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Abstract: Mature B-cell non-Hodgkin lymphoma (B-NHL) constitutes a group of heterogeneous
malignant lymphoproliferative diseases ranging from indolent to highly aggressive forms. Although
the survival after chemo-immunotherapy treatment of mature B-NHL has increased over the last
years, many patients relapse or remain refractory due to drug resistance, presenting an unfavorable
prognosis. Hence, there is an urgent need to identify new prognostic markers and therapeutic targets.
Podocalyxin (PODXL), a sialomucin overexpressed in a variety of tumor cell types and associated
with their aggressiveness, has been implicated in multiple aspects of cancer progression, although
its participation in hematological malignancies remains unexplored. New evidence points to a role
for PODXL in mature B-NHL cell proliferation, survival, migration, drug resistance, and metabolic
reprogramming, as well as enhanced levels of PODXL in mature B-NHL. Here, we review the current
knowledge on the contribution of PODXL to tumorigenesis, highlighting and discussing its role in
mature B-NHL progression.

Keywords: podocalyxin; B-cell non-Hodgkin lymphoma; cancer progression; metastasis; drug
resistance; metabolic reprogramming

1. Introduction

Non-Hodgkin lymphoma (NHL) represents the most common hematological malignancy in adults
worldwide and accounts for approximately 90% of all diagnosed lymphomas in western countries,
with B cell-NHL (B-NHL) being more frequent (85%–90%) than T-cell or natural killer (NK)-cell
NHL [1,2]. The incidence of NHL has experienced a constant increase in recent years and this disease
represents the fifth to ninth most common cancer in the majority of countries worldwide [3]. B-NHL
consists of a heterogeneous group of lymphoproliferative malignancies that arise from lymphoid
tissue B cells at varying stages of maturation and can spread to other organs, encompassing more
than 40 neoplasm subtypes both molecular and clinically different [4]. They are currently classified
according to the 2016 revision of the World Health Organization (WHO) classification of lymphoid
neoplasms based on cell linage and pathological, genetic, immunophenotypic, and clinical features [4].
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Among mature B-NHL, diffuse large B-lymphoma, an aggressive type of NHL, and indolent follicular
lymphoma comprise 65% of all NHL and predominate in adulthood [2,5]. Nevertheless, in children,
the most common B-NHL is the highly aggressive B-cell neoplasm Burkitt lymphoma [6]. Other mature
B-NHLs include chronic lymphocytic leukemia/small lymphocytic lymphoma, mantle cell lymphoma,
marginal zone B-cell lymphoma, hairy cell leukemia, and lymphoplasmacytic lymphoma/Waldenström
macroglobulinemia [4].

Although the survival in patients with B-NHL has improved significantly during the past two
decades since the introduction of anti-CD20 monoclonal antibodies to the standard chemotherapy
regimens, many patients are refractory or relapse after treatment due to the acquisition of drug
resistance that limits its effectiveness [7,8]. A better understanding of the molecular mechanism
governing B-NHL development and chemo-immunotherapy resistance would allow the design of
more efficient therapeutic drugs.

PODXL, also known as podocalyxin-like protein 1, PCLP1, PCLP, PC, GCTM-2 antigen, Gp135, or
GP200, is a transmembrane protein belonging to the CD34 family of sialomucins and is expressed in
multiple normal cell types including podocytes, vascular endothelium, platelets, hematopoietic
progenitors, embryonic stem cells, and a subset of neurons [9–15]. PODXL is connected to
the actin cytoskeleton through interaction with ezrin and Na+/H+-exchanger regulatory factor
(NHERF) [16]. Depending on the cellular context, PODXL functions as an anti-adhesive or a
pro-adhesive molecule [17–19]. PODXL was originally reported as the major apical sialoglycoprotein
on kidney glomerular podocytes, where it exerts an anti-adhesive effect that maintains the filtration
slits opened by charge repulsion as a result of its highly negative charge [9,17,20,21]. On the contrary,
PODXL acts as a pro-adhesive molecule in high endothelial venules, interacting with L-selectin
expressed on lymphocytes, suggesting a role for PODXL in lymphocyte recruitment to secondary
lymphoid organs [18].

A growing number of studies have implicated PODXL in the development and progression of
cancer. Elevated expression of PODXL has been associated with a more aggressive phenotype and
poor patient clinical outcome in a variety of human solid cancers [22–26]. Thus far, limited studies
have addressed the expression and function of PODXL in hematological neoplasms. PODXL has been
found upregulated in mature B-NHL [27] and in blasts from patients with acute lymphoblastic and
myeloid leukemia [28,29]. In Burkitt lymphoma cells, PODXL has recently emerged as a molecule that
promotes cell proliferation, survival, migration, resistance to chemo-immunotherapy, and metabolism
reprogramming [27]. The objective of this review is to summarize the current knowledge on the role of
PODXL in tumorigenesis, discussing its contribution to the development of mature B-NHL.

2. PODXL Expression and Regulation in Human Malignancies

Expression of PODXL has been detected in numerous human solid malignancies including
testicular cancer [30–32], breast cancer [22], pancreatic ductal adenocarcinoma [33–35], malignant
astrocytic tumors [36], lung carcinoma [37,38], undifferentiated thyroid carcinoma [39], renal
cell carcinoma [26], colorectal cancer [23,40–42], ovarian carcinoma [25], uterine endometrioid
adenocarcinoma [43], urothelial bladder cancer [44], glioblastoma multiforme [45], oral squamous cell
carcinoma [46,47], hepatocellular carcinoma [48], gastric cancer [49–52], esophageal carcinoma [50],
and prostate cancer [53], as well as in hematological malignancies [27–29]. Furthermore, increased
PODXL expression has been associated with high-grade tumors and poor clinical outcome in breast
cancer [22], colorectal cancer [23,40,42,54], pancreatic ductal adenocarcinoma [35], ovarian cancer [25],
renal cell carcinoma [26], urothelial bladder cancer [44,55], glioblastoma multiforme [45], gastric
cancer [49–52], uterine endometrioid adenocarcinoma [43], periampullary adenocarcinoma [56], and
esophageal adenocarcinoma [50].

