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Abstract: Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria
to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine
conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice,
many research studies have highlighted the importance of PAs in growth, development, and other
physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological
processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the
present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent
advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory
genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the
recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus
physiology including somatic embryogenesis; root system formation, morphology, and architecture;
plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events;
fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence
and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism
and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance
to biotic and abiotic stresses and provide bases for further research into potential applications.

Keywords: citrus; polyamines; putrescine; spermidine; spermine; embryogenesis; root system
architecture; shoot system architecture; flowering and inflorescence

1. Introduction

Polyamines (PAs) are low molecular weight, small, linear/aliphatic and occasionally branched
polycationic nitrogen compounds containing unsaturated hydrocarbon with two or more primary
amino groups [1–6]. At physiological pH, the characteristic feature of PAs structure is that they
are positively charged at a defined distance and have methylene groups harbored within them.
These methylene groups are known to participate in hydrophobic interactions, thereby influencing PA
activity as a whole [7]. In addition, due to the cationic nature of PAs, they can bind to negatively-charged
macromolecules, such as nucleic acids (DNA and RNA), acidic phospholipids, and numerous types of
proteins [3] to stabilize their structure, particularly under stress conditions.

The history of PAs is about a hundred and thirty years older than that of proteinogenic amino acids.
Asparagine was the first isolated amino acid in 1806 [8], whereas, the first polyamine was discovered in
1678 and was subsequently named “spermine” [9]. In that year, Antonie van Leeuwenhoek described
the presence of crystalline substances in human semen after standing for several days, but not observed
in fresh samples [10]. Two centuries later, in 1878, these crystalline substances were identified as
an organic base [11] and named as “spermine” in 1888 [12]. In 1898, the role of spermine in inhibiting
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bacterial growth and curing various diseases was reported [13]. The structure of polyamines was not
known until 1924 when Rosenheim synthesized putrescine (C4H12N2), spermine (C10H26N4), and the
related base spermidine (C7H19N3) for the first time [14]. In 1952, the occurrence of the di-amine
putrescine was reported in potassium-deficient barley plants [15]. To our knowledge, the putrescine
conjugate feruloyl-putrescine (N-(4-aminobutyl)-4-hydroxy-3-methoxy-cinnamamide; originally called
subaphylline) was the first PAs compound isolated and identified from grapefruit (Citrus × paradisi)
leaves and juice [16]. In the same year (1965), feruloyl-putrescine was also reported in some varieties
of sweet orange (including Hamlin, Navel, Pineapple, and Valencia) and grapefruit (including Duncan,
Marsh, and Ruby red), but not in Dancy tangerine, lemons, limes, and ‘Cleopatra’ mandarin [16].

PAs are ubiquitous biogenic amines that are found in all living organisms from bacteria to
Archaea, and Eukaryotes including plants and animals [3,5,17,18]. For instance, PAs and their
biosynthetic genes were reported in phytopathogenic fungi [19,20] such as the Ascomycota fungi
Sclerotinia sclerotiorum, Fusarium spp., Nectria hematococa, Mycosphaerella spp. and Magnaporthe
grisea and the Basidiomycota fungi Puccinia graminis tritici, P. triticina, and Ustilago maydis [19,20].
In addition, PAs and their biosynthetic genes were reported in phytopathogenic fungi-related
Chromista organisms (formally known as oomycetes or stramenopiles) such as Phytophthora infestans,
P. ramorum, and P. sojae [19]. Moreover, PAs were reported in bacteria from families Aeromonadaceae,
Halomonadaceae, Pasteurellaceae, Pseudomonadaceae, and Vibrionaceae, and other related genera of
the gamma subclass of the Proteobacteria [21–24], although some bacterial genera do not synthesize
them [25]. Additionally, PAs were found in bacterial viruses (bacteriophage) [26,27].

In higher plants, putrescine (di-amine), spermidine (tri-amine), and spermine (tetra-amine)
(Figure 1) are the major ubiquitously found PAs [28–30]. However, other PAs such as the
di-amines 1,3-diaminopropane (C3H10N2) and cadaverine (C5H14N2) (Figure 1A); the tri-amines
sym-norspermidine (C6H17N3) and sym-homospermidine (C8H21N3) (Figure 1B); and the tetra-amines
sym-norspermine (C9H24N4) and thermospermine (C10H26N4) (Figure 1C) and longer-chain or branched
polyamines are less widely distributed [30].

The genus Citrus (family Rutaceae) is considered one of the most widely grown fruit
crops worldwide [31]. Citrus spp. can grow within 35–40 ◦ north and south latitude [31,32].
Therefore, they consider being native to the tropical and subtropical areas [31,32].
Previously, several metabolic signaling pathways were reported to be involved in physiological
functions in citrus plants, including amino acids, organic acids, fatty acids, phytohormones, polyamines,
and other secondary metabolites.

In citrus, PAs play an important role(s) in plant growth, development, and other physiological
processes. These physiological processes include embryogenesis [33,34]; root system formation,
morphology, and architecture [35–42]; plant growth and shoot system architecture [35,37,43–47];
inflorescence, flowering and flowering-associated events [48–54]; fruit set, development,
and quality [55,56]; stomatal closure and gas-exchange [39,47,57–59]; and photosynthesis and
chlorophyll fluorescence [37,40,45,47,60–62]. However, the molecular mechanisms behind these roles
remain ambiguous. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus
plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic
genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism.
In addition, we are going to discuss the recent metabolic, genetic, and molecular evidence illustrating
the roles of PAs in citrus physiology including embryogenesis, root and shoot systems architecture,
flowering, fruit set, gas-exchange, and photosynthesis.
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Figure 1. Chemical structures of the polyamines (PAs) and other nitrogen-containing
molecules discussed throughout this review. (A) Diamines, (B) Tri-amines, (C) Tetra-amines,
(D) Non-proteinogenic amino acids, and (E) Polyamine-containing molecules. Molecular weight/molar
mass (g.mol−1) is mentioned between parentheses beside the chemical formula of each compound.

2. Biosynthesis of Polyamines (PAs) in Citrus Plants

The biosynthetic pathway of PAs has been extensively studied in all the kingdoms of living
organisms, from Bacteria to Archaea and Eukaryotes [29,63–70]. However, our knowledge about
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this pathway and the genes involved in citrus is still limited. In general, PAs are synthesized in
citrus plants from the proteinogenic amino acid l-Arginine through two different arginine-dependent
routes. The first route is similar to that of animals and fungi, where l-arginine is converted by
mitochondrial arginase (EC 3.5.3.1) to the non-proteinogenic amino acid ornithine, which is then
decarboxylated by ornithine decarboxylase (ODC; EC 4.1.1.17) to form the diamine putrescine (Figure 2).
Moreover, citrus plants could use an additional route involving arginine decarboxylation by arginine
decarboxylase (ADC; EC 4.1.1.19) to produce agmatine, which catalyze to N-carbamoylputrescine
(N-CP) then to putrescine by agmatine iminohydrolase (AIH, also known as agmatine deiminase;
EC 3.5.3.12) and N-carbamoylputrescine amidohydrolase (NPL1, also known as N-carbamoylputrescine
amidase (CPA); EC 3.5.1.53), respectively. In addition, l-arginine and agmatine could contribute directly
toward the production of putrescine via the catalytic actions of ADC and agmatine ureohydrolase
(AUH, also known as agmatinase; EC 3.5.3.11), respectively (Figure 2).

Interestingly, the enzymatic activities and transcriptomic analyses of both ODC and ADC
(the rate-limiting enzymes in PAs biosynthesis) were reported previously from several citrus varieties
such as ‘Murcott’ mandarin (Citrus reticulata) [71], Valencia sweet orange (C. sinensis) [34], and C.
clementina [56]. Additionally, phylogenetic comparison of citrus loci of PAs biosynthetic genes with those
from Arabidopsis thaliana showed that ADC from citrus was presented as one locus in comparison with
two loci from A. thaliana [72]. In contrast, ODC, which is not present in A. thaliana [73], was identified
in Citrus and presented a similar number of loci (only one locus) as those described in Oryza sativa,
and Glycine max [72].

