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Abstract: The primary functions of the nuclear envelope are to isolate the nucleoplasm and its
contents from the cytoplasm as well as maintain the spatial and structural integrity of the nucleus.
The nuclear envelope also plays a role in the transfer of various molecules and signals to and from
the nucleus. To reach the nucleus, an extracellular signal must be transmitted across three biological
membranes: the plasma membrane, as well as the inner and outer nuclear membranes. While signal
transduction across the plasma membrane is well characterized, signal transduction across the
nuclear envelope, which is essential for cellular functions such as transcriptional regulation and cell
cycle progression, remains poorly understood. As a physical entity, the nuclear envelope, which
contains more than 100 proteins, functions as a binding scaffold for both the cytoskeleton and the
nucleoskeleton, and acts in mechanotransduction by relaying extracellular signals to the nucleus.
Recent results show that the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, which is a
conserved molecular bridge that spans the nuclear envelope and connects the nucleoskeleton and
cytoskeleton, is also capable of transmitting information bidirectionally between the nucleus and the
cytoplasm. This short review discusses bidirectional signal transduction across the nuclear envelope,
with a particular focus on mechanotransduction.
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1. Introduction

The cytoskeleton physically connects the plasma membrane with the nucleus; therefore, the
nucleus responds to mechanical stimuli originating from outside of the cell after its propagation
though the cytoskeleton. Integrins are receptors for extracellular matrix proteins and assemble into
large macromolecular complexes known as focal adhesions (FAs), which connect the extracellular
matrix to intracellular actin bundles [1]. An association between integrins, the cytoskeleton, and the
nucleus was reported more than 20 years ago [2]. Integrins also act as mechanosensors in the plasma
membrane and are critical for the organization of multiple nuclear components, such as chromatin and
nucleoli [3–5]. Investigation of the interconnected integrin–cytoskeleton–nucleus mechanotransduction
pathway has largely focused on the outside-in signals that initiate at the plasma membrane and are
transferred to the nucleus (Figure 1, inside-out signaling). However, recent data show that the nucleus
also plays a role as an information submission source (Figure 1, inside-out signaling), which is critical
for the cells to sense and respond to the mechanical properties of their environment [6–8].
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protein) [9–15]. SUN proteins interact with lamins and chromatin in the nucleus, whereas nesprins 

associate with the various elements of the cytoskeleton in the cytoplasm [16–18]. Thus, the LINC 
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Figure 1. A model of Linker of Nucleoskeleton and Cytoskeleton (LINC) complex-mediated inside-out
and outside-in signaling pathways. An enormous number of signaling pathways are integrated
within cells. Outside-in signaling pathways, which originate within the cytoplasm or extracellular
environment and terminate within the nucleus, can be roughly categorized into two groups. In the first
pathway, mechanical stimuli are directly transferred to the nucleus via the LINC complex. The second
pathway utilizes transcription factors such as Yes-associated protein (YAP) and megakaryoblastic
leukemia 1 (MKL1) that shuttle between the cytoplasm and the nucleus through the nuclear pore
complex (NPC). More importantly, the nucleus also plays a role as an information submission source.
Inside-out signaling results in the transfer of signals from the nucleoplasm to the cytoplasm across the
nuclear envelope (NE). SUN domain: Sad1/UNC-84.

The nucleus is mechanically integrated with the cytoskeleton via the Linker of Nucleoskeleton and
Cytoskeleton (LINC) complexes, which are evolutionarily conserved nuclear envelope (NE)-spanning
molecular bridges. The LINC complexes are comprised of the Sad1/UNC-84 (SUN) domain-containing
proteins located on the inner nuclear membrane and the Klarischt/ANC-1/SYNE homology (KASH)
domain-containing proteins, known as nuclear envelope spectrin repeat protein (nesprins), which are
found on the outer nuclear membrane. Mammals encode five SUN proteins (SUN1~5) and six KASH
proteins (nesprins-1–4, KASH5, and lymphocyte-restricted membrane protein) [9–15]. SUN proteins
interact with lamins and chromatin in the nucleus, whereas nesprins associate with the various
elements of the cytoskeleton in the cytoplasm [16–18]. Thus, the LINC complex has diverse functions,
including nuclear migration [19], maintenance of the proper nuclear morphology and positioning
of the nucleus [20,21], maintenance of the centrosome–nucleus connection via direct or indirect
interaction [22–26], DNA repair [27,28], cell migration [29–31], and movement of chromosomes within
the nucleus during meiosis [32]. In addition, the LINC complex transmits various signals from the cell
surface to the nucleus [33] as well as from the nucleus to the cytoplasm [6–8]. This review summarizes
the current understanding of bidirectional signal transduction across the NE, with an emphasis on the
LINC complex and mechanical signaling from extracellular environment via FAs.