Regarding hematological cancers, the detection of PODXL in normal human hematopoietic
cells [57], as well as of Wilms´ tumor antigen 1 (WT1), a transcriptional activator of PODXL, in
blast cells of the majority of acute myeloid leukemia and acute lymphoblastic leukemia patients [58],
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prompted the determination of PODXL in leukemia [28,29]. An immunochemical analysis performed
in blasts from 81 patients with leukemia showed elevated levels of PODXL expression in 77% of cases of
acute myeloid leukemia, 81% of cases of acute lymphoblastic leukemia, and 87% of cases of cutaneous
myeloid sarcoma [28], which is a rare extramedullary tumor most often associated with acute myeloid
leukemia [59]. Another report revealed by flow cytometry moderate levels of PODXL expression in
15 cases and high levels in 13 cases from a cohort of 73 patients with acute myeloid leukemia, and
associated PODXL expression in leukemic blasts with a monocytic immunophenotype, a subtype
characterized by poor clinical outcome and short survival [29]. Moreover, the cases of acute myeloid
leukemia expressing higher levels of PODXL also displayed increased blast cell counts and higher
levels of markers associated with unfavorable prognosis [29]. High levels of PODXL expression were
also detected by immunohistochemistry in most of the bone marrow samples obtained from acute
myeloid lymphoma patients compared to samples from normal subjects [60].

More recently, we have determined PODXL cell surface expression in malignant cells from a small
cohort of patients with B-NHL and in B-NHL cell lines [27]. We found three- to eight-fold higher levels
of PODXL expression in malignant cells compared to their normal B-cell counterparts in two out of
five cases of follicular lymphoma and one out of three cases of chronic lymphocytic leukemia/small
lymphocytic lymphoma. However, no expression of PODXL was observed in two cases of hairy cell
leukemia and one case of Waldenström macroglobulinemia [27]. Furthermore, elevated levels of
PODXL expression were detected on Raji Burkitt lymphoma cell line and moderate levels on Karpas
422 diffuse large B-cell lymphoma cell line. By contrast, Ramos and Daudi Burkitt lymphoma, Pfeiffer
diffuse large B-cell lymphoma, and Karpas 1718 splenic marginal zone lymphoma cell lines showed no
expression of PODXL [27].

Human PODXL protein is encoded by PODXL, a gene located on chromosome 7q32.3 [61].
A study identified a locus on chromosome 7q32-q33 associated with aggressive forms of prostate
cancer using linkage analysis and allelic imbalance techniques [62]. Furthermore, a variable in-frame
deletion and a missense variant of PODXL were associated with increased risk of prostate and tumor
aggressiveness [24]. Interestingly, gain of 7q32.3-q33 region has been shown to predict the risk of
disease transformation in patients with aggressive forms of follicular lymphoma [63]. Similarly, a
comparative genomic hybridization study involving 46 patients diagnosed with Burkitt lymphoma
detected gains on 7q31-q36 or 7q32-q36 regions in three patients and identified the association of gains
on 7q with an adverse prognosis [64]. Hence, the increased PODXL levels detected in malignant cells
of B-NHL patients and in B-cell lines from our study might be caused by copy number gains of PODXL
gene or gain mutations.

PODXL expression is positively regulated by WT1 [65] and specific protein 1 (SP1) [66]. WT1, a
potent transcriptional regulator of several genes involved in growth, cellular metabolism, and renal
differentiation, is highly expressed in many cancers, including hematological malignancies [67]. SP1
plays an important role in several physiological processes such as cell cycle, growth control, apoptosis,
angiogenesis, and tumor cell metabolism [68].

PODXL expression can be repressed by some regulatory factors, including tumor suppressor
p53 [69], particularly interesting new cysteine-rich protein 1 (PINCH1) [70], and Kruppel-like factor 4
(KLF4) [51]. PINCH1 is an adaptor protein that controls integrin-mediated cell adhesion, migration
and epithelial–mesenchymal transition (EMT) and that acts as a transcriptional suppressor of PODXL
in podocytes by interacting and inhibiting WT1-induced PODXL expression [70]. KLF4, a member of
the KLF family of zinc finger transcription factors that regulates cell proliferation, differentiation, and
survival, represses PODXL expression in human gastric cancer cells by directly binding to the 5´UTR
of PODXL [51].

Additionally, epigenetic processes such as DNA methylation and the synthesis of specific
microRNAs contribute to the modulation of PODXL expression. The in vitro CpG methylation of
PODXL promoter resulted in a drastic reduction of its activity in human embryonic kidney (HEK293)
cells [66]. In oral squamous cell carcinoma cell lines, hypomethylation of PODXL promoter has



