MAP3K5, MAP4K1

PI3K-Akt signaling pathway 1470 1325 254 0.13 NR4A1, NRAS,
PIK3R3, OSMR

Wnt signaling pathway 1775 2635 315 0.14 MAP2K1, MAPK1

FoxO signaling pathway 1432 2175 246 0.15 FOXO6, FBXO25
FOXO1

ECM-receptor interaction 1033 1876 167 0.15 MYL9, IRS2

Ras signaling pathway 1019 1460 164 0.16 RAC3

Rap1 signaling pathway 861 1505 132 0.16
CTNNB1, MAGI3,
RAPGEF6, RAP1B,

ARAP3

mTOR signaling pathway 831 1253 126 0.16 MAPK3, GSK3B

Calcium signaling pathway 820 1238 124 0.16 PLCG1, PLCG2,
PRKCG

Cellular senescence 684 1341 97 0.18 TP53, CDKN1A

cAMP signaling pathway 1937 2598 247 0.20 E2F1, FOXM1

* The last column includes genes with the top perturbation factor score.
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One striking finding is that most of the activated subpathways in every pathway are
well-connected and often densely concentrated.

3.3. Pathway and Sub-Pathway Analyses of Chemoresistance in Triple-Negative Breast Cancer

In the TNBC samples (Table 6), 2358 genes were significantly upregulated (p < 0.05),
and 1527 genes were significantly downregulated. Taking the up- and downregulated
samples together, we performed the hypergeometric test for pathway enrichment analysis
and its follow-up subpathway analysis. Table 5 reports 12 pathways with enriched activated
subpathways and significant impact score (p < 0.01, FDR < 0.47), which coincide with the
top 12 pathways (Table 4) enriched in the paired and unpaired chemo-resistant breast
cancer cohorts. The FDR is noticeably larger than that for the chemotherapy-resistant breast
cancer because it involves only one cohort.

Table 6. Significantly upregulated subpathways in drug-resistant samples of triple-negative breast
cancer.

Pathway
Name

Number of
Subpathways

Number of
Subpathways

(p < 0.01)
False Discovery Rate

Calcium signaling pathway 12,056 1598 0.075

Fluid shear stress and atherosclerosis 12,337 1347 0.091

cAMP signaling pathway 19,409 1602 0.121

Cellular senescence 18,190 1040 0.174

mTOR signaling pathway 19,518 1097 0.177

MAPK signaling pathway 30,652 1553 0.197

ECM-receptor interaction 15,162 658 0.230

PI3K-Akt signaling pathway 34,998 1436 0.243

Focal adhesion 22,580 853 0.264

Wnt signaling pathway 28,687 835 0.346

Ras signaling pathway 40,147 1092 0.367

Rap1 signaling pathway 20,606 439 0.469

4. Discussion and Conclusions

Using two cohorts of chemotherapy-resistant breast cancer tumor samples, one paired
cohort and one unpaired cohort, we identified the upregulation of 56 genes (FDR, 0.018) and
downregulation of 36 (FDR, 0.016) in tumors that have become resistant to chemotherapy.
The upregulated genes showed enrichment in ten pathways (Table 4), many of which have
been reported in studies of breast cancer chemoresistance. The PI3K/AKT pathway is prob-
ably the most frequently studied in this regard. Li et al. have observed that its inhibition
can overcome breast cancer resistance to doxorubicin [34], and its activation via the upreg-
ulation of the ErbB signaling pathway has been reported to lead to multi-drug resistance in
breast cancer [35,36]. By inhibiting the drug efflux transporter ABCC1, LINC00518 has also
been identified to overcome chemoresistance in breast cancer [37], driven by sphingosine
kinase-1 (SPHK1), which regulates the sphingolipid signaling pathway [38]. The MAPK
pathway is also widely associated with this chemoresistance. Christowitz’s research group
found that the upregulation of the MAPK/ERK pathway underlies doxotubicin-induced
drug resistance [39], and Hasna et al. reported that the overexpression of Orai3 calcium
channels can downregulate expression of the p53 tumor suppressor protein, leading to
chemoresistance in breast cancer [40]. Furthermore, upregulation of MDR1 expression by
both the Wnt/β-catenin pathway and the cAMP signaling pathway affect chemoresistance
in breast cancer [41–43]. Nevertheless, our pathway analysis uncovered three new genetic
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pathways not previously studied in breast cancer chemoresistance, including Cushing’s
syndrome, human papillomavirus infection, and proteoglycans in cancer, that deserve
more investigation.

