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Abstract: The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA
binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system
(CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral
sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal
mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of
evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis
of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflam-
mation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to
whether immune-mediated mechanisms could hold the key to understanding TDP-43’s underlying
role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines
of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to
explore the nature of this relationship and the implications for potential pathomechanisms underlying
neurodegeneration in ALS and FTD.
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1. Introduction
1.1. Neuroinflammation

The innate immune system is the body’s first line of defence against pathogens and
plays a central yet varying role in both health and disease. Neuroinflammation involves a
complex multistage physiological response triggered by cell damaging processes in the
brain, including infection, toxins, autoimmunity, trauma, and aberrant responses to altered
neuronal activity. Neuroinflammation is driven by reactive resident CNS innate immune
glial cells, microglia, and astrocytes, and is accompanied by a dynamic biochemical cas-
cade of inflammatory cytokines and chemokines that modify the CNS microenvironment.
The degree of neuroinflammation that exists across the spectrum of neurological conditions
varies and is dependent on multiple factors including the duration of the inflammatory
response, its course and the circumstances underlying the primary insult. The primary
aim of the neuroinflammatory response is to mitigate the triggering factors by invoking
CNS immunity to defend from harm and maintain and restore homeostasis. Therefore,
neuroinflammation has the capacity to be both beneficial and damaging [1,2].

The brain has been shown to undergo a process termed ‘inflammaging’, progressively
acquiring an increased proinflammatory environment across the lifespan [3]. In addition to
a heightened inflammatory environment with ageing, the immune system itself undergoes
a gradual deterioration or remodelling termed ‘immunosenescence’. This is responsible
for the increased susceptibility of aged individuals to diseases, particularly inflammatory
age-related conditions. Furthermore, advancing age is a primary risk factor for neurode-
generative diseases as recently reviewed [4]. Despite neurodegenerative diseases exhibiting
different aetiologies, neuroinflammation is considered a characteristic pathological feature
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across their spectrum [5–8] and in other neurological conditions including stroke, traumatic
brain injury (TBI), chronic traumatic encephalopathy (CTE), and neurological cancers.
However, the question remains as to whether neuroinflammation is a primary or secondary
insult in the pathogenesis of neurodegeneration. Determining the extent of the role of
neuroinflammation in neurodegenerative disease pathogenesis has the potential to provide
a tool for biomarker and drug discovery across the spectrum of clinical neurodegenerative
disease subtypes, this is a highly active area of research.

1.2. TAR DNA Binding Protein 43 (TDP-43)

TDP-43 is a 43 kDa, 414 amino acid nuclear RNA/DNA-binding protein that is widely
expressed, but of functional relevance to the CNS. TDP-43 is encoded by the TARDBP
gene and is part of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. TDP-43
was first identified as a host cell protein binding to pyrimidine-rich DNA motifs in a
long terminal repeat, referred to as a TAR of human immunodeficiency virus type I [9].
Structurally, TDP-43 consists of an N-terminal and two DNA/RNA binding domains
(RRM1 and RRM2) followed by a glycine rich C-terminal where TDP-43 mediates protein–
protein interactions and where the majority of all pathogenic TARDBP mutations have
been identified to date [10,11] (Figure 1). TDP-43 is consistently reported to bind to UG
rich domains within proximal intron regions of 3′ untranslated regions of mRNA encoding
proteins. While the complete function of TDP-43 remains to be determined, under normal
physiological conditions TDP-43 exhibits a variety of important functions involved in
RNA biogenesis and processing [12,13]. Predominantly localised to the nucleus owing
to its nuclear localisation signal (NLS), TDP-43 has the capacity to shuttle between the
nucleus and cytoplasm via nucleocytoplasmic transport, assisting with the regulation of
various aspects of RNA processing including splicing, trafficking, stabilisation, and miRNA
production [12,14,15]. TDP-43 was previously identified to also exhibit a nuclear export
sequence (NES) to facilitate cytoplasmic shuttling out of the nucleus, however recent
evidence has challenged this, demonstrating that TDP-43 diffusively passes between
the nucleus and cytoplasm and the NES is not required for export [16–18]. TDP-43 is
reportedly enriched in dendrites of neurons where it plays a role in mRNA transport and
local translation in dendritic spines [19,20]. TDP-43 is self-regulatory, tightly controlling
its own transcription via negative feedback mechanisms and promoting degradation of
TARDBP transcripts [21]. This function is essential given that overexpression or deletion
is detrimental to TDP-43 survival [22–24]. TDP-43 has been shown to interfere with
lysosomal function and therefore its own degradation via lysosomal pathways and trigger
lethal autophagy [25].

Under pathological conditions, structural post-translational modifications to TDP-43
can occur causing abnormal mislocalisation and accumulation in the cytoplasm of neu-
rons and proteolytic cleavage of TDP-43 into abnormal C-terminal fragments. Notably,
alterations in the RNA recognition domain, RRM1 of TDP-43 via oxidation can induce
its aggregation and mislocalisation into the cytoplasm [26–28] and structure/function
analysis has shown that misfolding of the RRM1 domain could underlie TDP-43 mis-
folding, oligomerisation, accumulation, and ultimately proteinopathy [27,29]. TDP-43 is
identified as a major disease associated protein in early-onset neurodegenerative diseases
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In neurodegenera-
tion, TDP-43 undergoes various post translational modifications including ubiquitination,
phosphorylation, and acetylation, all of which alter its structure and function [30,31].
The phenomenon of these alterations remains unexplained, with debate as to whether such
modifications are secondary or disease causative. However, the partially helical region
in the disordered C-terminal domain harbours multiple mutations associated with ALS
and FTD and is important for TDP43 function and liquid–liquid phase separation. Further-
more, pathological TDP-43 aggregates that accumulate within the brain of ALS and FTD
patients contain proteolytically cleaved C-terminal fragments, TDP-35 (35 kDa) and TDP-23
(25 kDa), which must be cleared from cells to prevent further aggregation and sequestration
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of neuronal components that result in toxicity [32]. The pathophysiology of these TDP-43
C-terminal fragments or CTFs is yet to be determined; however it is an active area of re-
search [33]. Ubiquitinated protein aggregates of TDP-43 are present in neurons and glia of
the brain in 95% of ALS patients and in approximately 50% of FTD patients [34,35], and re-
gional pathology of TDP-43 is associated with distinct clinical phenotypes of disease [36].
TDP-43 can be detected in the CSF, with ALS and FTD patients identified to have increased
levels of TDP-43 in the CSF compared to age-matched controls [37–39]. While primarily a
pathological feature in ALS and FTD, the abnormal deposition of TDP-43 has also been
reported across the spectrum of neurodegenerative diseases including Alzheimer’s disease
(AD) [40], Parkinson’s disease (PD) [41] Huntington’s disease [42] and CTE [43]. TDP-43
proteinopathy has also been reported within pathologic astrocytes in the brain of patients
with the rare neurodegenerative Alexander disease [44] and in the autosomal recessive
lysosomal storage disorder Nieman Pick disease [45].
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Figure 1. Structure of TDP-43. TDP-43 is a 43 kDa, 414 amino acid nuclear RNA/DNA-binding encoded by the TARDBP
gene and part of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. Structurally TDP-43 consists of an N-terminal
and two DNA/RNA binding domains (RRM1 and RRM2) followed by a glycine rich C-terminal domain where TDP-43
mediates protein–protein interactions and where the majority of all pathogenic TARDBP mutations have been identified to
date for both ALS and FTD. Predominantly localised to the nucleus owing to its nuclear localisation signal (NLS), TDP-43
shuttles between the nucleus and cytoplasm via nucleocytoplasmic transport, assisting with the regulation of many aspects
of RNA processing including splicing, trafficking, stabilisation, and miRNA production. Structural, post-translational
modifications to TDP-43 can occur during pathological conditions, causing abnormal mislocalisation and accumulation in
the cytoplasm of neurons and proteolytic cleavage of TDP-43 into abnormal C-terminal fragments, TDP-35 and TDP-25.
Alterations in the RRM1 of TDP-43 via oxidation can induce its aggregation and mislocalisation into the cytoplasm and
misfolding of the RRM1 domain is thought to underlie TDP-43 misfolding, oligomerisation, accumulation, and ultimately
proteinopathy. Both the NLS and RRM1 domain of TDP-43 are potential structural sites playing an important facilitatory
role in the interaction of TDP-43 with central inflammatory pathways including NF-κβ/p65.