Cancers 2020, 12, 396 4 of 25

been associated with aggressiveness [46]. MicroRNAs are small noncoding RNAs that control gene
expression post-transcriptionally, and their levels are frequently altered in many tumors, acting both as
oncogenes and tumor suppressors. A study showed that miR199b, a microRNA targeting PODXL
and DDR1 (discoidin domain receptor 1), regulates the expression of PODXL in K562 chronic myeloid
leukemia cell line overexpressing miR-199b and established an inverse correlation between miR199b
levels and PODXL expression in patients with acute myeloid leukemia [60]. In another report, the
analysis of molecular and clinical data of 166 patients with acute myeloid leukemia from The Cancer
Genome Atlas revealed a correlation between low expression of PODXL-targeting miR-199b and
poor survival outcome [71]. Regarding B-cell lymphomas, various epigenetic mechanisms have been
implicated in the development of these malignancies, including dysregulation of DNA methylation and
histone modifications, as well as aberrant expression of microRNAs [72]. Among the most common
microRNAs, miR-155, miR-17-92 cluster, miR-21, and miR-217 have been reported to function as
oncogenes and miR-181a, miR-34a, miR146a, Cluster miR-15a/16-1, and miR-28 as tumor suppressor
genes in B-cell lymphomas [73]. A univariate survival analysis performed in 64 diffuse large B-cell
lymphoma patients showed an association of miR-199b expression with a better prognosis and with
the germinal center B cell-like (GCB) subtype [74], known to confer a more favorable outcome than the
activated B cell-like (ABC) subtype.

3. PODXL in Cancer Cell Survival, Proliferation, and Stemness

The contribution of PODXL to human cancer progression has been demonstrated in a variety of
cancer cells by gain- and loss-of-function studies, although the underlying mechanisms remain poorly
understood (Table 1).



Cancers 2020, 12, 396 5 of 25

Table 1. Role of podocalyxin (PODXL) in human cancer progression.

Survival-Proliferation-Stemness

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Glioblastoma multiforme

JHU-0879 Silencing of PODXL Decreased proliferation and tumorsphere formation [45]

LN-299;
U-118 MG

Ectopic overexpression of
PODXL

Increased proliferation and c-MYC and c-JUN mRNA
levels (by increasing beta-catenin signaling through the

p38 MAPK/GSK3B pathway)
[75]

Silencing of PODXL Decreased proliferation

LN-299;
U-118 MG

Ectopic overexpression of
PODXL

Increased proliferation (by inhibiting Ang-(1-7)/Mas
signaling through a PI3K dependent mechanism) [76]

Silencing of PODXL Decreased proliferation

Gastric cancer

BGC823 Ectopic overexpression of
PODXL Increased colony formation [77]

MGC803 Silencing of PODXL Decreased colony formation

SGC-7901

Ectopic overexpression of
PODXL

Increased cell proliferation, colony formation and
activation of PI3K/AKT, NF-kb, MAPK (through

interaction with RUFY1)
Decreased apoptosis [52]

Silencing of PODXL
Decreased cell proliferation, colony formation and

activation of PI3K/AKT, NF-kb, MAPK
Increased apoptosis

Ectopic overexpression of
PODXL/Mouse xenograft

Increased tumor growth in vivo (through interaction with
RUFY1)

Silencing of PODXL/Mouse
xenograft Decreased tumorigenesis in vivo

SGC-7901;
AGS

Silencing of PODXL/ Mouse
xenograft Decreased tumor growth in vivo [51]
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Table 1. Cont.

Survival-Proliferation-Stemness

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Colon cancer
HCT15 Silencing of PODXL

Decreased tumorsphere formation
Decreased TAZ, survivin, CTGF, cyclinD1, and

stem-cell-related gene expression
[54]

HCT116;
LOVO Silencing of PODXL Decreased proliferation and clonogenic potential

Increased apoptosis and caspase-3 and caspase-9 expression [78]

Oral squamous cell
carcinoma

SAS Silencing of PODXL Decreased proliferation and colony formation [46]

HSC-2
Silencing of PODXL Decreased proliferation [79]

Silencing of PODXL/mouse
xenograft Decreased tumor growth in vivo

Breast cancer

MCF-7 Ectopic overexpression of
PODXL Increased formation of tumorspheres

[80]

MDA-MB-231
Silencing of PODXL

No effect on cell proliferation under adherent culture
conditions

Decreased formation of tumorspheres

Silencing of PODXL/Mouse
xenograft

Decreased primary tumor growth, invasion and distant
metastasis, in vivo

MDA-MB-231 (clone 4175);
NAMEC8R

Silencing of PODXL No effect on cell proliferation under culture conditions
[81]Silencing of PODXL/Mouse

xenograft No effect on primary tumor growth in vivo

MCF-7 Ectopic overexpression of
PODXL Increased formation of tumorspheres

MDA-MB-231
Silencing of PODXL No effect on cell proliferation under culture conditions [82]

Silencing of PODXL/Mouse
xenograft Decreased primary tumor growth

Pancreatic cancer SW1990;
Pa03c

Silencing of PODXL/Mouse
xenograft No effect on primary tumor growth in vivo [83]

Burkitt lymphoma Raji Ectopic overexpression of
PODXL Increased proliferation and colony formation [27]
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Table 1. Cont.

Metastasis

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Glioblastoma multiforme

LN-299;
U-118 MG

Ectopic overexpression of
PODXL

Increased invasion and MMP-9 expression and activation (by
inhibiting Ang-(1-7)/Mas signaling through a PI3K dependent

mechanism)
[76]

Silencing of PODXL Decreased invasion

LN-299;
U-118 MG

Ectopic overexpression of
PODXL

Increased invasion (by increasing beta-catenin signaling
through p38 MAPK pathway) [75]

Silencing of PODXL Decreased invasion

Gastric cancer

SGC-7901;
AGS

Silencing of PODXL Decreased migration and invasion
Decreased expression of MMP-2 [51]

Silencing of PODXL/Mouse
xenograft Decreased liver metastasis, in vivo

SGC-7901;
AGS

Ectopic overexpression of
PODXL Increased migration and invasion [52]

Silencing of PODXL Decreased migration and invasion

BGC823 Ectopic overexpression of
PODXL Increased migration and invasion [77]

MGC803 Silencing of PODXL Decreased migration and invasion

Colon cancer
HCT116; LOVO Silencing of PODXL Decreased migration and invasion [78]

HCT15 Silencing of PODXL Decreased migration and invasion [54]

Oral squamous cell
carcinoma SAS Silencing of PODXL

Decreased migration and invasion
Inhibition of FAK activation and filopodia and invadopodia

formation
[46]
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Table 1. Cont.

