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Abstract

Platelets and platelet extracellular vesicles (pEV) are at the crossroads of coagula-

tion and immunity. Extracellular vesicles are messengers that not only transmit sig-

nals between cells, but also provide information about the status of their cell of origin.

Thus, pEVs have potential as both biomarkers of platelet activation and contributors to

pathology. CoronavirusDisease-19 (COVID-19), caused by infectionwith severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), is a complex disease affectingmul-

tiple organs and is characterized by a high degree of inflammation and risk of thrombo-

sis in somepatients. In this review,we introducepEVsas valuable biomarkers in disease

with a special focus on their potential as predictors of and contributors to COVID-19.
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1 INTRODUCTION

Extracellular vesicles (EV) are small membrane-bound vesicles

that contain molecules from their cell of origin. As EVs can be

internalized by cellular recipients, they are suggested to mediate

cellular signaling.1,2 The two most described EV-subtypes are

microvesicles and exosomes.3 Microvesicles are produced by plasma

membrane budding and shedding, have a diameter ranging from

approximately 100 to 1000 nm2,4–6 and generally expose phos-

phatidylserine (PS) although there are exceptions.7–10 They bud from

cells activated by numerous inflammatory triggers.11 Exosomes are

typically smaller than microvesicles9 and are released by cells from

multivesicular bodies in an exocytosis-dependent mechanism.6,12,13

Platelets are anucleated cell fragments with a diameter of 1 to 3 μm
and are produced by megakaryocytes.14–16 They prevent bleeding and

interact with pathogens and immune cells thereby assisting immune

responses.15,16 Platelets and megakaryocytes are the major sources

of circulating EVs.17–19 Similar to platelets, platelet EVs (pEVs) were

first recognized as procoagulant entities.20–22 However, their roles

Abbreviations: ACE2, angiotensin-converting enzyme 2; CD147, cluster of Differentiation

147; CLEC−2, C-type lectin-like receptor 2; COVID-19, Coronavirus Disease-19; DAMPs,

damage-associatedmolecular patterns; EVs, extracellular vesicles; HMGB1, high-mobility

Group Protein 1; Ig, immunglobulin; MDA, malondialdehyde; OxLDL, oxidized low-density

lipoprotein; pEVs, platelet extracellular vesicles; PS, phosphatidylserine; SARS-CoV-2, severe

acute respiratory syndrome coronavirus 2; SLE, systemic lupus erythematosus; TF,

tissue-factor; TLR, toll-like receptor.

now appear to be more diverse and pEV subtypes may fine tune both

coagulation and inflammation.1 pEVs have also been identified in bone

marrow,23 lymph,24,25 and synovial fluid.26,27 This suggests that pEVs

also enable platelets to transmit signals into tissues that are normally

inaccessible to platelets.

Coronavirus Disease-19 (COVID-19) is caused by respiratory tract

infection with coronavirus SARS-CoV-2.28 COVID-19 was declared a

pandemic by the World Health Organization in March 202029 and is

now recognized as a complex disease involving high levels of inflam-

mation and thrombosis.28,30–32 Platelet hyperactivation33–35 and an

increase in pEVs circulating33–37 in blood of COVID-19 patients is now

documented.33–37

Herein, we review the current knowledge concerning pEVs and

related blood-borne EVs as biomarkers and contributors to patholo-

gies. In particular, we will review (i) pEVs as a biomarker in COVID-19,

(ii) how they may be induced in COVID-19, and (iii) how they may con-

tribute to COVID-19 pathology. Figure 1 recapitulates the concepts

presented in the review.