The pathomechanisms resulting in abnormal mislocalisation and aggregation of TDP-
43 within the CNS in ALS and FTD remain unknown, however there is a growing body of
evidence to support an important role of neuroinflammation and innate immune-mediated
mechanisms underlying the pathogenesis of neurodegeneration as recently reviewed for
both diseases respectively [6,7]. However, to date most of the evidence for an active role of
innate immunity in the pathogenesis of ALS and FTD related specifically to TDP-43 has
yet to be drawn together to fully explore the relationship between TDP-43 and immune-
mediated pathways. To explore this further, this review will piece together published
evidence to date and establish four key lines of evidence supporting a link between TDP-43,
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immunity, and inflammation. It is anticipated that this review will serve as a platform
for future research that aims to explore the molecular mechanisms underlying TDP-43’s
relationship with immunity and inflammation in the pathogenesis of neurodegeneration in
ALS and FTD, potentially providing novel therapeutic targets.

2. ALS and FTD Causative and Susceptibility Genes Associated with TDP-43
Implicated in Immunity and Inflammation

A significant line of evidence for the role of immunity and inflammation in the patho-
genesis of neurodegeneration underlying ALS and FTD is that the majority of causative
and susceptibility genes associated with TDP-43 pathology are highly expressed in innate
immune cells and are increasingly implicated in key immune and inflammatory path-
ways. These genes include C9orf72, GRN, and TBK1, among others (Table 1). In the largest
cohort of unrelated patients with FTD-TDP to date, Pottier and colleagues performed a
comprehensive genome wide association study (GWAS) and identified significant genomic
loci within the human leukocyte antigen (HLA) locus (HLA-DQAZ, cell-surface proteins
responsible for the regulation of the immune system) in addition to a rare loss of function
variants in genes involved in the TBK1-immunity pathway [46]. These findings strongly
implicate immune pathways in the pathogenesis of FTLD-TDP specifically, providing
further evidence for immune dysregulation in the pathogenesis of FTD [46]. In support of
this, also using GWAS, Broce and colleagues demonstrated an immune-mediated genetic
enrichment in the HLA region specifically and showed novel candidate FTD susceptibility
loci in TBK1. The investigators suggested that for a subset of FTD patients, immune dys-
function may contribute to increased FTD risk [47]. While not investigated in the study,
this subset could reflect that of FTD-TDP.

Table 1. Published evidence implicating ALS and FTD causative and susceptibility genes associated with TDP-43 in key
immune and inflammatory pathways.

Gene Protein Relationship to
TDP-43

Associated
Diseases Published Evidence

TARDBP TDP-43 Gene encoding for
TDP-43 protein ALS, FTD rare variant

• Gliosis in transgenic mice
• Increased phagocytosis in

microglia
• Mediates non-cell autonomous

neurotoxic effects
• Intrinsic dysregulation of

microglia induced by TDP-43
depletion > triggers abnormal
synapse loss [48,49]

C9orf72
Guanine

nucleotide
exchange C9orf72

TDP-43 is
pathological feature

of C9orf72 expansion
in ALS and FTD

ALS, FTD, AD

• C9orf72 is extensively linked to
neuroinflammation and
microglial activation

• Increased presence of C9orf72 in
dendritic immune cells and
microglia

• C9orf72 can activate NLRP3
inflammation

• C9orf72 knockout mice exhibit a
systemic proinflammatory state,
resulting in severe autoimmunity
[50–52]
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Table 1. Cont.

Gene Protein Relationship to
TDP-43

Associated
Diseases Published Evidence

GRN Progranulin

TDP-43 is
pathological feature
of GRN mutation in

FTD

FTLD-GRN, CLN11
disease

• PGRN promotes lysosomal
dysfunction and production of
complement cascade
components preferentially
affecting synaptic connections

• Upregulation of immune system
and complement cascade genes
in GRN knockout mice

• GRN knockout mice with
decreased PGRN leads to
excessive accumulation of
activated microglia and
increased secretion of
proinflammatory cytokines

• PGRN suppresses
neuroinflammation after acute
focal cerebral ischemia [53,54]

TBK1
Serine/threonine-

protein kinase
TBK1

3rd most common
genetic cause of
FTLD-TDP [46]

ALS, FTD rare variant

• Encodes protein kinase with an
established role in the regulation
of the immune response,
autophagy, and inflammation
[55,56]

UBQLN2 Ubiquilin-2

UBQLN2
dysregulation in

neurons can drive
NF-κβ activation and

cytosolic TDP-43
aggregation [57]

FTD rare variant

• Drives NF-κβ activity and
cytosolic TDP-43 aggregation in
neuronal cells

• ALS-linked mutations in the
UBQLN2 gene found to be
associated with dysfunction of
autophagy, neuroinflammation,
and formation of stress granules
[57–59]

ATXN2 Ataxin-2

Link between ATXN2
and TDP-43

proteinopathy
established [60]

ALS, Parkinson’s
disease (late onset),

Spinocerebellar ataxia
type 2 (SCA2)

• Defined interconnected
pathways including innate
immunity, complement system,
lysosome, and phagosome
pathways [61]

TREM2

Triggering
receptor

expressed on
myeloid cells 2

Reported novel
interaction between
TREM2 and TDP-43

Susceptibility gene
FTD

• Immune and/or inflammatory
gene upregulated in aged
microglia

• Promotes microglial activation,
survival, chemotaxis,
and phagocytosis

• Increased expression after brain
injury and stroke [62–64]
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Table 1. Cont.