Metastasis

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Breast cancer

MCF-7 Ectopic overexpression of
PODXL Perturbation of cell-cell junctions [22]

MCF-7
Ectopic overexpression of

PODXL

Increased collective migration in 2-D culture (dependent on
ezrin)

Increased collective budding and invasion in 3-D culture
(dependent on actomyosin)

[84]

Ectopic overexpression of
PODXL/Mouse xenograft Increased collective invasion and tumor budding, in vivo

MCF-7 Ectopic overexpression of
PODXL

Increased migration and invasion, matrix metalloproteinases
1 and 9 expression, MAPK and PI3K activity (by interacting

with ezrin)
[85]

MCF-7 Ectopic overexpression of
PODXL

Increased invadopodia formation (through
Rac1/Cdc42/cortactin signaling) [82]

MDA-MB-231
Silencing of PODXL Decreased invadopodia formation

Silencing of PODXL/Mouse
xenograft Decreased distant metastasis, in vivo

MDA-MB-231 Silencing of PODXL/Mouse
xenograft Decreased invasion and distant metastasis, in vivo [80]

MDA-MB-231 (clone 4175);
NAMEC8R

Silencing of PODXL Decreased in vitro extravasation
Decreased migration. No effect on invasion

[81]Silencing of PODXL/mouse
xenograft Decreased lung metastasis, in vivo

HMLER
Ectopic overexpression of

PODXL Increased in vitro extravasation

Ectopic overexpression of
PODXL/chick CAM assay Increased in vivo extravasation

Prostate cancer P3C Ectopic overexpression of
PODXL

Increased migration and invasion, matrix MMP-1 and MMP-9
expression, MAPK and PI3K activity (by interacting with

ezrin)
[85]
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Table 1. Cont.

Metastasis

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Resistance to Drugs

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Colon cancer HCT15 Silencing of PODXL Increased sensitivity to 5-fluorouracil and to irinotecan [54]

Osteosarcoma MG-63;
U2OS

Ectopic overexpression of
PODXL Increased resistance to cisplatin (by PI3K/AKT pathway) [88]

Silencing of PODXL Increased sensitivity to cisplatin

Oral tongue squamous
carcinoma

SCC-4;
Tca8113

Ectopic overexpression of
PODXL

Increased resistance to cisplatin (by increasing BMI-1 and
FAK) [89]

Silencing of PODXL Increased sensitivity to cisplatin

Astrocytoma SW1783 Ectopic overexpression of
PODXL Increased resistance to temozolomide (by PI3K/AKT pathway) [90]

U-87 Silencing of PODXL Increased sensitivity to temozolomide

Burkitt lymphoma Raji Ectopic overexpression of
PODXL Increased resistance to dexamethasone and obinutuzumab [27]

Cancer Cell Metabolism

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Burkitt lymphoma Raji Ectopic overexpression of
PODXL

Increased lipogenesis, PPP, glutaminolysis, and glutamine
dependence; decreased glucose dependence [27]
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Table 1. Cont.

Metastasis

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Resistance to Drugs

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Colon cancer HCT15 Silencing of PODXL Increased sensitivity to 5-fluorouracil and to irinotecan [54]

Osteosarcoma MG-63;
U2OS

Ectopic overexpression of
PODXL Increased resistance to cisplatin (by PI3K/AKT pathway) [88]

Silencing of PODXL Increased sensitivity to cisplatin

Oral tongue squamous
carcinoma

SCC-4;
Tca8113

Ectopic overexpression of
PODXL

Increased resistance to cisplatin (by increasing BMI-1 and
FAK) [89]

Silencing of PODXL Increased sensitivity to cisplatin

Astrocytoma SW1783 Ectopic overexpression of
PODXL Increased resistance to temozolomide (by PI3K/AKT pathway) [90]

U-87 Silencing of PODXL Increased sensitivity to temozolomide

Burkitt lymphoma Raji Ectopic overexpression of
PODXL Increased resistance to dexamethasone and obinutuzumab [27]

Cancer Cell Metabolism

Tumor Cell Type Cell Line Model Method Biological Effect and Mechanism Ref.

Burkitt lymphoma Raji Ectopic overexpression of
PODXL

Increased lipogenesis, PPP, glutaminolysis, and glutamine
dependence; decreased glucose dependence [27]

Ang-(1-7)/Mas: angiotensin-(1-7)/Mas; BMI-1: B-cell-specific lymphoma Moloney murine leukemia virus integration site 1 homolog; CTGF: connective tissue growth factor; CXCL12: C-X-C
motif chemokine ligand 12; 2-D: two-dimensional; 3-D: three-dimensional; EMT: epithelial-mesenchymal transition; FAK: focal adhesion kinase; GSK3B: glycogen synthase kinase-3B;
MAPK: mitogen-activated protein kinase; PI3K: phosphatidylinositol 3-kinase; PODXL: podocalyxin; PPP: pentose phosphate pathway; RUFY1: RUN and FYVE domain containing 1.
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A role for PODXL in tumor cell proliferation was first evidenced in JHU-0879 glioblastoma
multiforme stem-like cell line after silencing of PODXL with specific short hairpin RNAs (shRNAs),
which resulted in a significant reduction in cell proliferation and oncosphere formation [45]. In LN-299
and U-118 MG human glioblastoma multiforme cells, ectopic overexpression of PODXL increased
soluble/intracellular beta-catenin levels and induced mRNA expression of the beta-catenin signaling
target genes c-MYC and c-JUN and cell proliferation through a mechanism dependent on p38 mitogen-
and beta-catenin signaling [75]. Moreover, PODXL increased the level of inhibitory phosphorylation
of glycogen synthase kinase-3B (GSK3B) via activation of p38 mitogen-activated protein kinase
(MAPK), indicating that PODXL enhances glioblastoma multiforme proliferation by increasing the
soluble beta-catenin level/beta-catenin signaling through a mechanism dependent on p38 MAPK/GSK3B
pathway [75]. PODXL has also been found to induce proliferation in LN-299 and U-118 MG glioblastoma
multiforme cells by inhibiting angiotensin-(1-7)/Mas signaling, known to abrogate growth in many
cancer cells [76].