2 HISTORY OF EXTRACELLULAR-VESICLE
RESEARCH

Peter Wolf22 provided the first description of EVs as small, pro-

coagulant lipid particles that can be separated from platelets by
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F IGURE 1 SARS-CoV-2 infection of lungs and subsequent damagemay activate cells in the blood and induce platelet activation, aggregation,
and extracellular vesicle release. Extracellular vesicles carry a diverse array of signalingmolecules that can influence immune responses and
coagulation

differential centrifugation. Subsequent studies and electron micro-

scopic analysis identified two main classes of vesicles released from

cells: exosomes and microvesicles. 13,38–40During the last 20 years,

technological progress has transformed the study of EVs. Advances

in flow cytometry—the most commonly used method to detect and

quantify EVs—have enabled the analysis of EVs at a higher resolu-

tion than ever before, further revealing EV complexity. EVs have his-

torically been categorized into major subclasses such as “microvesi-

cle/microparticle” and “exosomes.” However, these narrow definitions

have become problematic. Indeed, the vocabulary and methodology

describing EVs have expanded at a rapid pace and may lead to con-

fusion upon retrospective examination of EV studies.3,41,42 Therefore,

the International Society of Extracellular Vesicles (ISEV) recommends

the use of the umbrella term “extracellular-vesicle (EV)” unless spe-

cific investigations permit to determine whether EVs were liberated

from the plasma membrane by budding or implicated exocytosis, and

to include a detailed description of the isolation and detection meth-

ods used in the study of EVs.3,41,42

Notably, interpretations of historical studies may have changed

with advancements in the technologies and methods used to detect

EVs. A common discrepancy is the concentration of EVs per micro-

liter in healthy plasma, with a reported concentration of 200 up to 109

EVs/μL, which likely depends on the isolation and detection techniques
used.19,43 The pEV concentration in healthy plasmahas been conserva-

tively estimated at around 11,500/μL by cryo-electron microscopy.19

The most commonly used methods of EV isolation and detection are

differential centrifugation and flow cytometry, respectively. However,

common pitfalls associated with these techniques are the risk of co-

isolation and detection of EVs and lipoproteins, the potential of over-

looking particularly small EVs due to insufficient resolution, and the

risk of damaging EVs during isolation at high centrifugal forces.43,44

3 pEV AS MARKERS AND MAKERS

pEVs, as a component of liquid biopsies, show potential as biomark-

ers in autoimmune diseases, cancer, cardiovascular diseases, and infec-

tious diseases.25,45–55 The presence of pEVs is documented in synovial

fluid in rheumatoid arthritis,26 and increased levels of circulating pEVs

correlatewith disease activity.56 Moreover, an increase in pEV concen-

trations was found in lymph in murine models of atherosclerosis and

autoimmunearthritis.24- 27 Thenumber of pEVs is increased in blood in
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systemic lupus erythematosus (SLE), and higher levels are suggested to

associate with declining kidney function.45 In addition to pEV concen-

tration, pEV content can be used as a biomarker. The protein composi-

tion of EVs in disease can be distinguished from that of EVs in healthy

controls. For instance, as activated platelets can translate and produce

interleukin-1 (IL-1), this cytokine can be packaged into pEVs, which can

augment inflammation.26,57 Lipid mediators of inflammation, such as

prostaglandins and leukotrienes, can also be transported or generated

by pEVs given the latter’s content of enzymatic machinery and fatty

acids.58 EVs can be released from activated and dying cells, and may

therefore, carry self-antigens and damage-associated molecular pat-

terns (DAMPs). Such EVs could have a role as potential biomarkers and

may contribute to disease.

Indeed, pEVs are associated with autoantibodies in SLE, which sug-

gests that they bear autoantigens and may facilitate cellular acti-

vation through activation of Fc receptors.59–61 Moreover, platelets

and their pEVs can contain DAMPs such as high-mobility group

protein 1 (HMGB1),62 S100A8/9,63,64 and mitochondrial DAMPs.59

Another prominent DAMP that can be found on EVs are oxidation-

specific epitopes.65 The latter result fromoxidation of polyunsaturated

fatty acids and are commonly found on oxidized low-density lipids

(OxLDL).65,66 For instance, malondialdehyde (MDA)-modifications of

EVs may be the product of phosphatidylcholine peroxidation during

EV-biogenesis. These MDA epitopes are inflammatory/immunogenic

and recognized by a subset of germline-encoded (natural) IgM

antibodies.65,66 Low levels of natural IgM antibodies and high levels of

MDA + EV and OxLDL are associated with an increased risk of car-

diovascular disease.65 EVs and MDA + EVs65 are elevated in acute

myocardial infarction (STEMI)46 and in acute coronary syndrome,48

and as such are likely indicative of tissue damage.