2. Outside-in Signaling across the NE

Outside-in signaling pathways across the NE, that originate within the cytoplasm or extracellular
environment and terminate within the nucleus, can be roughly categorized into two groups. In the
first pathway, mechanical stimuli are directly transferred to the nucleus via the LINC complex.
The second pathway utilizes biochemical molecules that shuttle between the cytoplasm and the
nucleus through the nuclear pore complex (NPC). In this section, these two pathways which mediate
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with mechanotransduction from the extracellular environment and the cytoplasm to the nucleus will
be discussed. Lamins are intermediate filament proteins and form the nuclear lamina scaffold, which
localizes adjacent to the inner nuclear membrane. Lamin A and lamin C (Lamin A/C) participates in
various cellular responses to mechanical stimuli, including regulation of transcription, modulation
of nuclear and cellular stiffness, and regulation of nuclear morphology [34]. Because this review
focuses on the transducers of the LINC complex, for information about functions of lamin A/C
in mechanotransduction, please refer to an excellent review that has been recently published by
Osmanagic-Myers et al. [35].

2.1. Responses of the Nucleus Induced by Mechanical Stimuli

When mechanical force is applied to the extracellular domain of integrins present on the plasma
membrane, alterations of the nuclear morphology are induced, indicating that mechanical stress can
be transmitted from the extracellular matrix (ECM) to the nucleus [2]. Other mechanical stimuli, such
as stretch and compression, impact nuclear shape and the organization of nucleoplasmic structures,
such as chromatin and nucleoli [36–41]. Here, actin filaments and intermediate filaments are involved
in the transfer of mechanical stimuli to the nucleus. Poh et al. showed that when a force of several
nanonewtons was applied to cell surface integrins using magnetic beads coated with Arg-Gly-Asp
(RGD) peptide, which is an established integrin ligand, it induced rapid (less than 1 s) dissociation
of two major structural proteins, coilin and SMN, from the Cajal body [41]. Disruption of the actin
cytoskeleton or depletion of lamin A/C abolishes this response, suggesting the presence of an integral
signaling pathway between integrins and nuclear structures [41]. The application of mechanical stress
to the integrins within the plasma membrane triggers an increase in cellular stiffness [42,43]. A similar
stiffening response was recently demonstrated by the Burridge group to occur in isolated HeLa cell
nuclei that were exposed to mechanical forces applied via magnetic tweezers that pulled on magnetic
beads coated with anti-nesprin-1 antibodies, which were bound to the outer nuclear membrane [44].

In addition to being able to sense and respond to externally applied mechanical stimuli,
cells themselves exert mechanical forces upon their environment via the transmission of
actomyosin-generated tension through cell–cell and cell–substrate adhesions. Recently, two research
groups showed that the actin filament-severing proteins actin depolymerizing factor (ADF) and cofilin
were essential for normal nuclear structure in tissues and in cultured cells. ADF and cofilin-1, which
are products of separate genes, negatively regulate non-muscle myosin-II activity through competitive
inhibition for binding to F-actin [45,46]. Depletion of both ADF and cofilin-1 causes various nuclear
defects including aberrant nuclear morphology, discontinuities in the nuclear lamina, and a reduction
of heterochromatin at the nuclear periphery (detected by the accumulation of H3K27me3, H4K20me3
and topo3). Depletion of nesprin-2 giant (nesprin-2G) or lamin A/C using small interfering RNA
prevents nuclear abnormalities from occurring in cells simultaneously depleted of cofilin-1 and ADF
showing that cytoplasmic actomyosin-generated mechanical stimuli are transferred to the nucleus and
regulate nuclear morphology.