The contribution of PODXL to gastric cancer proliferation has been demonstrated in several studies.
In BGC823 and MGC803 gastric cancer cells, PODXL promoted colony formation [77]. Additionally,
PODXL in SGC-7901 gastric cancer cells favored proliferation and colony formation, abrogated cell
apoptosis, activated phosphatidylinositol 3-kinase (PI3K)/AKT, MAPK/ERK, and NF-kB signaling
pathways, and promoted tumorigenesis in a mouse xenograft model through a mechanism dependent
on RUN and FYVE domain containing 1 (RUFY1) [52]. The PI3K/AKT pathway is one of the most
commonly activated drivers of cancer and promotes tumor initiation and progression [91,92]. PODXL
in SGC-7901 and AGS gastric cancer cells also enhanced primary tumor growth in nude mice [51]. In
HCT15 colorectal cells, knockdown of PODXL reduced the expression of TAZ protein, its downstream
targets survivin, connective tissue growth factor (CTGF), CYR61 and cyclinD1, and stem-cell-related
genes, as well as tumorsphere formation, indicating that PODXL plays a crucial role in self-renewal of
colon cancer cells [54].

Knockdown of PODXL in HCT116 and LOVO colorectal cancer cell lines suppressed cell
proliferation and clonogenic potential, promoted apoptosis, and increased protein levels of caspase-3
and caspase-9, pointing to a role for PODXL in cell survival [78].

In SAS human oral squamous cell carcinoma cell line, silencing of PODXL abrogated cell
proliferation and colony formation [46]. This effect was corroborated in vivo by transplanting
PODXL-silenced HSC-2 oral squamous cell carcinoma cell line into nude mice, which resulted in both
tumor volume and tumor weight reduction compared to that derived from parental HSC-2 cells [79].

Contrasting with these data, in the breast cancer cell lines MDA-MB-231, the highly aggressive
MDA-MB-231 clone 4175 and NAMEC8R, all expressing high levels of endogenous PODXL, silencing
of PODXL exerted no effect on cell proliferation under monolayer culture conditions [80–82]. However,
the frequency of tumorsphere-forming cells was markedly decreased in PODXL-silenced MDA-MB-231
breast cancer cell line and, conversely, its overexpression in luminal-like MCF-7 breast cancer cell
line, a low metastatic cell line expressing low levels of endogenous PODXL, resulted in increased
tumorsphere formation [80]. Consistent with these results, silencing of PODXL in MDA-MB-231 cells
reduced primary tumor growth in a mouse model xenograft [80,82]. Nevertheless, no effect of PODXL
silencing on tumor growth was observed when the xenografted cell lines were MDA-MB-231 clone 4175
cells, NAMEC8R, or the pancreatic cancer cell lines SW1990 and Pa03c [81,83]. Of note, a monoclonal
antibody that preferentially bound to PODXL expressed on human tumor cells delayed tumor growth
and metastasis to the lung in a mouse model using MDA-MB-231 breast cancer cells [80]. All these
data demonstrate the complex and crucial role of PODXL in tumor cell proliferation and tumorsphere
formation in vitro as well as in primary tumor growth in vivo.

In Raji Burkitt lymphoma cells, we showed that ectopic overexpression of PODXL enhanced
cell proliferation and colony formation [27]. Furthermore, overexpression of PODXL in Raji cells
induced cell-to-cell adhesion, resulting in the formation of large cell aggregates, a process that
was partially abolished by a specific antibody against integrin subunit beta2 [27]. Engagement of
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lymphocyte function-associated antigen 1 (LFA-1), an adhesion molecule belonging to the subgroup of
beta2-integrins, with its ligand intercellular adhesion molecule 1 (ICAM-1) has been reported to inhibit
apoptotic cell death in human DND-39 Burkitt lymphoma cell line [93].

4. PODXL in Metastasis

Metastasis is a complex and multistep process which involves tumor cell dissociation from the
primary tumor, invasion of the surrounding extracellular matrix, intravasation through the endothelium
into the bloodstream, and extravasation to secondary sites via attaching to endothelial cells and crossing
the blood vessel walls. Finally, malignant cells survive and growth at these metastatic sites [94,95].
In order to invade and disseminate, tumor cells utilize dynamic actin-rich membrane protrusions
named invadopodia which contain matrix proteases that degrade the extracellular matrix [94,96].
In contrast to metastasis of solid cancers, which requires the acquisition of a metastatic phenotype,
lymphoma dissemination is thought to be driven by physiological mechanisms governing normal
lymphocyte trafficking [97,98]. In any case, both metastasis and lymphoma dissemination involve
the participation of a variety of adhesion molecules, including integrins and selectins, as well as
chemokines [97,98].