pEVs may be useful biomarkers in cancers associated with throm-

botic risks and may enhance metastasis.52–54 Of particular inter-

est are prostate cancer cells, which are reported to release tissue-

factor (TF)-associated EVs (TF + EV).67 TF is the main initiator of

coagulation,68 and cancer cell TF + EVs may thereby induce platelet

activation,68 leading to the release of pEVs. In the case of coagu-

lation initiated by cancer, TF + EVs are more likely the causative

agents in this pathology as opposed to pEVs. However, detection of TF-

protein expressed on EVs (TF + EV) is notoriously difficult and gener-

ally only achieved through indirect determination of TF-activity.69,70

Considering these challenges, pEV-quantification is a potential surro-

gate marker of TF-activity and platelet activation in cancer and other

diseases.

Table 1 provides an overview of the different techniques used to

identify platelet EV and other blood-borne EV in the literature cited in

this section. As indicated in Table 1, pEVs are most commonly isolated

fromplatelet-poor or platelet-free plasmaobtainedbydifferential cen-

trifugation, subsequently labeled for platelet-specificmarkers (primar-

ilyCD41) anddetectedby flowcytometry. Ideally, it is recommended to

perform a two-step centrifugation protocol on whole-blood to obtain

platelet-free plasma.44 Plasma prepared this way can be frozen and

stored for long-term.44

4 pEVS AS BIOMARKERS IN COVID-19

While pEVs have been most extensively studied as biomarkers in

noninfectious diseases, pEVs are also found in association with viral

infections.49–51,71,72 Influenza virus H1N1 activates platelets and

induces the release of pEVs by a mechanism that implicates thrombin

and theactivationofFcgRIIabyantibodiesdirectedagainst this virus.49

pEVs may contribute to the propagation of HIV, as they can transport

C-X-C chemokine receptor type 4 (CXCR4), a coreceptor for HIV, to

other cells.50 In dengue virus infection, pEVs may be released in a C-

type lectin-like receptor 2 (CLEC−2)-dependentmanner by platelets51

and thereby show potential as biomarkers of disease severity71 by

distinguishing between patients who may or may not require platelet

transfusion.72 pEVs in infections and sepsis arediscussed inmoredetail

elsewhere.73

Several studies point to EVs and pEVs as potential biomarkers

in COVID-19.33,36,37 Increased levels of circulating pEVs have been

observed in patients with SARS-CoV-2 infection.33,37 One particular

study reported higher numbers of circulating pEVs in patients with

nonsevere and severe COVID-19 in comparison with healthy individ-

uals after determining pEV levels in platelet-free plasma.33 It is intrigu-

ing that the increase in pEVs was less pronounced in patients with

severe disease relative to those with nonsevere disease.33 Normal-

ization of pEV numbers to platelet counts still revealed significantly

increased levels of pEVs in severeCOVID-19, pointing to increasedEV-

biogenesis duringCOVID-19.33 Cappellano et al.37 evaluated pEVs as a

biomarker for SARS-CoV-2 infection in hospitalized patients and found

significantly elevated levels of pEVs in COVID-19 patients compared

with healthy controls. Moreover, they reported that increased levels of

circulating pEVs could distinguish SARS-CoV-2-infected patients from

patients with suspected COVID-19 who tested negative for SARS-

CoV-2 infection at the time of hospitalization. Despite a significant

difference in pEV concentration, detection of viral infection by pEV-

quantification is unlikely to replace PCR as the gold standard to detect

SARS-CoV-2 infection. For these analyses, the investigators quantified

pEVs in whole blood in the absence of additional purification steps

to reduce sample manipulation. The reduction of preanalytical proce-

duresmayminimize the riskof damagingEVs, although theuseofwhole

bloodmay lead to the generation of EVs after collection. Thus, although

the approach used by Cappellano et al.37 may be useful for laboratory

analyses performedwithin hours of blood sampling, as intended by the

authors, platelet-free plasma by two-step centrifugation protocols44 is

necessary for long-term storage and sample biobanking.