The presence of the active forms of both ADC and ODC was previously reported in different
citrus species under biotic and abiotic stressors [46,72,74,75]. Taken together, the presence of both
enzymes indicates that citrus could have two alternative routes to generate putrescine from l-arginine.
These two routes could be activated differently upon different stressors. However, further studies are
required to identify and explain the physiological function(s) of each route.

Once putrescine is produced, it is then converted into the tri-amine spermidine by
spermidine synthase (SPDS; EC 2.5.1.16), with the addition of an aminopropyl moiety donated
by decarboxylated S-adenosylmethionine (dcSAM). dcSAM is synthesized from the proteinogenic
amino acid l-methionine via two sequential reactions that catalyze l-methionine to S-adenosyl
methionine (SAM) by S-adenosyl-methionine synthase (SAMS, also known as methionine
adenosyltransferase; EC 2.5.1.6), then converted to dcSAM by S-adenosyl-methionine decarboxylase
(AMD1, also known as SAMDC; EC 4.1.1.50) (Figure 2). Moreover, putrescine could be converted
to spermidine via carboxyspermidine, as an intermediate, by carboxynorspermidine dehydrogenase
(CANSDH, also known as carboxynorspermidine/carboxyspermidine synthase; EC 1.5.1.43) and
carboxynorspermidine decarboxylase (CANSDC; EC 4.1.1.96), respectively, with the addition of an
amide group donated by L-aspartate-4-semialdehyde from glycine metabolism pathway (Figure 2).
Both putrescine and spermidine support the production of the tri-amine homospermidine using
homospermidine synthase (HSS; EC 2.5.1.44). Finally, spermidine is then converted into the tetra-amines
spermine or thermospermine by the incorporation of another aminopropyl group (also from dcSAM)
using spermine synthase (SPMS; EC 2.5.1.22) and thermospermine synthase (TSS, encoded by a gene
named ACAULIS5 (ACL5); EC 2.5.1.79), respectively (Figure 2). Originally, it was thought that two
genes (SPMS and ACL5) both encode for SPMS enzyme in A. thaliana [76,77]. However, ACL5, from
Thalassiosira pseudonana and A. thaliana, was reported to catalyze the conversion of spermidine to
thermospermine but not to spermine [78]. Intriguingly, ACL5 genes have been expressed during
parthenocarpic fruit development in C. clementina [56].
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Figure 2. Key steps in the polyamines (PAs) biosynthesis pathway and its
associated genes in citrus. Genes are mentioned in italic. Abbreviations:
ACC: 1-Aminocyclopropane-1-carboxylic acid, ACCO: 1-Aminocyclopropane-1-carboxylic acid oxidase,
ACS: 1-Aminocyclopropane-1-carboxylic acid synthase, AIH: Agmatine deiminase/iminohydrolase,
AUH: Agmatine ureohydrolase (also known as agmatinase), ADC: Arginine decarboxylase,
ASL: Argininosuccinate lyase (also known as argininosuccinase), ASS: Argininosuccinate
synthase, CANSDC: Carboxynorspermidine/carboxyspermidine decarboxylase, CANSDH:
Carboxynorspermidine/carboxyspermidine dehydrogenase (also known as Carboxynorspermidine/

carboxyspermidine synthase), dcSAM: decarboxylated S-adenosylmethionine, DAO: Diamine
oxidase, DABA-DC: Diaminobutyrate decarboxylase (also known as L-2,4-diaminobutyrate
decarboxylase), DABA-AT: Diaminobutyrate-2-oxoglutarate transaminase (also known as
L-2,4-diaminobutyrate:2-Oxoglutarate 4-aminotransferase), HSS: Homospermidine synthase, LDC:
Lysine decarboxylase, N-CP: N-carbamoylputrescine, NPL1: N-Carbamoylputrescine amidohydrolase
(also known as N-carbamoylputrescine amidase (CPA)), NSS: Norspermine synthase (also known as
long-chain polyamine synthase), ODC: Ornithine decarboxylase, OTC: Ornithine transcarbamylase,
PAO: Polyamine oxidase, SAM: S-Adenosyl methionine, AMD1: S-Adenosyl-methionine decarboxylase
(also known as SAMDC), SAMS: S-Adenosyl-methionine synthase, SPDS: Spermidine synthase,
SPMS: Spermine synthase, and TSS: Thermospermine synthase encoded by ACAULIS5 (ACL5).

Noteworthy, phylogenetic analysis showed that SPDS from citrus is presented as one locus only
in comparison with two loci from A. thaliana [72]. On the other hand, AMD1, SPMS, TSS (also known
as ACL5), NLP1, and AIH enzymes were identified in Citrus and presented a similar number of
loci as those described in A. thaliana [72]. Sweet orange (C. sinensis) constitutively overexpressing
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SPDS1 from apple resulted in significantly higher endogenous polyamine content, particularly the free
spermine [79]. In addition, the flux of radioactivity from l-[3,4-14C] methionine into [14C]spermidine
was greatly induced when the enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS (EC
4.4.1.14), responsible for the conversion of SAM to ACC) was inhibited by aminoethoxyvinylglycine
(AVG) in aged peel discs of orange (C. sinensis) fruit [80]. While AVG reduced the flux of radioactivity
to ACC, it increased the label in SAM [80]. The accumulated SAM could contribute directly to increase
the dcSAM levels, which subsequently enhance the spermidine and spermine synthesis. Furthermore,
AMD1 (also known as CsSAMDC) was previously cloned and biochemically identified from the navel
orange (C. sinensis). Taken together, this provides strong evidence for the physiological link between
dcSAM, produced by the catalytic actions of AMD1 (also known as CsSAMDC), and the biosynthesis
of tri- and tetra-amines.

Furthermore, some other PAs could be derived from other proteinogenic amino acids rather than
l-arginine. For instance, the diamine cadaverine is synthesized from l-lysine by the catalytic actions
of lysine decarboxylase (LDC; EC 4.1.1.18) (Figure 2). High levels of cadaverine were recorded in
immature seeds of citrus species [81–84]. For example, cadaverine covalently bound in the perchloric
acid-insoluble fraction of flesh and peel of Brasiliano N.L. 92 (C. sinensis) unripe and ripe fruits [82].
Recently, the free, soluble-conjugated, and insoluble-bound forms of cadaverine were reported in
Kinnow mandarin (C. nobilis × C. deliciosa) plants grafted on diploid (2x) and double-diploid (4x)
rootstocks of P. trifoliata, C. reshni, and C. limonia [84]. Cadaverine and its biosynthetic gene (LDC)
may be used as biochemical markers of potassium (K) deficiency [83], as well as playing a key role in
chromium-tolerance in Kinnow mandarin [84]. However, to our knowledge, the LDC of citrus is not
yet cloned.

Glycine and l-aspartate metabolism pathways could be involved in the biosynthesis of
PAs, particularly the tri-amine norspermidine. Briefly, both glycine and l-aspartate metabolism
pathways input to produce L-aspartate-4-semialdehyde which donates a carboxy-aminopropyl
group to propane-1,3-diamine to form carboxynorspermidine by CANSDH, then Norspermidine and
Norspermine by CANSDC and Norspermine synthase (NSS, also known as long-chain polyamine
synthase; EC 2.5.1.126), respectively (Figure 2). Norspermidine could be produced from L-aspartate-4
-semialdehyde via the production of L-2,4-diaminobutyrate by L-2,4-diaminobutyrate:2-oxoglutarate
4-aminotransferase (DABA-AT, also known as diaminobutyrate-2-oxoglutarate transaminase; EC
2.6.1.76), then the conversion to 1,3-diaminopropane by diaminobutyrate decarboxylase (DABA-DC,
also known as L-2,4-diaminobutyrate decarboxylase; EC 4.1.1.86).