Several studies provide evidence of a role for PODXL in cancer metastasis in vitro and in vivo
(Table 1). In MCF-7 breast cancer cells, forced expression of PODXL perturbed cell–cell junctions, a
process which could facilitate breast carcinoma invasion [22]. Additionally, PODXL has been shown
to induce collective tumor migration and invasion, as well as tumor budding of MCF-7 cells both
in vitro and in vivo [84]. Furthermore, in MCF-7 breast cancer and P3C prostate cancer cell lines,
PODXL enhanced cell migration and invasion, matrix metalloproteinase 1 and 9 expression, and
activation of MAPK and PI3K activity through its interaction with ezrin in in vitro assays [85]. In the
highly aggressive MDA-MB-231 breast cancer cell line, suppression of PODXL decreased invadopodia
formation and activation [82]. On the other hand, PODXL overexpression in MCF-7 breast cancer cell
line stimulated invadopodia formation and activation, through the induction of Rac1/Cdc42/cortactin
signaling [82]. The migratory and invasive properties promoted by PODXL has also been demonstrated
in vitro in colorectal cancer (HCT116, LOVO and HCT15), gastric cancer (SGC-7901, AGS, BGC823, and
MGC803), malignant testicular tumor (NT2), oral squamous cell carcinoma (SAS), lung adenocarcinoma
(A549), and glioblastoma multiforme (LN-299 and U-118) cell lines [32,46,51,54,75–78,87]. Besides,
silencing of PODXL in both NAMEC8R and the highly metastatic MDA-MB-231 4175 breast cancer
cells decreased extravasation in vitro, an effect which was totally reversed by overexpressing wild type
PODXL [81]. PODXL silencing also decreased the extravasation of MiaPaca2 and Panc1 pancreatic
carcinoma cell lines [81].

A study reported that PODXL interacts with the chemokine receptor CXCR4 and promotes
CXCL12-mediated migration of mouse primary hematopoietic cells [99]. CXCL12 is a chemokine
produced by stromal cells of lymph nodes, bone marrow, liver, lung, and Peyer´s plaques and involved in
hematopoietic cell trafficking by binding to CXCR4 expressed on these cells [100]. The CXCL12/CXCR4
axis has been found to play a major role in tumor progression, metastasis, and survival [100,101]. High
levels of CXCR4 expression have been detected in B-NHL with wide dissemination to lymph nodes and
associated with poor clinical outcome [102–105]. Recently, we have demonstrated that overexpression
of PODXL in Raji Burkitt lymphoma cells increased migration towards CXCL12 [27].

A critical event of metastatic dissemination to distant sites is the adhesion of circulating malignant
cells to vascular endothelial cells [95]. Many studies point to a role for E-selectin displayed on
vascular endothelial cells in the recruitment of tumor cells to metastatic sites in breast, bladder, gastric,
pancreatic, and colorectal carcinoma, as well as hematological malignancies [95,106,107]. Interestingly,
PODXL has been implicated in the interaction of tumor cells to E-selectin as well as to L-selectin [34].
Silencing of PODXL with specific shRNAs markedly reduced the binding of SW1990 pancreatic tumor
cells to immobilized E- and L-selectin under physiological flow conditions, indicating a functional role
for PODXL in this process [34].
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The contribution of PODXL to tumor metastasis to distal sites has been elucidated in vivo in a few
studies (Table 1). Overexpression of PODXL in HMLER cells enhanced cell extravasation in the chick
CAM assay, an in vivo model for extravasation [81]. In NAMEC8R, MDA-MB-231, and MDA-MB-231
clone 4175 breast cancer cells, knockdown of PODXL significantly inhibited tumor dissemination
to distant organs in murine xenograft models [80–82], an effect rescued by re-expressing wild type
PODXL [81]. In SGC-7901 and AGS gastric cancer cells, silencing of PODXL impaired liver metastasis
in nude mice [51]. Recently, depletion of PODXL has been found to reduce liver metastasis in a
hemispleen mouse model using SW1990 and Pa03c pancreatic adenocarcinoma cells [83]. This study
showed that the direct interaction of PODXL with the large GTP-ase dynamin-2 regulates cytoskeleton
dynamics, promoting migration and metastasis of pancreatic cancer cells [83].

5. PODXL in EMT

Accumulating evidence supports a critical role of EMT process in driving tumor metastatic
dissemination, drug resistance, and immunosuppression [81,108]. During EMT, epithelial cells
lose their apical-basal polarity and cell-to-cell contacts, adopting a mesenchymal morphology and
migratory and invasive properties [109]. Therefore, the contribution of PODXL to EMT process has
been explored in some studies (Table 1). In A549 lung adenocarcinoma cell line, PODXL expression
increased during transforming growth factor-beta (TGF-beta)-induced EMT [86], and PODXL silencing
reduced morphological changes and molecular markers associated with EMT [86]. Accordingly,
forced expression of PODXL in A549 cells promoted changes characteristic of EMT through a process
dependent on the activation of PI3K/AKT signaling pathway [87]. Similarly, PODXL silencing in HCT15
colon cancer cells and in SGC-7901 and AGS gastric cancer cells led to a reduction of EMT-associated
markers [51,54]. Moreover, the analysis of mRNA expression levels in patients with colon cancer
using GSE17536 datasets revealed a positive correlation of PODXL expression with the mesenchymal
markers vimentin, N-cadherin, TWIST2, SLUG, and ZEB1 and a negative correlation with the epithelial
marker E-cadherin [54]. In a study performed in HMLER human mammary epithelial cells, activation
of EMT program by Dox-inducible expression of the EMT transcription factors Snail or ZEB1 resulted
in increased mRNA PODXL levels, indicating that PODXL is induced during EMT process [81].
Further, compared to HMLER cells, total and cell surface PODXL protein expression was shown to be
upregulated in NAMEC8R cells, which are mammary mesenchymal epithelial cells that naturally arise
from HMLER cells [81]. Nevertheless, overexpression of PODXL in HMLER cells did not induce EMT
program, indicating that PODXL acts as an effector, but not as an activator, of the EMT program [81].
Interestingly, the authors also showed that PODXL promotes extravasation during EMT by directly
engaging the cytoskeletal linker protein ezrin to establish the dorsal cortical polarity necessary for
efficient transendothelial migration [81].