In addition to its impact on nuclear architecture, mechanical stress influences the posttranslational
modification of histones (e.g., acetylation and methylation) as well as the dynamics and intranuclear
localization of heterochromatin [47]. The genome is exposed to mechanical stresses originating from
the cytoplasm, which can be transmitted either via the LINC complex or through the contact sites
between the NE and chromatin. These stresses affect the localization of histone-modifying enzymes
that indirectly modulate chromatin organization via epigenetic modifications. For example, inhibition
of actomyosin contractility induces the nuclear translocation of the histone deacetylase HDAC3,
resulting in a decrease in the levels of histone acetylation [48,49]. Another example of this phenomenon
is that T-cell adhesion through integrin α4/β1 induces the recruitment of the histone methyltransferase
G9a to the NE, resulting in an increase in the level of the histone post-translational modification
H3K9me2/3 [50]. These altered histone modifications can contribute to physical properties of the
nucleus. For instance, nuclear peripheral heterochromatin may enhance the structural robustness
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of the nucleus and strengthen its ability to resist physical stress, such as mechanical forces exerted
during cell migration or in the mechanically active tissues [51,52]. Moreover, altered higher order
chromatin organization induced by changes in histone modification has a significant effect on gene
expression [53] and thus mechanical stress can also regulate gene expression [54]. For information
related to transcriptional regulation by mechanical stimuli, please refer to recent excellent review
written by Uhler and Shivashankar [55].

2.2. Outside-In Signaling via the LINC Complex

Mechanical stretch induces the proliferation of C2C12 myoblast cells, but the disruption of the
LINC complex by overexpression of dominant-negative nesprin or SUN proteins constructs suppresses
this phenomenon [56]. This result indicates that there is a mechanotransduction pathway to the
nucleus through the LINC complex. The perinuclear actin cap covers the apical surface of the nucleus
and regulates nuclear shape in adherent cells [36]. Nesprin-2G and nesprin-3 anchor the perinuclear
actin cap, which is a highly organized array of parallel contractile actin filament bundles that contain
phosphorylated non-muscle myosin II regulatory light chain and the F-actin crosslinker α-actinin, to the
apical surface and lateral sides of the interphase nucleus [57]. The perinuclear actin cap is not equivalent
to the dorsal perinuclear actin cables because of their highly specified components [36]. Wirtz’s group
demonstrated that overexpression of a dominant negative KASH construct or the depletion of the
LINC complex proteins nesprin-2G or nesprin-3 inhibits the assembly of the perinuclear actin cap
and that perinuclear actin cap associated focal adhesions (ACAFAs) differ from conventional FAs
in morphology, size, and spatial distribution [33,36,58,59]. Intriguingly, the perinuclear actin cap
is formed in response to shear stresses 50 orders of magnitude lower and faster than biochemical
stimulation in adherent cells [33]. These data clearly show the existence of an interconnected physical
pathway of the integrin–cytoskeleton–LINC complex, which enables ultrafast mechanotransduction
from the extracellular environment to the nucleus. In addition, transmembrane actin-associated nuclear
(TAN) lines are linear arrays of nesprin–2G/SUN2 LINC complexes, which associate with perinuclear
actin cables on the dorsal surface of nuclei in migrating fibroblasts and myoblasts. Formin homology 2
domain containing 1 (FHOD1), Samp-1, and torsinA are TAN line components [60–63]. TAN lines are
required for rearward nuclear movement during centrosome orientation in migrating fibroblasts and
myoblasts [29,60]. Moreover, Burridge’s group directly applied mechanical stimulus to nesprin-1 on
the surface of isolated nucleus and demonstrated the existence of a mechano-transduction pathway
into the nucleus via the LINC complex [44]. This study also revealed that lamin A/C and its binding
partner, an inner nuclear membrane protein, emerin, participates in local nuclear stiffening, which is
induced by mechanical stimuli. In response to the mechanical pulling of nesprin-1, emerin undergoes
tyrosine phosphorylation by Src. This phosphorylation strengthens the connection between lamin
A/C and the LINC complex, which is important for the expression of mechanosensitive genes and the
assembly of stress fibers [44]. Using fluorescence resonance energy transfer-based tension biosensors,
Arsenovic et al., (2016) demonstrated that nesprin-2G is subject to mechanical tension in adherent
fibroblasts with the highest level of force on the apical and equatorial planes of the nucleus. This tension
was observed to be reduced in fibroblasts obtained from patients with Hutchinson–Gilford progeria
syndrome [64].