Gene Protein Relationship to
TDP-43

Associated
Diseases Published Evidence

TMEM106B Transmembrane
protein 106B

Common variants in
TMEM106B serve as a
distinct risk factor for
TDP-43 pathology in

older individuals
without FTLD [65]

Susceptibility gene
FTD

• TMEM106B/GRN dysfunction
and TDP-43 pathology results in
increased expression of
anti-inflammatory microglial
genes in the frontal cortex of
protective allele carriers [66]

OPTN Optineurin

Optineurin inclusions
detected in small

subset ALS and FTD
with TDP pathology

[67]

Glaucoma, ALS with
or without FTD rare

variant

• Diminished inflammation after
bacterial infection in OPTN
knockout mice

• Reduced expression of cytokine
interferon beta (IFNβ) secretion
in macrophages from knockout
mice and OPTN transgenic mice
[68–70]

SQSTM1 Sequestosome-1,
p62

Sequestration of
SQTSM1 into TDP-43
aggregates, leads to

inhibition of
proteasome function
and autophagy and

promotes the
accumulation of toxic,

misfolded proteins
[71]

Paget disease of bone
3, FTD/ALS rare

variant

• Activates NF-κβ
• Increased expression of p62 in

activated peripheral
macrophages [72,73]

VCP
Transitional
endoplasmic

reticulum ATPase

Major component of
ubiquitinated

inclusions of FTLD
with VCP mutation is

TDP-43 [74]

FTD

• Increased inflammatory
cytokines in mutation-positive
patients

• Mediates degradation of the
NF-κβ inhibitor IκB kinase after
cytokine treatment

• Activation of NLRP3
inflammasome in myoblasts
from mutation-positive patients

• Increased activation of
macrophages in VCP- mutant
transgenic mice [75,76]

CYLD
Ubiquitin

carboxyl-terminal
hydrolase CYLD

CYLD directly
interacts with TBK1,
OPTN, and p62 [77]

ALS, FTD

• Suppresses NF-κβ activation
• Role in immune system

regulation and response to
infectious disease [78,79]

3. Chromosome Open Reading Frame 72 (C9orf72)

The most common gene abnormality in both ALS and FTD is the presence of expanded
hexanucleotide repeat sequences in the noncoding region of the C9orf72 gene [80,81].
C9orf72 repeat expansions produce TDP-43 post-mortem pathology in both ALS and
FTD [80–82]. Although the function of C9orf72 remains unknown, C9orf72 knockout rodent
studies demonstrate a systemic proinflammatory state, severe autoimmune
disease [50–52,83,84], mild neuroinflammation characterised by increased expression of
IL6 and IL1β in microglia, and an upregulation of inflammatory genes in the spinal cord
compared to control mice [85]. C9orf72 expansions in innate immune cells result in the loss
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of function toxicity by impairment of cellular homeostatic processes such as autophagy [86].
Of note, C9orf72 expression is higher in microglia than in any other cell type and is also
expressed highly in dendritic immune cells, indicating that C9orf72 enacts a central role in
the maintenance of immune homeostasis [85]. Post-mortem brain analysis of white matter
regions in the motor cortex shows a greater microglial presence in individuals with C9orf72
mediated ALS compared to sporadic ALS [87], indicating a heightened innate immune re-
sponse linked to C9orf72 repeat expansion. Furthermore, loss of C9orf72 function may have
consequences for microglial function in clearing aggregated proteins, which may cause
persistent microglial activation that further exacerbate the progression and development of
ALS and FTD [85].

4. Granulin (GRN)

GRN encodes the secreted protein progranulin (PGRN). In the CNS, PGRN plays a crit-
ical role in maintaining physiological functions and is expressed by neurons and microglia
within the CNS [88,89]. PGRN has a major role in regulating lysosomes and microglial
responses and acts as a chemoattractant for microglia [90–92]. Haploinsufficiency caused by
an autosomal dominant mutation within GRN is a major cause of familial FTD [89,93]. GRN
mutations are associated with the accumulation of abnormal TDP-43 pathology [34] and
symptomatic GRN carriers present with dysregulated levels of proinflammatory cytokines
in serum and CSF, in addition to increased expression of inflammatory genes in leuko-
cytes [94]. GRN knockout mice with PGRN deficiency exhibit an excessive accumulation of
activated microglia [95] that produce an excess of proinflammatory cytokines rendering
them neurotoxic [96,97]. Emerging evidence also indicates that PGRN deficiency promotes
lysosomal dysfunction and production of complement factors that preferentially affect
synaptic connections in the thalamocortical circuit [98]. In support of this, GRN knockout
mice present with a chronic upregulation of innate immunity and complement expres-
sion that increases with age [99]. It has been proposed that haploinsufficiency of PGRN
could contribute to pathomechanisms underlying FTD via lysosomal dysfunction and
neuroinflammation [98].

5. TANK Binding Kinase 1 (TBK1)

TBK1 encodes a protein kinase with an established role in regulating immune response,
autophagy, and neuroinflammation [55,100]. In innate immune signalling, TBK1 is activated
via multiple pathways resulting in phosphorylation and activation of innate immune
transcription factors, interferon regulatory factor 3 and 7 (IRF3/IRF7), and activates NF-
κB in response to TNFα. Mutations including loss of function, missense, and in-frame
deletions of TBK1 are identified as causative of ALS and FTD [101,102]. Post-mortem
neuropathological analysis of the TBK1 mutation carriers show TDP-43-positive perinuclear
inclusions in temporal lobe neurons, but not in the spinal cord [103]. As discussed above,
GWAS studies have reported an excess of rare loss-of-function variants in the TBK1-related
innate immunity pathway in FTD-TDP patients compared to controls [46] and TBK1
mutations observed in ALS and FTD-TDP patients have previously been shown to reduce
the activation of one of the most well-characterised transcription factors involved in innate
immunity, interferon regulatory factor 3 (IRF3) [55]. TBK1 mutations could influence the
pathogenesis of ALS and FTD given the role of TBK1 in autophagy processes. In support
of this, mutations in the autophagy receptors OPTN and SQSTM1 are causal of FTD and
ALS and TBK1 promotes autophagy via phosphorylation of OPTN and SQSTM1 therefore
enhancing the ubiquitin-binding abilities of both proteins [104,105]. TBK1 could potentially
represent a direct link between neuroinflammation and kinases in the neurodegeneration
underlying ALS and FTD.
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6. Relationship between TDP-43 and Key Innate Immune Inflammatory Pathways
6.1. TDP-43 and NF-κβ/p65

One of the most prolific inflammatory pathways consistently associated with TDP-43
to date is the nuclear factor kappa light chain enhancer of activated B cells NF-κβ. NF-κβ
acts as a transcription activator and modulates hundreds of genes involved in inflammation,
innate immunity, cell survival, and cancer. This pathway is identified as a molecular culprit of
inflammaging [106], is involved in neuroinflammatory conditions including cerebral ischemia
and TBI, and has been implicated in neurodegenerative diseases [107–109]. Activation via
various cell surface factors translocate NF-κβ to the nucleus, which can be measured by
the nuclear presence of its most abundant subunit, p65. The NF-κβ/p65 subunit (also
known as RelA), centrally regulates innate immunity [110]. TDP-43’s involvement in
NF-κβ pathways has been reported in both neurons and microglia [111,112]. While this
review focuses specifically on the relationship between TDP-43 and NF-κβ pathways, it is
important to note that activation of NF-κβ pathways has also been demonstrated in SOD1
ALS mouse models [113,114].