It is interesting to note that we and others observed that abso-

lute numbers of pEVs33,36 and PS-exposing (PS+) pEVs33 were sig-

nificantly lower in severe COVID-19 when compared with nonsevere

COVID-19.33,36 PS + EVs are considered procoagulatory since they

provide a negatively charged surface for initiation and maintenance of

coagulation.74 Notably, a decrease in PS+ EVs has also been reported

in multiple organ dysfunction syndrome and sepsis, which might point

to common mechanisms in these diseases.75 COVID-19 is indeed a

complex disease affecting many organs distant from the lungs and is
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characterized by a high degree of thrombosis. Thus, the observed

decrease in PS+ pEVsmay suggest increased consumption of such EVs

in patients withmore severe disease as PS is also an “eat-me” signal for

cellular removal.33,36,76 In summary, PS+ pEVs may be a biomarker in

COVID-19 that distinguishes different stages of disease activity, espe-

cially with regard to coagulation and organ damage.30–32

Table 2 provides an overview of the isolation and detection tech-

niquesused for the analysis of platelet EV inCOVID-19 in the literature

cited in this section.

5 WHAT TRIGGERS THE RELEASE OF pEVS IN
COVID-19?

5.1 SARS-CoV-2-mediated platelet activation via
receptors of innate and adaptive immunity

Considering the high abundance of platelets in blood and their ability

to detect pathogens, platelets have also become recognized as an

important component of the immune response to microbial invasion.

Platelets express various pattern-recognition receptors, including

functional expression of toll-like receptors (TLR1, TLR2, TLR3, TLR4,

TLR6, TLR7, TLR9)77,78 and mRNA for all 10 TLRs.79 TLR2 and TLR4

are not primarily known to recognize viruses, but a role for TLR4

and TLR2 signaling on platelets has been shown for dengue virus and

cytomegalovirus infection.80,81 The TLR4 ligand lipopolysaccharide

induces EV-release by monocytic cells,10 but it is not known if TLR2 or

TLR4 activation induces EV release by platelets. In fact, TLR2 andTLR4

engagement is not sufficient for platelet activation, but instead primes

or sensitizes platelets to respond to other stimuli, or induces protein

translation by platelets.57,77 Since SARS-CoV-2 is a single-stranded

RNA (ssRNA) virus82 and double-stranded RNA (dsRNA) is considered

to be an intermediate product of viral replication,82 TLR3 (dsRNA) and

TLR7 (ssRNA) are candidate receptors for SARS-CoV-2 recognition

by platelets. Engagement of ssRNA by platelet TLR783–85 and ssRNA

by platelet TLR386 is also known. TLR3 activation has been associated

with EV release by different cell types,87–89 but has not been described

for platelets. Moreover, activation of TLR3 and TLR7 does not induce

typical platelet activation, such as granule content release and

exposure of activated GPIIbGPIIIa, as seen in response to thrombin

stimulation. These interactions may be more similar to the priming or

sensitization effect of TLR2 and TLR4.77,90 Of note is that SARS-CoV-2

RNA has been found in association with platelets in some COVID-19

patients.33,34 Thus, TLR3 and TLR7may be attractive targets for SARS-

CoV-2 platelet interactions and priming of platelets in COVID-19.

In a recent study,91 transmission-electron-microscopy revealed that

SARS-CoV-2maybe takenupbyplatelets and locate in phagosome-like

structures. TLR3 and TLR7 are endosomal receptors and could thereby

come in contact with SARS-CoV-2 RNA, but an actual interaction has

not been shown in platelets. Damaged capillaries in the alveolar wall

could be contact sites for SARS-CoV-2 and the blood. DAMPs, such as

DNA liberated by activated or NETosing cells,92 may also contribute

to platelet activation and pEV release in COVID-19. Indeed, while T
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stimulation of TLR9 (recognizes unmethylated CpG DNA) induced

oxidative stress in platelets, it also enhanced pEV release when

platelets were activated by immune complexes recognized by

FcγRIIa.59 Moreover, antibody-mediated recognition of SARS-CoV-2

via FcγRIIa may play a role in platelet activation and pEV-release, as

has been shown for H1N1.49

Protein in the envelope of viruses are often heavily glycosylated,

which may aid in the evasion of adaptive immune responses.93 Indeed,

the SARS-CoV-2 spike (S) protein has multiple glycosylation sites94

that may be relevant to its function and interactions with target cells.