2.3. Outside-In Signaling through the NPC

Mechanical stress applied to the cell surface induces alterations in protein conformation and
post-translational modification as we as the assembly of protein complexes. All these processes can
modulate protein localization and activate biochemical signaling pathways [65,66]. Megakaryoblastic
leukemia 1 (MKL1), which is also known as myocardin-related transcription factor A (MRTF-A)
or MAL, is a mechanosensitive transcriptional coactivator of the serum response factor (SRF) [67].
Its localization is regulated via changes in actin polymerization. MKL1 is localized in the cytoplasm by
its interaction with monomeric actin and by its constitutive nuclear export [68–73]. Mechanical
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stimulation induces RhoA-mediated actin polymerization and the dissociation of MKL1 from
monomeric actin, resulting in the accumulation of MKL1 in the nucleus and the up-regulation of
SRF-inducible genes including actin, SRF, and vinculin [68–73]. These proteins regulate cellular motility
and contractility [74]. In addition, emerin is a crucial modulator of actin polymerization and absence
of emerin or its binding partner lamin A/C results in disturbed actin dynamics and impaired MKL1
signaling [75,76]. Moreover, nuclear actin was observed to be more mobile in LMNA−/− cells than in
wild-type controls. The nuclear translocation and downstream signaling of MKL1 is impaired in cells
lacking in lamin A/C, but not in the LINC complex [76]. This is consistent with the suggestion that
lamin A/C, but not the LINC complex, is required for the activation of the mechanosensitive genes
which encode the proteins vinclulin, tailin, and Egr-1 in heart tissue and cultured fibroblasts from
mice [37,77,78].

Recent exciting work demonstrates that mechanical stimuli directly regulate nuclear-cytoplasmic
transport via the NPC [79]. The inner lumen of NPC comprises a disorganized, flexible meshwork of
proteins containing phenylalanine–glycine repeats (FG-Nups), which suppresses protein diffusion [80–82].
Yes-associated protein (YAP) is a mechanosensitive transcriptional regulator that has physiological and
pathological functions [83–85]. The intracellular localization of YAP is regulated by the Hippo signaling
pathway [86] and mechanical stresses such as ECM rigidity and shear stress [87–91]. Mechanical stress
induces the nuclear translocation of YAP in a tailin-, actomyosin-, and LINC complex-dependent,
but Hippo signaling-independent manner. Elosegui-Artola et al. demonstrated that there is a faster
nuclear entry of YAP in cells grown on stiffer substrates. Nuclei in cells grown on stiff substrates
are more flat than those in cells grown on soft substrates, and mechanical stimuli increase NPC
permeability, allowing YAP to more readily enter the nucleus [79]. They also showed that the LINC
complex was required for the increase in the nuclear translocation of YAP observed in cells grown
on stiff substrates. It remains unclear which SUN protein(s) is involved in the regulation of NPC
permeability, while SUN1 but not SUN2 colocalizes with NPC and interacts with components of
NPC [31,92–94]. This mechanism might be generally applicable beyond YAP and further investigation
of the interplay between outside-in signaling through the NPC and outside-in signaling via the LINC
complex is needed.

3. Effects of NE on the Cytosolic Cytoskeleton

Recent evidence suggests that the LINC complex signals not only from the cytoplasm into the
nucleus but also from the nucleus to the cytoplasm. In this section, effects of the LINC complex on the
cytoskeleton and inside-out signaling through the LINC complex are discussed.

3.1. The LINC Complex Affects the Organization of the Cytoskeleton

Disruption of the LINC complex impairs the dynamics and organization of the actin cytoskeleton
and consequently cellular mechanics [29,36,37,58,77,95,96]. For example, expression of dominant
negative nesprin alters the localization of actin and vimentin filaments as well as suppresses the
migration of mouse embryonic fibroblasts [37]. The LINC complex-associated proteins, emerin,
torsinA, and lamim A/C, also influence cytoskeleton dynamics. Expression of phosphoresistant
emerin mutant decreases the number of actin bundles [44], while impaired lamin A/C function alters
actin cytoskeleton around the nucleus when cells are cultured on a rigid substrate [77]. In addition,
outer nuclear membrane-localized emerin associates with non-muscle myosin IIB and organizes
actin flow for nuclear movement and centrosome orientation in migrating fibroblasts, suggesting
a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic
polarity [97]. TorsinA-depleted NIH3T3 fibroblasts displayed impaired retrograde flow of perinuclear
actin cables [63]. Dysfunction of the LINC complex affects not only cytoskeletal organization, but
also cellular adhesion [30,98,99]. Depletion of nesprin-1 in endothelial cells increases the number
of FAs, traction forces and, nuclear height [30]. SUN2 contributes to the mechanical integrity of
intercellular adhesions in mammalian epidermal keratinocytes [98]. Knockdown of the LINC complex
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components nesprin-2 or SUN1 leads to a substantial increase in the prominence of the adhesion
domain at the opposite end of the invadopodia [99]. Moreover, LINC complexes influence microtubule
(MT) organization as well. Gomes group has used the proximity-dependent biotin identification (BioID)
method and revealed that muscle cell specific nesprin-1 isoform, nesprin-1α interacts with several
centrosomal proteins including Akap450, Pcm1, and pericentrin. They also showed that nesprin-1α
regulates MT nucleation [100]. In Drosophila, KASH domain protein Klarsicht regulates MT stability
and integrin localization during collective cell migration [101]. These results indicate a physical role
for the nucleus as anchoring point for cytoplasmic cytoskeletal elements.