Of particular interest to this review, TDP-43 and NF-κβ share the same classic nuclear
transportation mechanism, therefore it is suggested that they may functionally interact with
each other by competing for access to nuclear transportation machinery [115]. In support of
this, TDP-43 has been shown to regulate NF-κβ signalling. Using various cell culture and
transfection approaches, Zhu and colleagues demonstrated that overexpression of TDP-43
constituently inhibits the NF-κβ pathway. This inhibition was attributed to the competitive
binding of TDP-43 to the nuclear translocation importin a3 (KPNA4) via TDP-43’s NLS.
This was supported by multiple lines of evidence including the observation that a mutant
TDP-43 lacking an NLS was unable to inhibit the inflammatory cytokine TNFα-induced
p65 nuclear translocation in a dose dependent manner. Furthermore, silencing TDP-43
using siRNA increased p65 nuclear localisation upon TNFα stimulation, suggesting that
p65 nuclear translocation is actively inhibited by TDP-43 [115]. Ultimately TDP-43 may act
as a default suppressor of the NF-κβ transactivation pathway. Conversely, the blockage of
NF-κβ nuclear translocation by overexpression of TDP-43 is preventable by simultaneous
overexpression of p65 [115]. In a previous study by Swarup and colleagues, while it
was demonstrated that TDP-43 interacts and serves as a coactivator of NF-κβ in cultured
cells including neurons and glia, contrastingly it was demonstrated that TDP-43 itself
does not activate NF-kβ or upregulate p65 [116]. Rather a second hit or inflammatory
trigger (e.g., LPS, PAMPs, or cytokines) is required to cause NF-kβ activation via TLR
signalling. In conjunction with this second hit, TDP-43 overexpression can enhance NF-kβ
activation and the deregulation of TDP-43 may contribute to ALS pathogenesis in part by
this enhancement [116].

In addition to the role TDP-43’s NLS may play in the interaction with NF-κβ/p65,
other key structures of TDP-43 such as the RRM1 domain may also play a facilitatory role.
The sensitivity of the RRM1 domain in TDP-43 proteinopathy has been highlighted and
oxidation of the RRM1 domain results in cytosolic mislocalisation with irreversible protein
aggregation [26,27]. Interestingly, aside from RNA metabolism, the RRM1 domain itself is
responsible for the interaction between TDP-43 and p65 [116]. This interaction mediates
overactivation of the NF-κβ pathway and results in a heightened vulnerability of neurons
to injury and a hyperactive inflammatory response of glial cells [116]. The abnormal
binding of p65 to the RRM1 domain of TDP-43 is also proposed to interfere with normal
protein folding or RNA binding, resulting in TDP-43 aggregation in the cytoplasm [114].

To therapeutically reduce TDP-43 pathology, Pozzi and colleagues utilised the impli-
cated role of the RRM1 domain in an interaction with the NF-κβ/p65 subunit to generate
single chain antibodies targeting the RRM1 domain. The twofold aim was to block TDP-43
and p65 interaction, thus reducing NF-κβ activation and interfering with TDP-43 protein
aggregation [117]. Virus mediated delivery of this novel single chain antibody against
TDP-43 (VH7VK9) in the CNS of transgenic mice expressing mutant hTDP-43 successfully
improved cognitive and motor deficits in addition to decreasing TDP-43 proteinopathy,
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neuroinflammatory changes, and NF-κβ activation in microglial cells [117]. This suggests
that NF-κβ inhibition may restore TDP-43 function. Alternatively, NF-κβ could contribute
to the clearance of TDP-43 within the neuronal cytoplasm via protein degradation pathways
such as ubiquitin–proteosome and autophagy processes [114,118].

In a separate study, transgenic mice with neuron specific expression of the super-
repressor form of NF-κβ (IkBa-SR) were crossed with mice of both sexes expressing ALS-
linked gene mutations for TDP-43. Neuronal expression of IkBa-SR in mice expressing
TDP43A315T or TDP43G348C resulted in a decrease in the ratio of cytoplasmic to nuclear
expression of human TDP-43, partial rescue of large spinal motor neurons at one year
of age and improved motor performance and cognition. Neuronal inhibition of NF-κβ
therefore rescued TDP-43 proteinopathy and mitigated TDP-43 neurodegeneration [114].
These observations aligned with the conditional suppression of mutant TDP-43, which
resulted in improved cognition demonstrated in a previous study using TDP-43A315T

mice [119].
In the context of neurodegenerative disease TDP-43 has been shown to directly interact

with p65 colocalising in the nucleus of neurons in CNS samples from ALS patients [116],
patients with mild cognitive impairment (MCI) and episodic memory deficits [120], and in
transgenic mice that overexpress human wild type and mutant TDP-43 [116]. Levels of
mRNA and protein of both TDP-43 and NF-κβ are higher in the spinal cord of ALS patients
than control individuals [111,116] and various links between ALS and NF-kβ have recently
been reviewed elsewhere [121]. Investigation into the potential effects of NF-κβ activation
by inflammatory stimuli on TDP-43 redistribution in various cultured cells (i.e., microglia,
astrocytes, and neurons) chronic brain inflammation induced by stimuli of NF-κβ signalling
such as TNFα or LPS was found to mediate TDP-43 proteinopathy [111]. This was further
supported by in vivo investigation in mice expressing human TDP-43A315T, where chronic
administration of LPS from 6 months of age exacerbated pathological TDP-43 accumulation
in the cytoplasm of spinal motor neurons and enhanced levels of TDP-43 aggregation [111].

It is clear from multiple studies that a functional interaction between NF-κβ/p65
and TDP-43 exists, although it is yet to be fully understood, there is evidence to suggest
such an interaction may be mediated by microglia. In addition to being a coactivator of
p65, overexpression of TDP-43 has been shown to produce a hyperactive proinflammatory
response after stimulation with LPS and ROS, resulting in microglial sensitivity to immune
stimulation, subsequently enhancing the neurotoxicity of neighbouring neurons [116].
Downregulation of TDP-43 has been demonstrated to reduce activation of NF-κβ and TDP-
43 has also been shown to activate microglia via the NF-κβ signalling pathway and the
NLRP3 inflammasome [112]. In cell culture, wild type truncated 25kD C-terminal fragments
and mutant forms of TDP-43 activate microglia, upregulating inflammatory factors NOX2,
TNFα, and IL1β, however wild type forms are significantly less effective in activating
microglia compared to mutant. The observed response to TDP-43 was mediated by its
interaction with the microglial surface receptor CD14, which stimulated the NF-κβ pathway
in addition to the intracellular inflammasome [112]. Blockage at the cell surface using
CD14 blocking antibodies suppressed microglial NF-κβ activation and proinflammatory
cytokine production mediated by TDP-43. In culture, the addition of the mutant TDP-
25A315T fragment to motoneurons alone or to motoneurons cocultured with microglia
mediated activation of microglia and triggered a proinflammatory cascade that was toxic
to motoneurons. However, in the absence of microglia, the TDP-25A315T fragment was not
toxic to motoneurons, suggesting that TDP-43 neurotoxicity is indirect and mediated via
proinflammatory microglia [112].