3. Physiological Roles of PAs in Citrus

During the last two decades, multitudinous studies have highlighted the regulatory roles of PAs in
different physiological processes of plant growth and development (for details see reviews by [85–92].
Most, if not all, of these studies demonstrated that PAs have many similarities with the five classic
groups of phytohormones [93,94]. Therefore, PAs have been proposed recently as a new class of plant
growth regulators (PGRs) [94,95]. However, plant physiologists have not yet given PAs the status
of phytohormones unequivocally, perhaps because PAs differ from phytohormones in two respects;
(I) the concentration of PAs in plant tissue is much higher compared to phytohormones (mM vs µM);
and (II) in contrast with most phytohormones, PAs are poorly translocated.

PAs play vital multi-regulatory roles in most, if not all, growth- and development-related
processes in citrus plants. However, our knowledge about these roles is still limited, and in fact,
many roles have not yet been discovered. These processes including somatic embryogenesis [33,34,96],
seed germination [97], plant growth (including biomass production, plant height, fresh and dry
weight, and number of leaves/plant) [35,36,44,45,47], root morphogenesis and architecture [35–42],
photosynthesis and photosynthetic pigments [35,37,45,60], and reproductive development during
flowering [49–51,88] and fruit set [55,71,88,98]. In the next paragraphs, we will discuss the
multi-regulatory roles of PAs in citrus plants.
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4. Role of PAs in Somatic Embryogenesis of Citrus Plants

Somatic embryogenesis is a complex multi-stage process to regenerate new plants in vitro through
the tissue culture technique. During the somatic embryogenesis, differentiated somatic cells are
used to develop cellular structures similar to zygotic embryos, subsequently generating whole plant
bodies. Somatic embryogenesis involves several morphological, physiological, transcriptional, and
biochemical changes [99,100]. In vitro, somatic embryogenesis, and plant regeneration, in general,
are controlled by exogenous supplementation of plant hormones [101]. Auxin and cytokinin are the
main phytohormones involved in this process. The balance between auxin and cytokinin regulates the
developmental fate of regenerating plant organs [101].

Although the role of auxin and/or cytokinin in somatic embryogenesis in citrus was intensively
studied previously [102–108], their roles are still controversial. Some scientists suggest that auxins
and their synthetic analogs (such as indole-3-acetic acid (IAA), α-naphthalene acetic acid (α-NAA),
and 2,4-dichlorophenoxyacetic acid (2,4-D)) strongly inhibit the somatic embryogenesis [103,105] and
somatic embryogenesis could be enhanced by lowering the auxin status and using the inhibitors of
auxin synthesis [103,104]. On the contrary, others believe that increasing the level of auxins such as 2,4-D
and NAA in tissue culture media was effective in callus induction in somatic embryogenesis [107,108].

In contrast with the controversial role of auxins, evidence suggests that PAs are positively
associated with somatic embryogenesis in citrus [33,34,96], although the exact mechanisms through
which they exert an effect have not yet been fully elucidated. Liu et al. (2005) analyzed the changes
in polyamine levels during somatic embryogenesis using a long-term (8 years) sub-cultured calli
of C. sinensis cv. Valencia. Their findings showed that endogenous PAs content of embryogenic
calli was significantly higher than those in non-embryogenic calli, and the embryogenetic capability
was positively correlated to the endogenous levels of PAs [33]. Furthermore, putrescine reached
its highest level at an early stage of differentiation, while spermidine and spermine increased and
reached their peak at the globular embryo stage and at a later stage of globular embryo development,
respectively [33].

In addition, Wu et al. (2009) noticed that culturing the embryogenic callus of C. sinensis on
the embryo-inducing medium (EIM) containing glycerol produced a large number of embryos,
which were positively correlated with the endogenous levels of PAs (spermidine and spermine)
during the first 20 days of culture, coincident with abundant somatic embryogenesis [34]. Moreover,
the expression levels of the four key genes involved in PAs biosynthesis (CsADC, CsODC, CsSPDS,
and CsSPMS) were higher in cultures on EIM, and that their transcriptional levels were increased
with the developmental stages of the embryos [34]. Likewise, the induction in CsADC activity [33]
and CsSPDS gene expression [96] were positively correlated to the endogenous levels of PAs during
somatic embryogenesis in citrus plants. Similar results were found in other plant species such as Pinus
radiata [109], Panax ginseng [110], and Picea rubens [111]. Additionally, overexpression of polyamine
oxidase 4 of citrus (CsPAO4; a key gene in PAs catabolism that uses both spermidine and spermine
as substrates for terminal catabolism) in transgenic lines of Nicotiana tabacum displayed higher PAO
activity, lower spermidine, and spermine levels, and down-regulation of late embryogenesis abundant
protein gene (NtLEA5) compared with wild-type tobacco plants [112].

Moreover, the addition of α-difluoromethylornithine (DFMO; an inhibitor of PAs biosynthesis) to
the EIM inhibited the somatic embryogenesis remarkably, concurrent with a significant reduction of
endogenous PAs levels [34]. However, exogenous supplementation of putrescine with [34] or without
DFMO [33] enhanced the embryogenesis frequency and increased the endogenous PAs levels [33,34].
All of these, collectively, demonstrate that PAs play a key role in the regulation of somatic embryogenesis
in citrus plants. The regulatory role of PAs in somatic embryogenesis could be due to the interactions
between PAs and nitric oxide (NO). Previous studies showed that exogenous supplementation of PAs
to the culture media of several plant species such as Pinus taeda (Family: Pinaceae), Ocotea catharinensis
(Family: Lauraceae), and Araucaria angustifolia (Family: Araucariaceae), altered the endogenous levels
of NO in somatic embryos [113–116], which support our suggestion that interactions between PAs
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and NO might play a key role in somatic embryogenesis (for more details see the review of [117].
Another reason behind the regulatory role of PAs in somatic embryogenesis could be due to the
suggestion that PAs act as growth regulators [94,95,118,119] that function as secondary messengers for
phytohormones, particularly auxins, within the plant cells [120,121].

5. Role of PAs in the Root System Architecture of Citrus Plants

Plant roots play a vital role in the uptake of nutrients and water, anchoring and mechanical
support of the plant, storage functions, and interaction with soil microbial flora and abiotic factors [122].
The root system architecture is a key determinant of nutrient- and water-use efficiency in plants. Root
system architecture and development are controlled by phytohormonal, metabolic, and environmental
cues that might act on genetically controlled developmental processes. From a metabolic point of view,
root architecture and development involve not only the five classic phytohormone groups but also
other PGRs, such as PAs [87].

In citrus, several studies have outlined the role of PAs in root formation, morphology,
and architecture [35–42] (Figure 3). In general, modifications of the endogenous levels of PAs
by chemical inhibitors [36,39], by mutation or gene manipulation [74,112], or by exogenous
supplementation [35–37,40,41] can directly affect the root morphogenesis, development, and subsequent
architecture. The exogenous supplementation of PAs increased root length, root projected surface
area, root volume and root tip number in Canton lemon (C. limonia) [35,40], C. tangerine seedlings [41],
and trifoliate orange (P. trifoliata) seedlings [37]. PAs did not improve the root length of all
diameters, but only the diameters below 0.4 mm (more precisely, diameters 0.2-0.4 mm) [35].
Nevertheless, PAs treatment did not affect the root average diameter [37], but sometimes it was
decreased in PAs-treated plants [35,40]. The reduction in the average root diameter might be due to
the increase in fine roots (%) and the decrease in coarse roots [40].Plants 2020, 9, x FOR PEER REVIEW 9 of 28 
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Likewise, the addition of PAs to a medium containing Murashige and Skoog salts significantly
improved the root formation and growth of two sweet orange cultivars (C. sinensis ‘Pineapple’
and ‘Pêra’) in a concentration-based manner [36]. Furthermore, PAs supplementation increased
the numbers of first, second, and third-order lateral roots in PAs-treated plants [35,37] indicating
that PAs regulate the root system architecture via controlling the formation and development of
lateral root primordia. These effects may be associated with the well-known role of PAs in the
regulation of cell division and differentiation in the root apex, and during lateral and adventitious
root formation [87]. Likewise, PAs supplementation significantly decreased the available phosphorus
content of rhizosphere, while it notably induced phosphorus level in the roots of treated plants [41],
which concluded that exogenous PAs could stimulate root morphology, via controlling root phosphorus
level, which could result in enhanced growth performance.