In multiple variants of SARS-CoV-2, mutations to glycosylation sites

affect infectiveness.95 Ofnote, is that platelets expressCLEC-2 (C-type

lectin-like type II) and DC-SIGN,96 which are relevant in HIV-1 and

dengue virus infections51,96 and platelets may release EVs in a CLEC-

2-dependent manner.51

5.2 Direct SARS-CoV-2 platelet interaction via
known and putative SARS-CoV-2 receptors

Theprimary receptor for SARS-CoV-2 inhumans isACE2 (Angiotensin-

converting enzyme 2),97,98 which is ubiquitously expressed by type II

epithelial cells in the upper and lower respiratory tract.99 The typical

cellular entry route for SARS-CoV-2 is engagement with ACE2 via the

Spike protein, subsequent cleavage of the latter by the serine protease

TMPRSS2 to enable fusion of the viral and cellularmembrane resulting

in infection of the target cell.100 While expression of ACE2 has been

shown for vascular endothelial cells and lung macrophages,99 physio-

logical expression by platelets or megakaryocytes is controversial.101

Moreover, Koupenova et al.91 recently reported that SARS-CoV-2

may be taken up by platelets through both ACE2-dependent and

independent mechanisms. Cluster of Differentiation 147 (CD147) has

been proposed as an alternative receptor for SARS-CoV-2,102 is com-

monly expressed in circulating cells, and is associated with risk fac-

tors of severe COVID-19 such as obesity, asthma, and chronic obstruc-

tive pulmonary disease (COPD).102,103, CD147 is indeed functionally

expressed on platelets,104,105 but its relevance to SARS-CoV-2 infec-

tion has been called into question.106 Other intriguing targets for

direct SARS-CoV-2 platelet interaction are the integrins. Platelet inte-

grin GPIIbGPIIIa binds the three amino acid motif Arg-Gly-Asp (RGD)

present in physiological ligands (e.g., fibrinogen, von Willebrand Fac-

tor), which is crucial for platelet aggregation.107,108 Platelet integrin

GPIIbGPIIIa is important in platelet responses and is implicated in

pEV-release triggered by FcγRIIA or GPVI receptor activation.25,26,

Furthermore, the Spike protein sequence of SARS-CoV-2 contains

an RGD-motif (403-405: Arg-Gly-Asp) within the receptor-binding

domain.109,110 Thus, platelet integrin GPIIbGPIIIa presents another

alternative target receptor for SARS-CoV-2.

5.3 pEV-release independent of direct
SARS-CoV-2 platelet interaction

Platelets may not be stimulated to release pEVs solely upon direct

interaction with SARS-CoV-2. Indeed, excessive inflammatory

responses and tissue damage, particularly, in the lung and lung

microvasculature, are observed in COVID-19 patients.111,112 Of

interest is that autopsies of 21 patients113 revealed inflammatory

damage and microthrombi in multiple organs (lungs, heart, liver,

kindeys, brain), while SARS-CoV-2 infected cells were absent from

most of the affected tissues. Notably, SARS-CoV-2 viral RNA copies in

a range of 63 to 6,310 copies per milliliter of blood have been detected

in a quarter of hospitalized COVID-19 patients.114 Given that the

concentration range of platelets in blood is 150 × 10ˆ8 to 450ˆ8 per

mL of blood, platelets would outnumber virus by a factor of 23,771

to 7.14 × 10ˆ6. This would make direct interactions of SARS-CoV-2

with platelets rare events, although the amount of SARS-CoV-2

in the blood may be underestimated viral as RNA may have been

degraded.91 Dissemination of SARS-CoV-2 throughout the circulation

is not excluded, but may not be the primary path taken by the virus

to affect platelet function and pEV release. As discussed by Chen

et al.,115 infection of cells in the lungs (pneumocytes, epithelial cells)