6.2. TDP-43 and cGAS/STING Pathway

The recognition of foreign nucleic acids is one of the key mechanisms utilised by the
immune system to detect pathogenic entities to elicit a response. A signal is relayed via the
cytoplasmic DNA-sensing cyclic GMP-AMP synthase (cGAS)/stimulator of the interferon
genes (STING) pathway (cGAS/STING) following detection of cytosolic DNA, which then
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induces an immune response. Increased engagement of the cGAS/STING pathway in
the CNS results in neuroinflammation and neurodegeneration as recently reviewed [122].
STING can drive the activation of NF-κβ and type I IFN pathways, which are each elevated
in ALS and is suggested to contribute to progression of TDP-43 driven neurodegener-
ation [123]. ALS-associated mutations have been shown to enhance the accumulation
of TDP-43 within mitochondria [124,125], this could represent the specific way in which
TDP-43 alters homeostasis of the cell and could be consequential in triggering an immune
response [123]. Recently it was reported that TDP-43 causes inflammation by stimulating
mitochondrial DNA release, which is subsequently sensed by the cytosolic cGAS/STING
pathway. In a comprehensive study [123] using induced pluripotent stem cell (iPSC)-
derived motor neurons and TDP-43 mutant mice, it was demonstrated that TDP-43 causes
inflammation in ALS by triggering the release of mitochondrial DNA into the cytoplasm,
subsequently activating the cGAS/STING pathway, and resulting in neuroinflammation.
Prior to this study no immune sensor had been identified to detect cytoplasmic TDP-43 and
trigger the inflammatory response observed in TDP-43 proteinopathies, therefore, providing
insight into how neuroinflammation is potentially triggered in TDP-43 proteinopathies is
fundamentally important in understanding disease mechanisms. Interestingly, the adaptor
protein downstream of STING is TBK1, and as discussed above the TBK1 immune pathway
has been implicated in both FTD and ALS [46,47].

6.3. TDP43 and NLRP3 Inflammasome

The NLR family pyrin domain containing 3 (NLRP3) inflammasome is a member
of a family of intracellular innate immune sensors that are integral for cellular defence.
NLRP3 is activated by pathogen associated messenger proteins (PAMPs) and danger asso-
ciated messenger proteins (DAMPs) that signal and activate microglia and are involved in
the response to glial production of various inflammatory factors, subsequently promoting
an inflammatory response that further engages the innate immune system [126]. NLRP3
is critical for production of proinflammatory cytokines IL-1β and IL-18 and is therefore
a key target for modulation of the initiation and progression of neuroinflammation [127].
Increasing evidence implicates the NLRP3 inflammasome in multiple neurodegenera-
tive disorders [128].

TDP-43 inclusions activate the NLRP3 inflammasome in primary microglial cultures
resulting in increased production of IL-1β [112]. Similar increases in expression of NLRP3
are also observed in post-mortem tissue from individuals with sporadic ALS [129]. NLRP3
activation has been shown to play a distinct role in the upregulation of nuclear TDP-43 and
TDP-43-induced neurotoxicity by downregulation of the cytosolic E3 ubiquitin ligase Parkin
in the hippocampus of mice treated with the neurological toxicant BDE-47 [130]. Parkin
plays an important role in mitochondrial activity and integrity and has been shown to link
together inflammation, mitochondrial stress, and neurodegeneration with an additional
role in restraining innate immunity [131]. Although mutations in Parkin are predominantly
linked to PD there is increasing evidence that Parkin facilitates TDP-43 translocation from
the nucleus to the cytoplasm and has an essential role in TDP-43 subcellular localisation
and toxicity [132,133]. In spinal cord samples from sporadic ALS patients, neurons with
TDP-43 inclusions have decreased Parkin protein levels [134]. Given NLRP3 acts as a
molecular platform for activation of caspase-1, which is shown to mediate Parkin cleavage,
it has been hypothesised that NLRP3 inflammasome activation may be associated with
TDP-43 toxicity [130]. Drosophila studies have suggested that the Parkin pathway may be
differentially dysregulated in TDP-43 proteinopathy [135].

Deora and colleagues [136] demonstrated an upregulation of microglial NLRP3 in TDP-
43Q331k ALS mice, with TDP-43 wild-type and mutant proteins able to activate microglial
inflammation in a NLRP3-dependent manner. Explicitly, spinal cord gene expression of the
inflammasome components NLRP3, caspase 1, and ASC were significantly increased in
TDP-43Q331K mice compared to wild type littermates and both wild type and mutant (A315T
and Q331K) recombinant forms of TDP-43 protein were able to activate primed microglia
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to generate the cytokine interleukin 1-beta (IL-1β). However, this was not unique to TDP-43
given aggravated and soluble SOD1G93A also activates NLRP3 in primary mouse microglia.
Of particular interest to ALS and FTD, NLRP3 inflammatory activation can be generated
by C90rf72 repeat expansions, leading to lysosomal dysfunction, mitochondrial functional
impairments, intracellular metabolic imbalances, and intracellular protein aggregation [137].

6.4. TDP43 and MAPK Pathway

Stress activated protein kinases (SAPKs) are members of the mitogen activated protein
kinase (MAPK) family and are activated by multiple environmental stressors including in-
flammatory cytokines. Several kinases including p38, JNK, and TBK1 have been associated
with ALS-related pathophysiology [138,139]. Zhan et al. 2015 explored the relationship
between TDP-43 and the cell stress response, focusing on the extensively investigated
stress response pathway governed by SAPKs Jun N terminal kinase (JNK) and p38 mito-
gen activated protein kinase using a Drosophila model. JNK and p38 undertake multiple
cellular functions within the CNS including prominent roles in both innate and adaptive
immunity and the regulation of activity and expression of key inflammatory mediators as
reviewed elsewhere [140].

In Drosophila models, neuroinflammation is demonstrated as a prominent feature of
TDP-43 induced neurodegeneration and notably the innate immune response provides
a strong phenotypic rescue in TDP-43 transgenic flies, dramatically extending their lifes-
pan [141]. Both JNK and p38 are identified as immune response kinases responsible for
regulating fly immunity and oxidative stress and the innate immune response are identified
as key determinants of TDP-43 mediated toxicity in Drosophila motor neurons [141]. Zhan
and colleagues demonstrated that p38 promotes oxidative stress and neuroinflammation
whereas JNK antagonised oxidative stress and neuroinflammation, thus demonstrating the
important yet opposing roles of these kinases in TDP-43-induced neurodegeneration [141].
Furthermore, key immune modulatory pathways in Drosophila including Toll/Dif and
Imd/Relish have been shown to contribute to TDP-43 neurotoxicity, indicating that im-
mune activation is a critical component of TDP-43 neurotoxicity in Drosophila. Given
TDP-43 negatively regulates its own RNA [21], it has been suggested that cytosolic aggre-
gation of TDP-43 may result in increased translation of feedforward TDP-43 aggregation
and ultimately depletion of the essential TDP-43 splicing function within the nucleus [141].
This notion is further supported by the observation of nuclear clearing of TDP-43 in
degenerating motor neurons of ALS and FTD patients [142].

Although TDP-43 has been shown to induce neuroinflammation, contradicting evi-
dence investigating TDP-43 in the periphery demonstrated that overexpression of TDP-43
reduces the inflammatory response, interfering with the release of inflammatory factors.
In a rat model of osteoarthritis (OA), the mechanism of TDP-43 gene expression on inflam-
matory factors JNK and p38 signalling pathways in ischemic hypoxic stress dependence
was investigated. Overexpression of TDP-43 reduced the inflammatory response induced
by OA by interfering with the release of inflammatory factors and inhibiting activation of
the JNK and p38 signalling pathways via ischemic hypoxia stress [143]. These findings
suggest that TDP-43 may alleviate the progression of OA to some extent, indicating a
beneficial role for TDP-43 in the inflammatory response.