Moreover, the application of DFMO significantly inhibited root development (including total
length, total projected area, total surface area, and total volume) of P. trifoliata seedlings [37] and also
inhibited root formation and growth of C. sinensis [36]. DFMO inhibited the allocation of glucose but
stimulated both the allocation of sucrose to roots and guaiacol peroxidase (G-POD; negatively related
to root development) activity in roots [37]. Interestingly, the negative effects of DFMO on citrus roots
were reversed completely, or at least partially, by the application of putrescine to the DFMO-treated
plants [36,37]. Together, these findings indicated that carbohydrate allocation might be associated
with endogenous PAs regulation of root development in citrus seedlings. Furthermore, AVG and
AgNO3 inhibited in vitro rooting in sweet orange (C. sinensis), indicating that the ethylene biosynthesis
pathway was also required for rhizogenesis in citrus [36]. The relationship between the ethylene
biosynthesis pathway and PAs biosynthesis pathway was discussed in the previous section (see the
above section entitled “Biosynthesis of PAs in citrus plants”).

6. Role of PAs in the Plant Growth and Shoot System Architecture of Citrus Plants

Plant architecture could be defined as the three-dimensional organization of the plant body. For the
shoot system (aerial parts), this includes the branching pattern, as well as the size, shape, and position
of leaves and flower organs. The shoot system architecture is controlled by several environmental
factors and endogenous signals such as phytohormones [123–126] as well as growth regulators such as
PAs [89,94,95,118,119,127–129]

In higher plants, the plant architecture and growth of axillary buds are initially controlled by auxins
and cytokinins. Auxins were previously reported as a direct regulator of plant architecture. Auxins are
synthesized in the apical meristems, are translocated basipetally (downward through the phloem),
and suppress axillary bud outgrowth, causing a phenomenon known as apical dominance [123,124,130].
Whereas, cytokinins are synthesized in the root tip meristems, travel acropetally (upward through the
xylem), and promote/stimulate axillary bud outgrowth [123,124]. Therefore, cytokinin functions as
a second signaling molecule that mediates the role of auxin in the regulation of apical dominance [131].
Both auxins and cytokinins interact antagonistically, it has been reported that kind of organogenesis is
controlled by relative concentrations of auxins and cytokinins [123–126].

In addition to auxins and cytokinins, there is accumulating evidence that PAs also play an important
regulatory role in plant growth and shoot system architecture, as they do in other horticultural
crops [132,133]. PAs and/or PA-conjugates have been analyzed with respect to plant growth and shoot
system architecture in intact plants and in in vitro systems. Most previous studies on intact plants
have reported a positive correlation between citrus growth and the appearance of a particular class of
PAs compounds [35,37,43–47].

For example, the exogenous PAs supplementation beneficially affected the seedling growth
of Canton lemon (C. limonia), represented by increased biomass, increased shoot and root fresh
weight to different extents [35]. Likewise, in the presence of the arbuscular mycorrhizal fungus,
Glomus versiforme, the application of putrescine and spermine increased the total dry weight of trifoliate
orange (P. trifoliata) seedlings [44]. Similarly, exogenously applied spermidine by addition to the saline
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Hoagland nutrient solution (HNS) or via weekly sprays enhanced the accumulation of total spermidine
and spermine contents and improved the leaf number of Troyer citrange (P. trifoliata × C. sinensis) [45].
Furthermore, the expression of PAs biosynthetic (ADC, SAMDC, SPDS, and SPMS) and catabolic
(DAO and PAO) genes was significantly up-regulated by PAs [46].

Correspondingly, exogenous application of putrescine significantly increased plant height,
stem diameter, leaf number per plant, and shoot, and total dry weights of trifoliate orange (P. trifoliata)
seedlings compared with the non-treated plants [37]. By contrast, the application of the PAs inhibitor,
DFMO, significantly inhibited these metrics; however, the inhibitory effect was partly or completely
reversed by exogenous putrescine application to the DFMO-treated plants [37]. Furthermore, the foliar
application of 0.5 mM spermidine enhanced growth parameters of Iranian mandarin (C. reticulata × C.
limetta cv. Bakraii), as represented by leaf number, shoot length, total plant dry weight, and total plant
fresh weight [47].

It was suggested that the enhancement of citrus growth might be due to the fact that PAs acts as
a hormonal second-messengers of cell proliferation and differentiation in many processes [37,134],
or regulates the plant sensitivity to auxins/cytokinins ratio [131,135]. In A. thaliana, PA-deficient
mutants were hyposensitive to auxin and hypersensitive to cytokinin [131]. PAs might play a key
regulatory role in citrus morphology and shoot system architecture as well, through controlling the
plant response(s) to the auxin/cytokinin ratio. Therefore, we suggest that the interaction between
PAs and auxin/cytokinin ratio in citrus tissues determines the initiation of shoot buds (Figure 4).
However, the mechanism(s) of how PAs change the sensitivity of citrus plants to auxins and cytokinins
is poorly understood and more investigations should be pursued in this area.Plants 2020, 9, x FOR PEER REVIEW 11 of 28 
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Figure 4. Hypothetical model of the integration of polyamines (PAs) with the major groups of
phytohormones in the regulation of the shoot system architecture of citrus plants. Solid lines with
arrows signify positive reaction, while round-dotted lines with bar-ends indicate negative interaction.
Abbreviations: ABA: Abscisic acid, ACC: 1-Aminocyclopropane-1-carboxylic acid, ADC: Arginine
decarboxylase, CKs: Cytokinins, dcSAM: decarboxylated S-adenosylmethionine, IAA: indole-3-acetic
acid, Put: Putrescine, ROS: Reactive oxygen species, SAM: S-Adenosyl methionine, Spd: Spermidine,
SPDS: Spermidine synthase, Spm: Spermidine, SPMS: Spermine synthase, and T-Spm: thermospermine.
For more details, see the main text.

In addition, the regulatory role of PAs in citrus growth and shoot system architecture could be
modulated by other phytohormones such as abscisic acid (ABA) (Figure 4). Exogenously applied ABA
increased the endogenous content of putrescine and spermine in Populus popularis (drought-tolerant
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genotype) compared with the drought-sensitive poplar genotype [136] and ABA-treated wheat
(Triticum aestivum) [137]. However, the spermidine levels were decreased after ABA treatment [137],
or at least were unaffected [136]. Moreover, the transcript levels of the major PAs biosynthetic genes
(ADC2, SPDS1, and SPMS) were up-regulated in wild type plants of A. thaliana subjected to water
stress; however, these genes were impaired in the ABA-deficient (aba2-3) and ABA-insensitive (abi1-1)
mutants [138]. Likewise, the transcript level and activity of ADC2 were reduced in the knockout
mutant of the NCED3 gene (nc3-2) in A. thaliana [139]. These findings indicated that ABA modulates
PAs metabolism at the transcription level by up-regulating the PAs-biosynthetic genes [138,139].

Additionally, the positive effects of PAs in improving the growth of citrus plants could be due to
the reduction in electrolyte leakage, increasing the relative water content, chlorophyll fluorescence
parameters, photosynthetic pigment concentration [47], as well as reprograming the oxidative and
nitrosative status and enhancing the activities of antioxidant enzymes [46,47].