Although the role of EMT-related processes in non-epithelial cancers, including lymphoma and
leukemia, remains largely unexplored, various EMT transcription factors have emerged as effectors
of malignant progression in these diseases [110,111]. In patients with diffuse large B-cell lymphoma,
ZEB1 expression has been associated with adverse clinical presentation and poor outcome [112].
More recently, ZEB1 has been shown to be upregulated in diffuse large B-cell lymphoma tissues
and cell lines and involved in a positive feedback loop that promotes diffuse large B-cell lymphoma
progression and immune evasion [113]. In mantle cell lymphoma patients, high expression levels of
ZEB1 were correlated with shorter overall survival [114]. Moreover, knockdown of the EMT activator
ZEB1 using specific shRNAs in Granta-519 and/or Jeko-1 mantle cell lymphoma cell lines reduced cell
viability, proliferation, and drug resistance and greatly diminished tumor growth in mouse xenograft
models, indicating the mediation of ZEB1 in mantle cell lymphoma progression [114].

6. PODXL in Drug Resistance

A few studies have examined the involvement of PODXL in tumor cell resistance to both
conventional cytotoxic agents and immunotherapy drugs (Table 1). Knockdown of PODXL in
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HCT15 colon carcinoma cells markedly increased the sensitivity to 5-fluorouracil, an inhibitor of
thymidylate synthase, and to irinotecan [54], a topoisomerase I inhibitor with reported clinical activity
against relapsed or refractory B-NHL in combination chemotherapy [115,116]. Furthermore, enforced
expression and PODXL silencing studies in MG-63 and U2OS osteosarcoma cell lines showed that
PODXL induces cisplatin chemoresistance via PI3K/AKT signaling pathway [88]. Cisplatin is a
chemotherapeutic drug effective against many types of cancers, including NHL [117]. In SCC-4
and Tca8113 oral tongue squamous carcinoma cell lines, PODXL conferred resistance to cisplatin by
increasing mRNA stability and protein expression levels of B-cell-specific lymphoma Moloney murine
leukemia virus integration site 1 homolog (BMI-1) by means of focal adhesion kinase (FAK) [89].
In SW1783 and U-87 astrocytoma cell lines, PODXL increased cell survival against apoptosis induced by
temozolomide, a DNA-alkylating agent widely used as standard therapy for glioblastoma multiforme,
through the up-regulation of PI3K/AKT signaling pathway [90]. Temozolomide has been proven
to display clinical activity in patients with primary central nervous system lymphoma, a rare but
aggressive extranodal NHL, most commonly of the B-cell subtype [118].

We have recently demonstrated that overexpression of PODXL in Raji Burkitt lymphoma cells
decreases dexamethasone- and hydrogen peroxide-induced cell apoptosis [27]. Dexamethasone
is a glucocorticoid included in several chemotherapy protocols for hematological malignancies
such as B-cell lymphomas and leukemia, but prolonged use can lead to the development of drug
resistance [119–121]. Glucocorticoids trigger lymphoma cell apoptosis through the generation of
hydrogen peroxide [122], a reactive oxygen species that induces apoptosis and senescence [123].
We have also shown that forced expression of PODXL in Raji Burkitt lymphoma cells increased
cell survival upon treatment with obinutuzumab [27], a novel type II glycoengineered humanized
anti-CD20 monoclonal antibody with superior ability to induce direct, non-complement dependent cell
death and enhanced antibody-dependent cellular cytotoxicity (ADCC) compared to rituximab [124,125].
Obinutuzumab induces cell death through a non-apoptotic mechanism mediated by lysosomes and
dependent on actin reorganization [126].

7. PODXL in Cancer Cell Metabolism

Tumor cells upregulate the expression of nutrient transporters and alter their metabolism to
increase the synthesis of proteins, lipids, nucleic acids, and bioenergetic molecules to foster their
accelerated proliferation, as well as the production of redox molecules, to protect cells from apoptosis,
leading to tumor dependency on specific nutrients [127]. Metabolic rearrangements also influence
tumor metastasis, drug response and favor the escape from immune surveillance [128,129], representing
potential therapeutic targets [130]. Tumor cells mainly utilize glucose as a primary nutrient source [127].
Numerous cancer cells also increase the rate of glutamine uptake and glutaminolysis for the generation
of biosynthetic precursors, the activation of signaling pathways and the maintenance of mitochondria
integrity [131,132]. In tumor cells deprived of glucose, glutamine serves as an alternative substrate for
the generation of energy and biomolecules. Glutamine metabolism has been reported to play a crucial
role in cell survival and proliferation under glucose-starved conditions in a MYC-inducible human
Burkitt lymphoma cell line (P493) [133].

The participation of PODXL in cell metabolism remains unexplored. PODXL has been reported
to upregulate and form a complex with the glucose-transporter 3 (GLUT3) in embryonal carcinoma
cancer stem cells [134]. On the other hand, glucose has been found to modulate PODXL expression
in both normal and malignant cells [27,135,136]. In HGEC human glomerular epithelial cells, the
presence of high-glucose levels downregulated PODXL expression [135,136], which reverted to normal
values after cell exposure to low-glucose conditions [136]. Accordingly, we observed that Raji Burkitt
lymphoma cells cultured in low-glucose conditions (0.5 mM) expressed increased surface levels of
PODXL compared to those grown in high-glucose conditions (11 mM) [27].