and nearby vasculature (endothelial cells) causes the production of

inflammatory cytokines contributing to an immune response leading

to tissue damage.116,117 At the same time, damage to tissue may lead

to the liberation of DAMPs, including, but not limited to, mitochondria

and mitochondrial components and oxidized phospholipids, and TF

associated with EVs, which would further amplify the inflammatory

and coagulation cascade that stimulates platelet activation and sub-

sequent pEV release. Moreover, the overwhelming inflammation may

affect endothelial barrier integrity and thereby lead to increased

expression of soluble thrombomodulin, soluble P-selectin, and von

Willebrand factor.117 Indeed, elevated levels of TF activity associ-

ated with EVs have been reported in COVID-19, which may directly

contribute to excessive coagulation.36,70,118 In addition, ACE2, the

primary receptor for SARS-CoV-2 infection in humans, is important

in the regulation of the renin–angiotensin–aldosterone system and

a deficiency of ACE2 is linked to enhanced risk of inflammation and

thrombosis.98 As COVID-19 is increasingly viewed as a thromboin-

flammatory disease,32 it is conceivable that platelet activation in

COVID-19 may be a consequence of the inflammation, organ damage,

and pathological activation of the coagulation cascade, rather than a

consequence of direct virus–platelet interaction. Moreover, at later

stages of the disease, secondary effects caused by the tissue damage

and inflammatory response, as opposed to viral presence, might

become decisive in determining disease outcome. Thus, changes to the

presence and activity of pEVs may represent potential risk markers, as

in other diseases.25,45–51,119

6 THE CONTRIBUTION OF pEVS TO COVID-19

The first descriptions of EVs referred to their procoagulant abilities,

which are primarily attributed to exposure of the negatively charged

phospholipid, PS.120–122 PS exposure on platelets and pEVs sup-

ports propagation of coagulation.120–122 In COVID-19, studies report

the presence of antiphospholipid antibodies, such as anticardiolipin

antibodies, similar to those seen in antiphospholipid syndrome and

SLE.123–126 These antibodies may target PS-exposing pEVs, thereby,
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forming immune complexes for cellular activation through Fc recep-

tors. Negatively charged surfaces may also initiate the “intrinsic path-

way” of coagulation.121 However, the main cellular initiator of coagu-

lation is TF.121 While some procoagulant activity of circulating pEVs

has been associated with TF in the past,127 it has been suggested

that platelets may acquire TF from other cells via TF-expressing EVs

in a P-selectin glycoprotein ligand-1-dependent manner.128 However,

expression of TF by platelets and pEVs is controversial and direct

detection of TF displayed by EVs is challenging.69 The concentration

of TF may be below the detection limit of flow cytometric approaches,

but may be sufficiently high to initiate coagulation as concentrations

as low as 20 fM suffice to initiate coagulation.129 Furthermore, TFmay

be present in an inactive (“encrypted”) or active (“decrypted”) state.121

Therefore, it is necessary to determine TF biological activity to confirm

its role in a biological process.