Moreover, PAs might play a key role in the regulation of plant vasculature. For instance, relatively
high contents of putrescine, spermidine, and spermine were detected in xylem exudates of citrus and
some other species [140]. Furthermore, thermospermine was detected in Arabidopsis wild-type, but not
acl5 mutants [141]. The absence of thermospermine in acl5 mutants caused stem growth imperfection,
which partially rescued by exogenous supplementation of thermospermine [141]. Several genetic
and molecular evidence suggest that thermospermine might play a fundamental role in preventing
maturation and death of the xylem vessel elements [65]. Nevertheless, the role of PAs and their
biosynthetic genes in citrus vasculature is poorly studied and more investigations should be pursued
in this area.

Previously, the ectopic expression of the spermidine synthase gene from apple (MdSPDS1) into
sweet orange (C. sinensis) via Agrobacterium-mediated transformation of embryogenic calluses resulted
in enhanced growth, higher endogenous PAs levels, and reduced canker susceptibility on transgenic
lines compared with wild-type plants [79]. Moreover, it has been shown recently that thermospermine
is involved in growth and gene expression of PAs-associated enzymes in rice seedlings [142].
Likewise, it was reported that both thermospermine synthase (ACL5) and diamine oxidase (DAO) genes
are required for zygotic embryogenesis and vascular development in scots pine (Pinus sylvestris) [143].
Collectively, these findings indicate that thermospermine is critical for proper vascular development
and xylem cell specification. However, the molecular mechanism(s) behind this role remains ambiguous
and it is poorly understood how thermospermine homeostasis controlled in the xylem. A negative
auxin-dependent feedback loop mechanism was reported previously to control the thermospermine
levels in stem xylem tissues when ACAULIS5 (also known as ACL5) was cloned from hybrid aspen
(Populus tremula × P. tremuloides) and black cottonwood (P. trichocarpa) [144]. Briefly, the over-expression
of the ACL5 in Populus resulted in the up-regulation of ACL5 expression and enhanced thermospermine
accumulation, but negatively influenced the accumulation of indole-3-acetic acid (IAA). On the other
hand, exogenous auxin supplementation enhanced ACL5 expression. Taken together, these results
support the suggestion that thermospermine plays a key role in vascular development particularly
and shoot system architecture in general (Figure 4)

7. Role of PAs in the Flowering and Inflorescence of Citrus Plants

The juvenile phase (also known as the vegetative phase) of Citrus species is relatively long,
taking 2-5 years to reach maturity period (also known as reproductive phase) and produce
flowers [145,146]. In the maturity phase, the developed inflorescence may be either leafy or leafless
and may carry multiple flowers or only one of them [145–147]. Citrus flowering is a complex
phenological process and the floral load is affected by the genotype, cultivar, age, and environmental
conditions [145,146]. Citrus species usually overproduce flowers during the blooming season, leading to
a high abscission rate and low fruit set [145]. The coordinated transition from vegetative phase to
flowering, or reproductive phase in general, is controlled by a complex genetic network, several external
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environmental cues (such as photoperiod and temperature, etc.) [145–147], as well as by endogenous
factors such as phytohormones [148] and PAs [92,93,128].

Several previous studies outlined the close connection between nitrogen metabolism in general,
PAs particularly, and the flowering-associated physiological events in citrus plants [48–54]. For instance,
PAs were reported to be involved in the compatible and self-incompatible pollination of citrus [54].
Briefly, the self-pollinated flowers (self-incompatible pollination model) had higher levels of putrescine,
spermidine, and sometimes spermine compared with cross-pollinated pistils in the compatible
pollination model [54]. In addition, flowering and inflorescence could be induced by alterations in the
sink-source relationship of nitrogen metabolism such as PAs. Changes in the PAs levels and some other
nitrogen metabolites during floral development in citrus plants with their corresponding phenological
growth stages on BBCH-scale [149,150] are summarized in Figure 5. Briefly, NH3–NH4

+ content was
higher (more than 4-folds) in Stage I (growth stage 53 of BBCH-scale) of inflorescence emergence of
‘Washington’ navel orange (C. sinensis), then it consistently decreased through all subsequent stages of
flower development until the petal fall at Stage V (growth stage 67 of BBCH-scale) [50,51] (Figure 5).
These findings were consistent with the accumulation of NH3–NH4

+ in the leaves of ‘Washington’
navel orange during the developing floral buds stage, which was associated with a higher number of
flowers after low temperature-induced flowering [48]. Similar results of higher flowering intensity
and NH3–NH4

+ content were found in commercial groves of ‘Frost Lisbon’ lemon trees (C. limon)
subjected to drought-induced flowering [48]. Interestingly, the maximum activity of the l-arginine
de novo biosynthesis pathway was also observed in Stage I (growth stage 53 of BBCH-scale) flowers
(Figure 5) and decreased throughout the flower development stages in the same manner as NH3–NH4

+

content [50,51].
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Figure 5. Schematic overview representation of the metabolic behavior of polyamines (PAs), some other
nitrogen-containing metabolites, and the major PAs-biosynthetic gene, Arginine decarboxylase (ADC),
during the floral development of citrus plants. Flower development stages (53, 55, 59, 61, and 67)
are corresponding to the phenological growth stages on BBCH-scale [149,150]. Yellow bars/triangles
represent the reduction in the metabolite levels or down-regulation in gene expression, while blue
bars/triangles represent the increase in the metabolite levels or up-regulation in gene expression.
For more details, see the main text.
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Likewise, putrescine and spermidine were higher in the apical flowers of inflorescences initiated
in response to eight weeks of low-temperature stress (Stage I flowers) and decreased in parallel with
NH3–NH4

+ and l-arginine as flowers developed through Stage V (petal fall; growth stage 67 of
BBCH-scale), except for spermidine which did not change significantly between Stage IV (growth stage
61 of BBCH-scale) and Stage V (growth stage 67 of BBCH-scale) flowers [49,50]. Studies on the annual
cycle of endogenous PAs of two citrus varieties, 32-year-old ‘Washington’ navel orange (C. sinensis)
grafted on Troyer (C. sinensis × P. trifoliata) and 8-year-old Miyagawa Satsuma (C. unshiu) grafted
on trifoliate orange (P. trifoliata), showed partially similar results, where putrescine content changed
most dramatically during flowering, peaked at full bloom, and decreased rapidly afterward [151].
In contrast, spermine had lower levels in the Stage I flowers, but increased dramatically, reaching its
maximum concentration (approximately 7-folds) during Stage IV (flower opening; growth stage 61 of
BBCH-scale) [49,50]. The changes in the levels of l-arginine, putrescine, spermidine, and spermine
were not due to increased organ weight since the fresh weight followed a different pattern (Figure 5).

Interestingly, the exogenous foliar treatment with low-biuret urea, at the end of minimal stress
treatment that does not usually result in significant flower production (i.e., 4 instead of 8 weeks
of low-temperature treatment or deficit irrigation instead of withholding irrigation, treatment),
increased the endogenous ammonia content, which was correlated with higher number of floral shoots
and flowers per shoot [51,152]. Likewise, foliar application of putrescine (20 mM) and spermidine
(10 mM) significantly increased the number of the total flowers per tree, the number, and proportion
of leafless inflorescences per tree [153]. This induced flowering was positively correlated with the
endogenous levels of spermidine in citrus leaves at the beginning of the induction treatment [52].
Furthermore, the developed apical flowers had higher levels of ammonia and putrescine and exhibited
a higher activity of the de novo arginine biosynthetic pathway [51]. However, all these criteria declined
in parallel as flowers developed through stage V flowers (petal fall).

Taken together, these findings demonstrate that the floral buds depend on parallel changes in
nitrogen metabolism during low temperature-induced flowering and provide strong evidence for
the correlation between NH3-NH4

+ content, PAs and their precursor (l-arginine), and the flower
development in C. sinensis [49,50]. Accordingly, two hypotheses were suggested for nitrogen
metabolism-based flowering induction. The first hypothesis is that the higher ammonia level during
stress resulted in the accumulation of arginine and PAs, which subsequently could induce the cell
division required for bud induction. Alternately, the second hypothesis suggests that these physiological
changes and the subsequent induction of cell division are pre-requisites to flower initiation in citrus [48].