6.5. TDP-43 and Complement Cascade

The complement system is a branch of the innate immune system that plays a critical
role in development, homeostasis, and regeneration of the CNS throughout life. This dy-
namic system consists of a group of proteins that work together to destroy foreign invaders,
trigger inflammation, and remove debris from cells and tissues. Chronic activation of the
complement system is a key mediator of neuroinflammation and complement dysregu-
lation is identified as a key component in neurodegeneration. Notably the complement
system has been proposed to drive neurodegenerative mechanisms in ALS [144,145]. In an
ALS mouse model of TDP-43Q331K, local complement activation increased expression of
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C5aR1, part of the terminal complement pathway, which may contribute to motor neuron
death and neuromuscular junction denervation. C5aR1 expression was upregulated during
disease progression with expression in motor neurons and microglia surrounding regions
of motor neuron death [146]. In addition, this model provided evidence for the dysreg-
ulation of aspects of each of the complement component pathways (i.e., classical, lectin,
and alternative) in the spinal cord and tibialis anterior muscle during ALS disease progres-
sion [146]. This study demonstrated that complement activation and/or its dysregulation
could play an important role in motor neuron loss and neuromuscular junction denervation
and a heightened complement activation and enhanced C5aR1 signalling could contribute
to the pathophysiology of the TDP-43Q331K ALS model.

An important role for complement component proteins has been identified in tagging
synapses during inflammation and remodelling [147]. Local translation of proteins at the
synapse is an important aspect of neuronal function and the control of this translation
involves silencing of translation by mRNA foci such as stress granules. TDP-43 has been
identified to be expressed in these stress granules indicating that TDP-43 may to some
extent be involved in the control of local synaptic translation [148,149]. The presence of
TDP-43 at the synapse is likely important for the regulation of local protein translation
and maintenance of normal synapses and TDP-43 may be involved in synaptic pruning
with aging. Interestingly, in a knockout mouse model of fragile X syndrome, weekly
treatment intraperitoneally with a purinergic antagonist suramin resulted in correction of
various synaptic abnormalities in multiple pathways. Notably, synaptosome expression
of TDP-43 and the key classical complement cascade component C1qa were corrected.
Suramin treatment was shown to decrease synaptosomal TDP-43 and C1qa comparatively
(27% and 24% respectively) [150]. While investigators hypothesised that disturbances in
purinergic signalling may be a common denominator in disease pathogenesis, this study
poses the possibility that TDP-43 and C1qa could share common mechanistic pathways
and functions at the synapse.

Neurotoxic microglia are shown to promote TDP-43 proteinopathy in PGRN defi-
ciency and the complement cascade may be a mitigating factor. Zhang and colleagues
demonstrated that conditioned media from GRN knockout microglia is sufficient to pro-
mote TDP-43 granule formation, nuclear pore defects, and cell death in excitatory neurons
via the complement activation pathway [151]. Consistent with this, deletion of genes
encoding key complement components C1qa and C3 mitigated microglial toxicity, rescued
TDP43 proteinopathy, and subsequently prevented neurodegeneration [151]. While these
findings provide novel insight into the contribution of chronic microglial toxicity to TDP-43
proteinopathy in neurodegeneration, a highlight of this study is the convincing evidence
that blocking the activation of a central innate inflammatory pathway (i.e., complement
cascade) can mitigate the neurotoxic properties of GRN knockout microglia. Thus, this
suggests that GRN knockout microglia may utilise complement-mediated assembly of
protein complexes to promote TDP-43 proteinopathy, indicating an important dynamic
may exist between resident innate immune glia, the central innate immune complement
pathway, and TDP-43.

There is increasing evidence demonstrating functional links between TDP-43 and vari-
ous central innate immune inflammatory pathways as outlined above. In addition, multiple
studies discussed above have highlighted the potential therapeutic and pharmacological
targets that these innate immune inflammatory pathways could provide in the search
for disease modifying therapies in ALS and FTD. However, considerable investigation is
required into the underlying mechanisms that can explain such functional interactions.
Furthermore, investigation that can determine the contribution of such interactions to the
pathogenesis of inflammation-driven neurodegeneration in TDP-43 proteinopathies.

7. TDP-43 and Adaptive Immunity

GWAS studies report an enrichment of FTD-associated genetic variants in multiple
autoimmune disorders [47]. In a recent study by Li et al. 2021 an explicit genetic correlation
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between ALS and autoimmune diseases was reported. Epidemiological studies from US
cohorts have further supported an altered immune system in ALS and FTD that may be
exclusively linked to TDP-43. Notably, an increased risk of autoimmune disorders was
reported in patients with TDP-43 associated variants of FTD. In one study, patients with
semantic FTD or with GRN mutations had the highest prevalence of autoimmunity and
exhibited increased levels of TNFα, representing a unique pattern of systemic inflamma-
tion [152]. In a similar study, the prevalence of non-thyroid autoimmune disorders was
reported to be higher in FTD patients with the C9orf72 repeat expansion, and in patients
with coinciding FTD/ALS [153]. In both studies, the increased prevalence of autoimmune
diseases clustered around arthritic, cutaneous, and gastrointestinal conditions. However,
contrary to these findings, C9orf72 expansion carriers in a large Finnish cohort study
of FTLD patients showed the lowest prevalence of immunological diseases. While still
suggesting a role of C9orf72 in immunoregulation, this study did not provide support
for the specific association between TDP-43 pathophysiology and autoimmunity [154].
These differences between US and Finnish FTD cohorts could be attributed to variations in
populations or selection bias when allocating patients to groups. Ultimately, epidemiologi-
cal cohort studies such as these require larger numbers of genetically and pathologically
confirmed patients and further research targeted at determining the molecular mechanisms
underlying a relationship between autoimmunity, C9orf72, and FTD/ALS is required.

As discussed earlier, C9orf72 expansion has been the focus of multiple rodent model
studies demonstrating that loss or elimination of C9orf72 function profoundly disturbs
immune homeostasis and predisposes to autoimmunity, therefore implicating C9orf72 in
the regulation of autoimmunity. C9orf72 forms a heterodimer with SMCR8 and ablation of
SMCR8 in mouse models results in splenomegaly and autoimmune phenotypes like those
observed in mice with C9orf72 deficiency [155]. C9ORF72 and SMCR8 have interdependent
functions in suppressing autoimmunity and negatively regulating lysosomal exocytosis [84].
Collectively, this could explain the increase in the prevalence of autoimmune disease in FTD
and ALS C9orf72 repeat expansions carriers. In addition to C9orf72, GRN mutations have
also been linked to autoimmunity with multiple studies reporting prominent upregulation
of serum progranulin levels in patients with various autoimmune diseases. PGRN has been
identified as a key player in multiple individual autoimmune diseases and antibodies to
PGRN have been detected in patients with histories of autoimmune conditions [53,54,156,157].