Given the high prevalence of thrombosis in COVID-19,30–32 TF

activity associated with EVs and its involvement in COVID-19 pathol-

ogy is of high interest.36,70,118,130 Several studies36,70,118,131 report a

significant increase in TF activity associated with EVs from COVID-19

patientswhen comparedwith healthy controls.Moreover, EV-TF activ-

ity was significantly higher in COVID-19 than in sepsis.36,118 Guervilly

et al.36 found a higher EV-TF activity in severe compared with non-

severe (moderate) COVID-19 and a TF activity of more than 78.3 fM

associated with thromboembolic events. Moreover, they observed fib-

rinolytic activity of EVs in COVID-19, but found no significant change

between nonsevere (moderate) and severe disease, indicating that the

balance is shifted toward coagulation in severe disease.36 Krishna-

machary et al.131 reported enrichment of TF-protein and TF-activity

associated with EVs isolated from COVID-19 patients with severe

disease. When stratifying COVID-19 patients with severe disease by

mortality, no differences in EV-TF-activity was noted, as the level

of EV-TF-activity was approximately 50 pM in both survivors and

nonsurvivors.131 These data appear to contrast with Guervilly et al.,36

who reported far lower levels of EV-associated TF-activity in COVID-

19. While the discrepancy might be explained by an overestimation

of TF activity measured with commercial assays in absence of block-

ing antibodies to ensure of the specificity of themeasurements,132–134

these studies suggest that high EV-TF activity may be associated with

increased severity andmortality in COVID-19.36,70,131

Guervilly et al.36 reported no differences in overall EV levels after

comparing moderate and severe COVID-19, with the exception of sig-

nificantly lower levels of pEVs in severe COVID-19.36 This is consis-

tent with observations made by Zaid et al. who also reported signif-

icantly lower levels of total and PS+ pEVs in severe COVID-19 com-

pared with nonsevere COVID-19.33 However, the procoagulant activ-

ity of EVs was increased in COVID-19, and was thought to depend

on the expression of active TF given that the fibrinolytic activity of

EVs remained unchanged in these patients.36 A recent interesting in

vitro study byWang et al.130 found that infection of humanmonocyte-

derived macrophages with SARS-CoV-2 spike protein pseudovirus

increased TF activity at the cell surface and stimulated the release of

EVs with associated TF activity.130 This study suggests that TF activ-

ity depended on “decryption” (activation) of TF by hydrolysis of sphin-

gomyelin via acid sphingomyelinase (ASMase), and not on increased TF

protein expression or externalization of PS.130 This lends further sup-

port to a role for SARS-CoV-2 in the “decryption”’ of TF and the sub-

sequent release of EVs with associated, active TF.130 These observa-

tions are of clinical importance given the low femtomolar concentra-

tions of EV-associated TF activity reported in COVID-19 patients36

that are nevertheless sufficient to predict an increased thrombotic risk.

The absolute quantification of TF + EVs, or identification of the cellu-

lar origin of TF-exposing EVs is challenging and requires careful study.

Thus, the distinction of “decrypted” from “encrypted” TF in association

with EVs, by the quantification of TF activity, may be a more relevant

risk marker in COVID-19.

7 CONCLUDING REMARKS

EVs have attracted interest as biomarkers and players in COVID-19

pathology. As COVID-19 is a complex disease affectingmultiple organs

and is characterized by a high degree of thrombosis, the study of

platelet activation and the involvement of procoagulant EVs has drawn

interest. A growing number of independent studies found that quan-

tification and characterization of pEVs and other types of blood-borne

EVs carry potential as biomarkers of COVID-19 disease severity and as

predictors of outcome.While high levels of circulating EVs appear to be

found during all stages of the disease, the presence of TF activity asso-

ciated with EVs may predict disease severity and initiate the “extrin-

sic” or “TF” pathway of coagulation and, thereby, directly contribute

to the high thrombotic risk in COVID-19. Conversely, the PS-exposing

pEVs may stimulate inflammation if targeted by antiphospholipid anti-

bodies, or support the propagation of coagulation due to the exposure

of negatively charged surfaces. However, what remains unclear, is the

pathway of pEV biogenesis in COVID-19 as the relevance of direct

SARS-CoV-2-platelet interaction has not been established. Excessive

production of active TF and damaged surfaces, culminating in coag-

ulation initiation and propagation, may be the most probable trigger

for high levels of platelet activation and pEV biogenesis in COVID-19.

Thus, determination of plasma pEV levels provides an opportunity for

a surrogatemarker for excessive coagulation and inflammation. Impor-

tant challenges to overcome are the clear identification of circulating

EVs and their physical separation into distinct populations to assign

specific functions to individual EV-populations and to define their role

in COVID-19. In summary, these observations indicate directions for

future studies of EV involvement in COVID-19.
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