In other plant models, the relationship between PAs and flower development has been intensively
studied using chemical inhibitors of PA biosynthesis pathway. For example, cyclohexylamine (CHA;
an inhibitor of spermidine biosynthesis) prevents spermidine accumulation, inhibits floral initiation,
and inhibits flowering, without significant effects on vegetative growth, in N. tabacum [154] and
Spirodela punctuata [155], while spermidine supplementation abolished these inhibitory effects and
induced flowering [154,155]. Similarly, using methylglyoxal-bis(guanylhydrazone) (MGBG; a specific
inhibitor of SAMDC enzyme) inhibits flowering without significant effects on the vegetative growth of
S. punctuata, whereas exogenous spermidine application reversed these inhibitory effects and induced
flowering [155]. Likewise, using dl-α-difluormethylarginine (DFMA; a specific inhibitor of ADC
enzyme) prevented floral bud initiation in thin-layer explants of tobacco, while using DFMO (a specific
inhibitor of ODC enzyme) did not affect the floral bud initiation [156]. On the other hand, using DFMO
prevented the subsequent development of newly regenerated floral buds, but not using DFMA [156].
These findings suggested that floral bud initiation requires ADC-derived PAs, while ODC-derived
PAs are required for subsequent growth and development of newly regenerated floral buds [156].
Although PA biosynthetic inhibitors proved to be powerful tools for studying the relationship between
PAs and flower development, to our knowledge, no studies have been carried out in Citrus.
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8. Role of PAs in the Fruit Set, Development, and Quality of Citrus Plants

In fruit crops, the yield is directly correlated to the fruit set after pollination. Nevertheless,
heavy flowering does not necessarily guarantee a subsequent economic crop of fruit. Poor fruit set
either by severe post-bloom drop and/or pre-harvest drop could cause significant losses in yield. Fruit
set varies among different fruit crops. For instance, it could reach as high as 90% as in blueberries, or it
could be as low as 1% as in sweet oranges [157]. Moreover, in addition to the low fruit set, citrus has
a noticeable, if not extensive, post-bloom fruit drop (also known as June drop) compared to a small
percentage of fruit drop for blueberries [157]. In citrus, fruit set may be affected by tree genetics
(such as variety, rootstock, and cultivar), environmental conditions (before, during, and after bloom),
and/or endogenous factor (such as carbohydrate competition, phytohormones homeostasis, and PAs
content) [51,55,56,71,88]. Although many comprehensive physiological and biochemical descriptive
studies have been carried out to explore the endogenous PAs levels and their roles in the citrus fruit
set, the enormous unexplored potential exists in this area of study.

Furthermore, PAs and their biosynthesis genes might play a key role in parthenocarpic ability
and ability to set leafy and leafless inflorescences. For instance, the ovaries of ‘Oronules’ mandarin
(a self-incompatible cultivar) had a higher PAs content than ‘Okitsu’ mandarin (a male-sterile cultivar
with a high degree of natural parthenocarpy) [55].

Changes in the PAs levels, their biosynthetic genes, and some other nitrogen-containing
metabolites during the fruit set of citrus plants with their corresponding phenological growth
stages of BBCH-scale [149,150] are summarized in Figure 6. In contrast with the role of NH3–NH4

+

content in citrus flowering mentioned in the previous section, no distinct relationship between the
NH3–NH4

+ content and fruiting intensity was observed during induction of both July and February
flushes under hot sub-humid tropical climate [158]. Although the major PAs compounds (putrescine,
spermidine, and spermine) were detected throughout the fruit set, however, each compound displayed
a different profile and relative variations in its content during the different fruit set stages (Figure 6).
Briefly, putrescine content transiently dropped during the first 7 or 15 days after anthesis (growth stage
65-67 of BBCH-scale), then it re-established and increased after petal fall through the growth stage 71-72
of the BBCH-scale [55,56]. Likewise, the free and perchloric acid (PCA)-insoluble conjugated putrescine
increased in the flesh and peel (flavedo plus albedo) of ‘Brasiliano’ navel orange (C. sinesis) during
ripening, going from unripe to ripe fruits, and decreased in overripe fruits [82]. However, putrescine
levels were varied in the growth stage 71 and 72 of the BBCH-scale depending on the cultivar and the
year that experiment was carried out [55,56].

Moreover, the exogenous-applications of low-biuret urea, to the leaves of ‘Washington’ navel
orange during early bloom, increased the endogenous putrescine content and fruit set [51].
Likewise, exogenous application of 0.01 mM aqueous solution of PAs (putrescine, spermidine
or spermine) significantly increased the initial fruit set of ‘Blood Red’ sweet orange (C. sinensis),
with greater effects by spermidine, followed by spermine and putrescine, respectively [98].
Furthermore, putrescine application increased the fruit yield/tree, production of grade-I fruit
(%), fruit weight (g), and fruit diameter (cm), whereas exogenous application of the mixture of all three
PAs (0.001 mM each) decreased the fruit set and slightly increased the other parameters compared
with control plants [98].

Interestingly, the expression levels of putrescine biosynthetic genes, CsADC and CsODC,
showed a contrary behavior. The expression of CsADC was decreased throughout the fruit set
stages, whereas one of the two CsODC paralogs (CsODC-II) was up-regulated throughout the fruit set
stages [56]. In other words, the expression CsADC mirrored the reduction in putrescine levels during
the first 7 or 15 days after anthesis, whereas, CsODC mirrored the increase in putrescine content in
citrus ovaries after petal fall through the growth stage 71-72 of the BBCH-scale [56]. These findings
suggest that fruit set initiation requires ADC-derived PAs, while ODC-derived PAs are required for
subsequent growth and development of citrus fruits.
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Figure 6. Schematic overview representation of the metabolic behaviors of polyamines (PAs), some other
nitrogen-containing metabolites, and the major PAs-biosynthetic genes during the fruit set and
development of citrus plants. Fruit set stages (61, 67, 69, 71, and 72) are corresponding to the
phenological growth stages on BBCH-scale [149,150]. Yellow bars/triangles represent the reduction
in the metabolite levels or down-regulation in gene expression, blue bars/triangles represent the
increase in metabolite levels or up-regulation in gene expression, while gray bars/triangles represent
the controversial behavior in metabolite levels. For more details, see the main text. Abbreviations:
CsADC: Arginine decarboxylase, CsODC: Ornithine decarboxylase, CsSPDS: Spermidine synthase,
CsSPMS: Spermine synthase, and CsACL5: Thermospermine synthase encoded by ACAULIS5.

Spermidine content decreased across the flowering stages (Figure 6) and it continued to drop
throughout all the fruit set stages, regardless the cultivar, year, and type of inflorescence [55,56], except at
petal fall (growth stage 69 of BBCH-scale) when it slightly increased in the GA-induced fructification
in the first-year experiment of [56]. The induction of spermidine content at the end of fruit set (growth
stages 69 to 72 of BBCH-scale) could be due to the activity of SPDS enzyme, since the expression
of CsSPDS displayed a transient decrease during the first week after anthesis, then recovered the
initial level two weeks after anthesis and was significantly up-regulated three weeks after anthesis [56].
Likewise, tyramine demonstrated similar trends as spermidine throughout the fruit set period, where
it suffered a transient drop until 21 days after anthesis (the growth stages 71-72 of BBCH-scale [56]
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(Figure 6). Interestingly, the reduction in spermidine and tyramine content might not be associated with
the fruit set development, since both compounds were decreased in ovaries that had not accomplished
fruit development at 21 days after anthesis [56]. Furthermore, spermidine content was higher in
‘Oronules’ Clementine (a cultivar with low fruit set) than in ‘Okitsu’ Satsuma mandarin (a cultivar
with high fruit set) [55]. Likewise, spermidine content was significantly higher in low-flowering years
than those for the high-flowering years [55]. Together, these findings suggest a negative correlation
between fruit set and spermidine. Almost similar results were obtained from ‘Murcott’ mandarin,
where putrescine biosynthetic enzymes (CsADC but not CsODC) and, to a lesser extent, putrescine
and spermidine content roughly followed the patterns of fruit growth, with a higher content at the
early stages, a minimum at mid-summer and intermediate values at full fruit development [71].