Collectively these studies provide further evidence for immune dysregulation in ALS
and FTD, specifically altered adaptive immunity that is intrinsically linked to TDP-43
pathophysiology. The mechanisms underlying the overlap between altered adaptive im-
munity and TDP-43 proteinopathy warrants further investigation, raising the question as
to whether adaptive immune dysregulation could provide a novel target for identifying
individuals who may be at risk of developing ALS and FTD or may provide an oppor-
tunistic target for future therapies that can manipulate adaptive immune pathways, thus
potentially altering the trajectory of neurodegenerative processes.

8. Presence of TDP-43 in Other Acute and Chronic Neuroinflammatory Conditions

Neuroinflammation is a pathological feature of various neurological conditions. TDP-
43 proteinopathy is observed in non-neurodegenerative conditions including strokes and
TBI in addition to being a feature of traumatic injury related-neurodegeneration in CTE.
To further elucidate the link between TDP-43 and immune-mediated pathways, the follow-
ing discussion explores the presence of TDP-43 pathology in acute and chronic inflamma-
tory conditions not primarily driven by neurodegeneration, but rather involving ischemia
and brain trauma.

8.1. TDP43 and Stroke

Neuroinflammation plays a key role in the pathogenesis of a stroke, with secondary
neuroinflammation post stroke promoting further injury and cell death. Conversely how-
ever, neuroinflammation is also shown to be beneficial in promoting recovery in strokes
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as reviewed elsewhere [158]. In a histopathological study performed on human brain
tissue biopsies from a panel of anoxic, ischemic, and neoplastic lesions, Lee and colleagues
reported an absence of TDP-43 inclusions in ischemic stroke in addition to anoxia and
neoplasms, indicating that ischemia does not result in aberrant mislocalisation or accumu-
lation of TDP-43 [159]. However, more recently rodent models of acute ischemic stroke,
transient middle cerebral artery occlusion, and subarachnoid haemorrhage (SAH) have
consistently shown biochemical and histopathological alterations in TDP-43 following a
stroke [160–162]. The size of full length TDP-43 (43 kDa) has been shown to decrease in
contrast to the size of the 25 kDa C-terminal fragment, which increased after a stroke, ex-
plained by the proteolytic cleavage of TDP-43 [160]. In addition, cytoplasmic redistribution,
altered nuclear distribution of TDP-43, and an age-related increase in the formation of
ubiquitinated TDP-43 after a stroke were also observed.

The dysregulation of TDP-43 expression has been associated with increased microglial
activation and innate immune signalling [161]. However unlike in neurodegenerative dis-
eases, abnormal phosphorylation and insolubilisation of TDP-43 and TDP-43 cytoplasmic
intracellular inclusions were not observed [160–162]. The increase and/or overexpression
of cytoplasmic TDP-43 was shown to drive the pathogenic NF-κβ response resulting in
increased production of proinflammatory markers, ischemic injury, and increased suscep-
tibility of neurons after stroke, also in an age-dependent manner [161]. The expression
of TDP-43 within the CSF and brain tissue of humans has been assessed, with marked
elevations in expression of TDP-43 observed in the CSF and brain tissue from patients with
SAH relative to healthy controls [162]. SAH enhanced the expression of TDP-43 in the brain
of experimental rodents and human subjects and with an increase of TDP-43 occurring in
both neurons and glia. Given that inflammation has been proposed as a crucial factor in
mediating upregulation and translocation of TDP-43 in pathological conditions, inflam-
mation induced by SAH was suggested to account for the increase in TDP-43 in the CSF
of SAH patients [162]. Interestingly, in neurons with cytoplasmic TDP-43 redistribution,
ubiquitin was expressed in the cytoplasm with cytoplasmic TDP-43 immunoreactive gran-
ules colocalising with ubiquitin granules. However, ubiquitinated intracellular inclusions,
a pathological hallmark of TDP-43 proteinopathy, were not observed in rat ischemic brains,
alike that of previous rodent models of stroke [160,161].

Finally in a proteomics assessment of the insoluble aggregated proteome following
cerebral ischemia in a mouse model of middle cerebral artery occlusion, ischemia/reperfusion
induced the aggregation of RNA binding and heat shock proteins with roles in DNA/RNA
processing, stress response, and cell signalling. The largest group of aggregated proteins in
ischemia was RNA binding proteins including TDP-43 [163]. This suggests a significant
molecular overlap between neurodegeneration in ALS and FTD and ischemic stroke and
provides evidence that protein aggregation also occurs in acute neuronal injury induced
by cerebral ischemia. Collectively these findings indicate that both ischemia and neuronal
injury have common characteristics with respect to altered subcellular localisation of TDP-
43 [164]. TDP-43 may be specifically ubiquitinated after acute ischemic stroke and structural
alterations in TDP-43 are likely dependent on the insult and its location and duration,
given phosphorylated TDP-43 was not observed in several rodent stroke models or human
stroke patient samples. Moreover, the increase in cytoplasmic TDP-43 with aging could
serve as an age-related mediator of inflammation and neuronal injury, with the potential for
therapeutic targeting of cytoplasmic TDP-43 post stroke that could modulate post-ischemic
inflammation and protect damaged neurons in the ischemic microenvironment [161].

8.2. TDP-43, Traumatic Brain Injury and Chronic Traumatic Encephalopathy

TBI results in the activation of multiple inflammatory pathways [165] and is proposed as
a risk factor for neurodegeneration. There is increasing evidence to suggest a significant link
between brain trauma and TDP-43, with multiple clinical studies and preclinical models of TBI,
both single and repetitive, consistently exhibiting TDP-43 proteinopathy including its cleavage,
phosphorylation, mislocalisation, and cytoplasmic aggregation [166–172]. Furthermore, there
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is evidence to suggest that TDP-43 has a potentially pathogenic role following brain injury as
reviewed in detail elsewhere [173].

Given that inflammation is demonstrated to induce cytoplasmic TDP-43 translo-
cation [111], it has been proposed that the enhanced astrocyte and leukocyte response
observed in mutant TDP-43 mice following TBI could further increase the burden of phos-
phorylated TDP-43 granules in neurons, thus further promoting neurodegeneration [172].
Furthermore, TDP-43 proteinopathy has been hypothesised to propagate across neuronal
networks [174], therefore brain trauma initiated ALS pathobiochemistry could act as the
seed for disease initiation [172]. Supporting this, in ALS mice expressing TDP-43, a model
of a mild stab injury to the motor cortex was used to assess the effects on the formation of
p-TDP-43 cytoplasmic granules. A single stab injury induced the formation of cytoplasmic
TDP-43 granules in wild type animals, which peaked at 3 days post injury (dpi) and began
declining by 7 dpi, however a much longer response was observed in mutant TDP-43 mice,
who continued to accumulate p-TDP-43 cytoplasmic granules up until 7 dpi. Moreover,
the glial and inflammatory response to TBI was significantly more pronounced in TDP-
43 transgenic mice, specifically microglial activation was markedly increased at 3 dpi in
TDP-43 mutant mice compared to wild type mice [172]. This suggests there may exist a
heightened early or immediate innate immune response that is specific to TDP-43 and that
mutant TDP-43 may enhance the neuroinflammatory response to trauma. While microglial
activation was markedly increased in the mild stab injury model, in a separate rat model
of TBI, TDP-43 proteolysis was associated with astrocyte reactivity. Levels of the 25 kD
and 35 kDa fragments of TDP-43 were increased whereas full length TDP-43 (43 kDa) was
decreased following TBI. These alterations were associated with neuronal loss and motor
impairment and following TBI TDP-43 cleavage products were colocalised with GFAP in
reactive astrocytes. Therefore, TBI may induce TDP-43 proteolysis in astrocytes as part of
astrocyte activation and downstream functional consequences of TBI [170]. The authors
suggested that the early management of TDP-43 proteolysis and its cleavage products in
astrocytes could provide a therapeutic target for motor dysfunction following TBI [170].