Using our newly developed subpathway analysis, we have identified many path-
ways whose subpathways are activated in chemotherapy-resistant breast cancer, including
those of fluid shear stress and atherosclerosis, as well as Wnt, FoxO, ECM-receptor inter-
action, RAS signaling, Rap1, mTOR, and cellular senescence. Some of these have been
reported in the literature, with PI3K/AKT and mTOR being the most-reported pathways
associated with breast cancer chemoresistance. Many PI3K, AKT, and mTOR inhibitors
have been designed, and clinical studies are in progress [44–46]. An essential role of the
ECM-receptor interaction pathway has been identified in doxorubicin treatment of breast
cancer in an in vitro model [47], and fluid shear stress and atherosclerosis pathways have
been shown to induce resistance to chemotherapy drugs and proliferative tendencies in
a cell-line model of breast cancer [48]. Moreover, oxidatively stressed multi-nucleated
cells (MNC) have been shown to induce chemoresistance in TNBC in in vitro and in vivo
models by activating the RAS/MAPK pathway [49], and cellular senescence has been iden-
tified as a potential mechanism of chemoresistance in TNBC [50]. The upregulation of the
Ras/PI3K/PTEN/AKT/mTOR pathway and the Ras/Raf/MEK/ERK pathway together
can lead to chemoresistance by diminishing cell senescence [51]. FoxO1 has been demon-
strated to increase the expression of MDR1, leading to breast cancer chemoresistance [52],
and based on our subpathway model, the FoxM1 gene is the most significant in activating
the cAMP signaling pathway, proving to be a promising candidate target for treating this
chemoresistance [53]. Rap1, fluid shear stress and atherosclerosis, and focal adhesion can
be considered new pathways of chemoresistance, not having been reported in the drug
resistance literature related to breast cancer.

Another interesting result of subpathway analysis is that all subpathways activated in
each pathway are well-connected and condensed among hub genes, i.e., updated genes
that appear repeatedly in many subpathways (Figure 3, Table 5). Some of these hub genes,
such as FoxM1 [53] and FoxO1 [52], have already been chosen as drug targets; the other
28 represent potential targets for overcoming chemotherapy resistance in breast cancer.

Chemoresistance in triple-negative breast cancer reveals almost identical pathways
and activated subpathways (Table 6) when compared to breast cancer chemoresistance
pathway analysis. However, our analysis of chemoresistance in TNBC includes only one
cohort of samples that integrates paired and unpaired TNBC samples from two breast
cancer cohorts because the number of TNBC patient samples in each data cohort was
limited. This is one area that deserves further validation.

In this paper, we focused on Affymetrix microarray data rather than data from a next-
generation sequencing (NGS) platform because the number of NGS post-chemotherapy
breast cancer samples is limited. In Table 1, we enumerated clinical genomic studies of
breast cancer resistance. In our referenced articles, we identified 150 NGS samples with
targeted RNA−76 primary breast cancer profiles and 74 post-chemotherapy breast cancer
profiles. None of them contain paired pre- and post-chemotherapy samples from the same
patient, and these 150 NGS samples have different RNA sequencing platforms—112 have
targeted RNA sequencing and the remaining 38 have whole transcriptome RNA sequenc-
ing. We also queried both GEO and Array-Express and found only 12 pairs of tumor
samples with RNA sequencing data. Finally, The Cancer Genome Atlas (TCGA) includes
1207 primary breast cancer RNA-sequencing data before chemotherapy. Thus, whole
transcriptome RNA sequencing data is very limited for breast cancer
samples post-chemotherapy.

In conclusion, for the first time, using subpathway analysis, we have identified a
number of activated subpathways in Cushing’s syndrome, HPV infection, proteoglycans in
cancer, fluid shear stress, and focal adhesion pathways in breast cancer chemoresistance.
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