On the other hand, spermine content hardly changed and remained relatively constant during
the first 14 days of fruit development after anthesis or until growth stage 69 of BBCH-scale, where it
increased remarkedly and experienced a gradual increase [55,56]. However, the behavior of the
spermine profile during the growth stage 71 and 72 of the BBCH-scale is controversial. For example,
Trénor et al. (2010) showed that spermine content, from petal fall to the onset of physiological fruit drop,
depending on the year that when the experiment was carried out since it decreased in the first-year
experiment but slightly increased in the second-year experiment [56]. Likewise, Arias et al. (2005)
reported that spermine content was decreased after the growth stage 69 of BBCH-scale regardless of
the cultivar, year, or inflorescences type, except for ‘Oronules’ mandarin in the first-year experiment,
where it slightly increased [55]. Studies on the annual cycle of endogenous PAs of two citrus varieties,
‘Washington’ navel orange (C. sinensis), and ‘Miyagawa’ Satsuma (C. unshiu), showed that change of
the total PAs content in fruit paralleled the enlargement of fruit diameter and spermidine and spermine
contents increased at later stages [151].

The induction of spermine levels could be due to the higher activity of SPMS. Interestingly,
the transcript levels of CsSPMS was raised after the initiation of fruit set and maintained at this level until
the growth stages 71-72 of BBCH-scale [55]. While the endogenous levels of spermine hardly changed
during the first two weeks of fruit set, the content of synephrine and methyl-tyramine experienced
a gradual increase [55]. However, the endogenous levels of synephrine and methyl-tyramine showed
contrary results after petal fall through the growth stage 71-72 of the BBCH-scale.

Furthermore, PAs levels were increased during fruit maturation and ripening of ‘Murcott’
mandarin [71]. These high endogenous PAs levels may be associated with the high growth rate [159]
or active cell division [85]. We suggest that in the initial stage of fruit development, active cell division
occurs, which possibly needs sufficient putrescine and spermidine contents. While, at the later stage of
fruit development, cell division gives way to cell enlargement, in which PAs synthesis is enhanced
to fulfill the nitrogen needs required for cell enlargement. Together these findings suggest that PAs
might be used as a nitrogen source rather than a growth regulator of fruit set in citrus [55] since the
fruit number positively correlated with the increased nitrogen supplementation if other factors are not
limiting [55].

In addition to the well-known role of PAs in fruit set of citrus plants, they also could be involved in
the fruitlet and fruit abscission [55,71,98], fruit quality [98], fruit creasing [160], alternate bearing [161],
and postharvest storage life [162]. Briefly, the exogenous PAs supplementation decreases cell separation
processes (abscission) of citrus fruit and fruitlet based on the polyamine compound, concentration,
and time of application [55,71,98]. The foliar application of PAs during the flowering period significantly
reduced the fruitlet abscission in ‘Murcott’ mandarin [71] and sweet orange [98] and decreased the
fruit abscission percentage in ‘Oronules’ Clementine (C. clementina) and ‘Okitsu’ Satsuma (C. unshiu)
mandarins [55].

Exogenous application of aqueous PA solutions significantly improved the fruit quality, represented
by peel color, peel smoothness, total soluble solids (TSS), total and non-reducing sugars of ‘Blood
Red’ sweet orange (C. sinensis). For example, spermidine application increased the TSS, total sugars,
peel color, and peel smoothness score, while it reduced the fruit acidity [98]. These findings proved the
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effectiveness of spermidine for improving fruit quality of citrus plants. In addition, PAs are involved
in creasing (albedo breakdown) of citrus fruits [160]. Creasing is a physiological disorder in the rind of
sweet orange (C. sinensis) fruit and causes serious economic losses worldwide. Hussain and Singh (2015)
found that the single-spray application of putrescine, at fruit set or golf ball stage, reduced creasing
index percentage, improved the rind thickness, and increased the levels of endogenous PAs in the
flavedo and albedo tissues of ‘Washington’ navel and ‘Lane Late’ fruit in a concentration-based manner.
On the other hand, single-spray treatment of MGBG (PAs inhibitor) at the golf ball stage significantly
increased the creasing index percentage in both cultivars [160].

Recently, Mirsoleimani and Shahsavar (2018) showed that the seasonal changes in the free PAs
contents in the leaves and stems of ‘Kinnow’ mandarin (C. reticulata) could be involved in the alternate
bearing habit for these plants. For instance, total PAs content in leaves was higher in “off” trees than in
“on” trees throughout the flower bud formation period. Similarly, the endogenous levels of spermidine
and spermine in the stems were significantly higher in “off” trees than in “on” ones most of the season,
while putrescine content in the stems was significantly higher in “on” trees than in “off” ones [161].
Although these results did not prove the relationship between PAs changes in stems and leaves of
citrus plants with processes of flower bud formation, these findings showed that alternate bearing
habit could be controlled by variations in PAs content during the season.

9. Role of PAs in the Stomatal Closure and Gas-Exchange of Citrus Plants

Photosynthetic organisms, particularly green plants, require oxygen (O2) in order to carry on
cellular respiration, while carbon dioxide (CO2) is required for photosynthesis. Unlike animals,
plants do not have specialized organs for gas exchange. Therefore, plants exchange gases through
their leaves via stomata. Although several studies showed that abiotic stresses increase the PA levels
in the guard cells of stomata of several plant species [47,58,59,163–165], little is known about the
physiological function of elevated PA levels in gas exchange of citrus plants. Generally, all-natural PAs
strongly inhibited the opening and induced the closure of stomata but using different mechanisms.

For example, in Vicia faba plants, PAs regulate the voltage-dependent inward K+ channel in the
plasma membrane of guard cells and modulate stomatal aperture [163]. While in A. thaliana plants,
PAs regulates the stomatal closure through manipulation of the levels of NO as well as reactive oxygen
species (ROS) in guard cells [165]. Similar results were obtained from ‘Red Tangerine’ (C. reticulata)
plants, where the in vitro exogenous application of spermine (1 mM) resulted in higher endogenous
PAs content which was associated with less wilted phenotype, lower water loss, and lower electrolyte
leakage than the control plants [58]. Interestingly, the leaves of spermine-pretreated plants had less
ROS and higher activities of peroxidase (POD) and superoxide dismutase (SOD) than the control [58].
Taken together, these findings suggest that PAs control the stomatal response of citrus plants via
modulation of antioxidative capacity [58]. Another example of the association between PAs and ROS
scavenging is that the overexpression of the abscisic acid-responsive element (ABRE)-binding factor
(ABF) of P. trifoliata (PtrABF) significantly enhanced dehydration tolerance [59]. The PtrABF transgenic
lines displayed smaller stomatal apertures and reduced stomatal density/index. Simultaneously,
the transgenic plants had higher PAs content, which was associated with higher antioxidant enzyme
activities and less ROS [59]. Taken together, these findings suggest that PAs might control the gas
exchange and stomatal density via maintaining ROS homeostasis.

Addition of d-arginine (as PAs-biosynthesis inhibitor) to the saline HNS reduced the gas
exchange-related parameters, including stomatal conductance, transpiration rate, intracellular CO2

concentration, and total putrescine content, but increased total spermine content of the attached
leaves of ‘Cleopatra’ mandarin seedlings [57]. On the other hand, supplementation of the saline
medium with spermidine (0.5 mM) alleviated the antagonistic effects of d-arginine and improved the
total putrescine, spermidine, and spermine contents of the leaves [57]. Likewise, the application of
putrescine inhibitor, DFMO, inhibited the stomatal conductance (gs) and transpiration rates (E) of
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C. tangerine seedlings [39]. However, the application of exogenous putrescine to DFMO-treated plants
partly or completely reversed the negative effects of DFMO [39].