TBI is linked with the development of CTE, which is characterised by progressive neu-
rodegeneration associated with repetitive head trauma. TDP-43 pathology is present within
post-mortem brain tissue in some cases of military related TBI, in sporting athletes who
develop CTE and in repetitive head trauma animal models [166,168,173]. The expression
of TDP-43 in CTE mimics the pattern of expression seen in FTD-TDP [166] and the strong
association of CTE with repetitive TBI in addition to the presence of TDP-43 pathology
could represent a specific association between subconcussive brain trauma and TDP-43
pathology [166]. However, it remains unclear how repetitive head trauma causes TDP-43
proteinopathy and neurodegeneration, particularly in the absence of disease-causative mu-
tations.

Research using Drosophila models to investigate the link between repetitive brain
trauma and ALS show that Drosophila have implicated disruptions to altered protein
clearance, autophagy pathways, and nucleocytoplasmic transport [175,176]. In Drosophila
expressing C9orf72, repetitive brain trauma showed increased mortality and locomotor
dysfunction [175], which may be explained by TBI altering protein clearance pathways
such as the ubiquitin-proteosome system or autophagy pathway. This also indicates that
TBI could be sufficient to exacerbate the phenotypes associated with ALS-causing genes, in
this case C9orf72. In the same study, Anderson and colleagues demonstrated the deposition
of ubiquitin, p62/SQSTM1, TDP-43, and stress granule formation within the Drosophila
brain following repetitive trauma and, interestingly, Drosophila with repeated brain trauma
exhibited highly similar pathology to that observed in ALS patients and ALS mouse mod-
els [175]. Noteworthy, SQSTM1/p62 is an autophagy receptor and has been identified
as a rare genetic variant in both ALS and FTD in addition to being able to activate the
NF-κβ pathway [72]. In a further follow up study by Anderson and colleagues, proteomics
analysis of Drosophila brains following repetitive trauma demonstrated that repetitive TBI
upregulated nuclear pore proteins, altered nucleoporin stability, nucleocytoplasmic trans-
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port proteins, and nucleocytoplasmic transport itself [176]. Interestingly, this upregulation
led to TDP-43 mislocalisation, aggregation, and phosphorylation in addition to decreased
motor function and lifespan. Furthermore, pathology of nuclear pore glycoprotein 62
(NUP62), an essential component of the nuclear pore complex was observed, with NUP62
pathology colocalising with TDP-43. This study suggests that defects in nucleocytoplasmic
transport are associated with traumatic injury, which may mediate TDP-43 pathology.
These defects may underly the pathogenesis in CTE, with the NLS -harbouring region of
TDP-43 at the centre of this association.

While various studies have investigated TDP-43 proteinopathy across CNS inflam-
matory disorders outside of neurodegeneration (i.e., stroke and TBI), further research is
warranted to investigate the precise mechanisms underlying the highlighted associations
to fully explore the paradigm between TDP-43 proteinopathy and acute or chronic CNS
insults such as cerebral ischemia and brain trauma. It is important to appreciate that much
can be learned from researching TDP-43 proteinopathy in the context of diseases outside
of the typical focus of neurodegenerative diseases, material that could be used to further
understand TDP-43’s role within the CNS and inform therapeutic targets and pathways
that could be manipulated in the context of ALS and FTD.

9. Conclusions

This review established four key lines of evidence for the specific relationship between
TDP-43, immunity, and inflammation (Figure 2). This evidence includes,

1. The involvement of various ALS and FTD causative and susceptibility genes (notably
C9orf72, GRN, and TBK1) in immunity and inflammation.

2. A demonstrated relationship between TDP-43 and central innate immune inflamma-
tory pathways including NF-κβ/p65, cGAS/STING, NLRP3 inflammasome,
MAPK/JNK/p38, and the innate immune complement cascade.

3. Altered adaptive immunity in ALS and FTD that is intrinsically linked to TDP-43
pathophysiology (notably in C9orf72 repeat expansion and GRN mutation carriers)

4. TDP-43 proteinopathy is observed in other acute and chronic inflammatory CNS
conditions (notably stroke, TBI and CTE).

This review has also identified evidence that warrants further investigation including:

• Investigation into the substantial amount of evidence supporting TDP-43’s relationship
with immunity and inflammation that centres around microglia.

• Determining the manner and involvement of TDP-43 structural and functional sites
(e.g., NLS and RRM1 domain) with key inflammatory pathways (e.g., NF-κβ/p65)

• Investigation of the mechanisms underlying TDP-43’s role in triggering cytoplasmic mito-
chondrial DNA release and activating central inflammatory pathways (i.e., cGAS/STING)

• Deciphering the association between TDP-43 and autoimmunity to determine whether
systemic inflammation is a risk factor for TDP-43 proteinopathy or the possibility
of common shared mechanisms between TDP-43 proteinopathies and adaptive im-
mune dysregulation.

• Explore the mechanisms underlying TDP-43’s presence and involvement in strokes,
TBI, and CTE to determine whether shared mechanisms exist in the context
of neuroinflammation.
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Figure 2. Four key lines of evidence for the specific relationship between TDP-43, immunity, and inflammation within
the CNS. (a) Multiple ALS and FTD causative and susceptibility genes associated with TDP-43 pathology are directly
implicated in immune and inflammatory pathways, notably C9orf72, GRN, and TBK1; (b) demonstrated relationship
between TDP-43 and central innate immune inflammatory pathways in ALS and FTD including NF-κβ/p65, cGAS/STING,
NLRP3 inflammasome, MAPK/JNK/p38, and the complement cascade; (c) altered adaptive immunity that is intrinsically
linked to TDP-43 pathophysiology, specifically in FTD and ALS C9orf72 repeat expansion and GRN mutation carriers; (d) the
presence and role of TDP-43 pathology in other acute and chronic inflammatory CNS conditions including stroke, TBI, CTE,
and cancer (not discussed in this review). Taken together this evidence points towards a robust and specific relationship
between TDP-43, immunity, and inflammation that may provide a platform for the identification of novel immune-mediated
targets associated with TDP-43 to aid in discovery and generation of disease-modifying therapies for ALS and FTD.

In summary, inflammatory pathways and immune-mediated mechanisms present a
promising opportunity to explore therapeutic manipulation and biomarkers of inflamma-
tion that can inform disease progression during life in ALS and FTD patients expressing
TDP-43 proteinopathy. Furthermore, investigation of the role of TDP-43 in other CNS
disorders that also exhibit neuroinflammation may provide novel avenues to uncover the
mechanisms underlying TDP-43 proteinopathy in the CNS.
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