3.2. Inside-Out Signaling via the LINC Complex

Recent papers have described several pathways in which the LINC complex signals to the
cytoplasm, though detailed molecular mechanisms have not been well understood. Carroll’s group
showed that SUN2 promotes the assembly of FAs by activating RhoA, while SUN1 antagonizes SUN2
and suppresses RhoA activation and FA assembly [6]. Coirault and her colleagues demonstrated
that muscle precursor cells expressing mutant lamin A/C (LMNA∆K32) or nesprin-1∆KASH had
reduced ability to adapt to the rigidity of their environment. These cells exhibited contractile stress
fiber accumulation, increased number of FAs and higher traction force on soft subtrates, which
mimic physiological muscle stiffness. Inhibition of rho-associated protein kinase (ROCK) or a
ROCK-dependent actin remodeling regulator, FHOD1, rescued the morphology of mutant cells,
showing that functional integrity of lamin A/C and nesprin-1 is required to modulate activity of
FHOD1 [7]. Chavrier and his colleges have shown that the nucleus-centrosome linkage of nesprin-2
and dynein adaptor Lis1 regulates the trafficking of MT1–MMP, one of matrix metalloproteinase
family members, from the late endosomal/lysosomal storage compartments to the cell surface.
The finding suggests that the LINC complex may also contribute to the persistence of malignancies
and metastasis [8]. However, it has been shown that most of the LINC complex components are
down-regulated in several types of cancer tissues ([102], unpublished data); thus, for the LINC
complex to function during cancer metastasis, a more intricate regulation might exist. Emerin is
present at both inner and outer nuclear membranes where it interacts with lamins and the cytosleketon,
respectively [103]. The Wickström group recently showed that mechanical forces drive the enrichment
of emerin in the outer nuclear membrane of epidermal stem cells, which is accompanied by the
recruitment of muscle myosin IIA (NMIIA) to and the polymerization of actin at the nuclear surface.
As a result, there is a reduction in the level of actin within the nucleus, resulting in the attenuation
of transcription. They also show that the corresponding decrease of emerin at the inner nuclear
membrane leads to a switch from H3K9me2/3 on constitutive heterochromatin to H3K27me3 as well
as impaired anchorage of heterochromatin to the nuclear periphery [104]. Therefore, the NE may
function as an integrator of cytoskeletal and nuclear functions.

4. Concluding Remarks

Recent data suggest that, like the cell–ECM boundary, the NE is a dynamic stimuli-sensitive
interface between the cytoplasm and chromatin [105]. The LINC complex, which is localized
at the NE, acts in a variety of signaling pathways between the cytoplasm and the nucleus.
Currently the mechanisms responsible for regulating the assembly of functional LINC complexes
remain poorly defined, although several lines of evidence identify several candidates for LINC
complex regulators including intraluminal calcium, the redox environment of the NE, torsinA, and
ubiquitinylation [63,106–108]. Finally, an analogy between FAs and LINC complexes can be drawn.
Similar to the mechanical stimuli-dependent assembly of FAs, mechanical stresses applied to the
nucleus via the cytoskeleton recruit the LINC complex and lamin A/C to specific indentation sites
under stress fibers that exert force on the NE [109]. In addition, heterochromatin-related histone
modifications are interestingly upregulated prior to and during cell migration [52,110,111]. Thus, in a
similar manner to integrin-mediated inside-out signaling, it can be hypothesized that the chromatin
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signature might regulate the functional assembly of LINC complexes and their ability to transduce
signals across the NE.
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Abbreviations

NE nuclear envelope
LINC complex Linker of Nucleoskeleton and Cytoskeleton
lamin A/C Lamin A and lamin C
MT microtubule
SUN domain Sad1/UNC-84
KASH Klarischt/ANC-1/SYNE
nesprin nuclear envelope spectrin repeat protein
MT microtubule
FHOD1 formin homology 2 domain containing 1
FA focal adhesion
NPC nuclear pore complex
ADF depolymerizing factor
Nesprin-2G nesprin-2 giant
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