Recently it has been shown that exogenous application of PAs, particularly spermidine (0.5 mM),
significantly increased the gas exchange parameters as presented by intercellular CO2 concentration
(Ci), stomatal conductance (gs), and net photosynthetic rate (PN) of Bakraii (C. reticulata × C. limetta)
seedlings when subjected to salinity stress [47]. Additionally, boron deficiency in C. sinensis seedlings
caused a significant reduction in some of gas exchange characteristics, but induction in other parameters.
For example, boron-deficient lines exhibited lower leaf CO2 assimilation, leaf gs, leaf transpiration,
and root respiration, but higher leaf Ci and dark respiration [62]. Interestingly, boron deficiency was
associated with the accumulation of caffeoyl-PAs conjugates such as caffeoylputrescine and putative
dicaffeoylspermidine in tobacco plants [166]. These findings indicate that PAs accumulation might be
related to the gas exchange characteristics directly or indirectly (Figure 7); however, more investigations
are required to understand the physiological role of elevated PAs levels in the modulation of gas
exchange in citrus plants.Plants 2020, 9, x FOR PEER REVIEW 19 of 28 
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Figure 7. Hypothetical model of the effect of exogenous polyamines (PAs) and PAs biosynthesis
inhibitors on gas exchange and its related parameters of citrus plants. Solid lines with arrows signify
positive reaction, while round-dotted lines with bar-ends indicate negative interaction. Abbreviations:
DFMO: α-difluoromethylornithine, POD: Peroxidase, PtrABF: Abscisic acid-responsive element
(ABRE)-binding factor (ABF) of Poncirus trifoliata, ROS: Reactive oxygen species, and SOD: Superoxide
dismutase. For more details, see the main text.

10. Role of PAs in the Photosynthesis and Chlorophyll Fluorescence of Citrus Plants

Although photosynthesis in higher plants is mainly controlled by three major factors including
light irradiance, CO2 concentration, and temperature, it could be limited by a range of environmental
factors such as leaf area, shading by other plants, water availability, and many other factors.
Moreover, PAs are involved in regulating the light-harvesting and photosynthetic functions [61,167,168].
In citrus, many previous studies demonstrated the role of PAs in the photosynthesis, chlorophyll
fluorescence, and their related parameters through the modifications of the endogenous levels of
PAs [37,40,45,47,60–62].

For example, exogenously applied spermidine, by addition to the saline HNS or via weekly
sprays, enhanced the accumulation of spermidine and spermine contents and improved chlorophyll
content, net photosynthetic rate, and chlorophyll fluorescence yield (Fv/Fm; also known
as maximum photochemical efficiency of PSII) of NaCl-stressed Troyer citrange plants [45].
Likewise, exogenously applied putrescine significantly increased chlorophyll a, total carotenoid,
and total chlorophyll contents in trifoliate orange seedlings [37]. Moreover, the application of DFMO
(a putrescine inhibitor) significantly decreased the total chlorophyll content and photosynthetic rates
(PN) of C. tangerine seedlings, whereas the application of exogenous putrescine to DFMO-treated
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seedlings partly reversed the negative effects of DFMO [39]. Consistent with these findings,
the application of different exogenous PAs (putrescine, spermidine, or spermine) improved the
relative chlorophyll content in leaves of Canton lemon (C. limonia), which was associated with
significantly increased in plant biomass. [40]. Taken together, these findings suggest that PAs might be
positively influencing the photosynthetic functions of citrus plants. In fact, chloroplasts themselves
could augment the endogenous PAs content, which can benefit the formation of chlorophyll a but not
chlorophyll b [61]. However, the high dose of PAs may destroy the structure of chloroplasts based on
light conditions [37].

Recently, the PAs-treated Iranian mandarin (C. reticulata × C. limetta cv. Bakraii) seedlings showed
an increased net photosynthetic rate in salt-stressed plants, which was found to be associated with
increased photosynthetic pigments content, as well as fluorescence parameters including minimal
fluorescence yield of the dark-adapted state (F0), maximal fluorescence yield of the dark-adapted state
(Fm), maximum photochemical efficiency of PSII (Fv/Fm), variable fluorescence (Fv), nonphotochemical
quenching (NPQ), and photochemical quenching (qP) [47].

Under both saline and non-saline conditions, putrescine and paclobutrazol (a plant growth
retardant and triazole fungicide) significantly enhanced the photosynthetic rates of salt-sensitive
citrus rootstock Karna khatta (C. karna) seedlings [60]. In the same study, chlorophyll a and b were
decreased significantly in NaCl-stressed plants, however, the application of putrescine, paclobutrazol,
or a combination of both improved the chlorophyll a, chlorophyll b, total chlorophyll contents,
and chlorophyll a/b ratio [60]. The positive effects of putrescine and paclobutrazol on chlorophyll
could contribute directly toward the enhancement of photosynthesis in citrus. Paclobutrazol blocks
some biosynthesis-limiting steps of the terpenoid/isoprenoid pathway which results in inhibiting the
gibberellins biosynthesis but enhancing cytokinins and ABA accumulation [169,170]. The inhibition
of gibberellin synthesis increases the availability of terpenoid pathway precursors, particularly
geranylgeranyl diphosphate (GGPP). Increased GGPP could contribute directly toward the
enhancement of chlorophyll content via phytyl-pp using geranylgeranyl reductase (GGRS), chlorophyll
synthase (CHL), and some other enzymes [170]. Furthermore, it might play an indirect role in the
enhancement of photosynthesis via the induction of carotenoids content through phytoene using
phytoene synthase (PSY) [170]. Carotenoids play a photoprotective role in the photosynthetic
process [171,172]. In addition to their role as accessory light-harvesting pigments, carotenoids
protect chlorophylls from photo-damage through the absorption of light energy to be utilized in
photosynthesis [171,172].

11. Conclusions Remarks and Future Prospects

The considerable increase in research studies about the roles of polyamines in citrus growth
and development suggests that they do something interesting and important. In this review,
we presented an overview of the role PAs in a wide range of physiological processes of citrus
plants; however, their exact roles are not completely understood. Nevertheless, the knowledge
gained thus far about the physiological roles of PAs in citrus builds a strong case for further studies
toward understanding the metabolic and molecular regulation of PAs in citrus, and their emergence
as a promising approach to practical applications in citriculture. Furthermore, several synergistic
and antagonistic interactions exist between PAs and various phytohormones, particularly ABA and
ethylene, during the regulation of cellular processes of citrus plants. Although significant progress has
been made in understanding the crosstalk between PAs and phytohormones, the molecular mechanisms
underlying PAs-phytohormone interactions require more investigation to understand the signaling
transductions that regulate PA functions in citrus.

In this review, we dissected the biosynthesis pathway of PAs in citrus plants, along with its
associated biosynthetic genes. However, only two PAs biosynthetic genes have been cloned from citrus
or its relatives, including CsSAMDC (GenBank Accession No. FJ496345) from ‘Newhall’ navel orange
(C. sinensis) [173] and PtADC (GenBank accession No. HQ008237) from trifoliate orange (P. trifoliata) [74].
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Further studies are required though for cloning, biochemical identification, and expression analysis of
the genes involved in citrus PA biosynthesis. Traditional quantitative trait locus (QTL) mapping/cloning,
and genome-wide association mapping are two of the best approaches that could be used for gene
identification and modulation of PAs content by genetic engineering. The genetic manipulation of
PAs biosynthetic genes to produce transgenic citrus plants with modulated PAs content may enhance
the tolerance of citrus plants against stressful conditions. Moreover, isolation and analysis of PAs
biosynthetic genes will significantly improve our understanding of the molecular mechanisms behind
the role of PAs in stress tolerance. Transcriptomic, proteomic, and metabolomic approaches are very
helpful tools to understand these molecular mechanisms. Additionally, the exogenous application of
PAs can be an alternate option to enhance citrus tolerance, and other plant species in general, to both
biotic and abiotic stresses.
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