Recently, we have uncovered a new function for PODXL as a metabolic reprogramming inducer in
Raji Burkitt lymphoma cells [27]. As PODXL triggers both MAPK signaling pathway, known to enhance
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glutamine metabolism and cell growth [137], and PI3K/AKT signaling axis, a pathway that favors cell
survival under glucose limiting conditions [138], we examined the role of PODXL in Raji cell glutamine
metabolism [27]. We showed that under glucose-deprived conditions, Raji cells overexpressing
PODXL exhibited enhanced cell proliferation, whereas in the absence of glutamine their proliferation
decreased and total cell death augmented relative to that of Raji control cells [27]. Moreover, PODXL
overexpression in Raji cells induced cell death in glutamine-deprived conditions [27]. Accordingly,
the presence of Compound 968, a selective inhibitor of glutaminase 1 (GLS1), the first enzyme in
glutaminolysis pathway, significantly diminished the proliferation of Raji cell overexpressing PODXL
compared to that of Raji control cells [27]. Our results indicate that PODXL promotes glutaminolysis
and glutamine dependence but decreases glucose dependence in Raji Burkitt lymphoma cells [27].

Dysregulation of lipid metabolism is considered a hallmark of cancer cells [139,140]. Tumor cells
require fatty acids to generate new membranes, signaling molecules, and energy and store the excess as
intracellular lipid droplets [139,141]. Increased expression of fatty acid synthase (FASN), the terminal
and crucial enzyme in de novo lipogenesis, has been linked to tumor metastasis, chemoresistance, and
reduced patient survival in many cancers [142,143]. Lipid metabolism, as well as enzymes involved in
lipogenesis, including FASN, has been reported to be dysregulated in Burkitt lymphoma, resulting
in the accumulation of multiple lipid vacuoles in the cytoplasm, a morphological characteristic of
Burkitt lymphoma cells [144]. We have recently reported that forced expression of PODXL in Raji
Burkitt lymphoma cells enhanced the formation of cytosolic lipid droplets [27]. Moreover, the addition
of the FASN inhibitor cerulenin to the culture medium led to a reduced proliferation of Raji cells
overexpressing PODXL compared to that of control cells, indicating that PODXL shifts the metabolism
toward de novo fatty acid synthesis, thereby increasing the dependency of Raji cell proliferation on
this pathway [27].

Growing evidence indicates that tumor cells divert glycolytic intermediaries into the pentose
phosphate pathway (PPP) to generate both pentose phosphates, necessary for the synthesis of
nucleotides that support high cell proliferation, and NADPH [145]. This metabolic pathway plays a
pivotal role in tumor cell survival, proliferation, and chemoresistance and has been associated with
tumor aggressiveness [145]. Accordingly, dysregulation of PPP enzymes such as glucose 6-phosphate
dehydrogenase (G6PD), the first and rate-limiting enzyme of this pathway, has been reported to
promote tumorigenesis [145]. Several cancer cells, including NHL, exhibit increased expression of
G6PD as well as PPP flux, which is correlated with poor prognosis [146–148]. We have recently shown
that in the presence of 6-aminonicotinamide, a competitive inhibitor of G6PD and PPP, Raji Burkitt
lymphoma cells overexpressing PODXL proliferated to a lesser extent than control cells, indicating that
PODXL induces PPP flux, becoming dependent on this pathway [27].

8. Conclusions and Future Perspectives

PODXL is overexpressed in various types of cancer and associated with tumor aggressiveness
and poor prognosis. Several studies have reported a role for PODXL in regulating critical biological
processes that promote tumor progression, including cell proliferation, survival, stemness, EMT,
and metastasis, as well as resistance to drugs. In Burkitt lymphoma cells, PODXL induces cell
proliferation, survival, clonogenicity, chemotaxis, and resistance to dexamethasone and obinutuzumab
and reprograms tumor cell metabolism to maintain its high proliferative activity, yet the underlying
molecular mechanisms remain unexplored (Figure 1).
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Figure 1. Schematic representation of the potential role of podocalyxin (PODXL) in mature B-cell
non-Hodgkin lymphoma (B-NHL) progression. PODXL induces cell survival, proliferation, and drug
resistance in mature B- NHL cells, likely through the activation of activated phosphatidylinositol
3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signaling pathways. Additionally,
PODXL promotes glutaminolysis, lipogenesis, and pentose phosphate pathway via activation of
glutaminase 1 (GLS1), fatty acid synthase (FASN), and glucose 6-phosphate dehydrogenase (G6PD),
respectively, which would generate biomolecules and reducing agents necessary for tumor cell survival,
proliferation, and drug resistance. This metabolic reprogramming may be mediated by PI3K/AKT
and MAPK signaling pathways. The PODXL-induced B-NHL-resistance to obinutuzumab could be
due to the capacity of PODXL to reorganize the actin cytoskeleton. In addition to this, PODXL favors
cell-to-cell adhesion in B-NHL by a beta2-integrin-mediated process, which would lead to cell survival.
PODXL also enhances chemotaxis of B-NHL cells towards C-X-C motif chemokine ligand 12 (CXCL12),
which is released by stromal cells of distant sites and binds to C-X-C motif chemokine receptor 4
(CXCR4), a chemokine receptor that interacts with PODXL. NHERF1: Na+/H+-exchanger regulatory
factor; PPP: pentose phosphate pathway.

Our knowledge on the role of PODXL in mature B-NHL progression is based on experiments
conducted on a single Burkitt lymphoma cell line. Hence, it remains to be proven whether these
findings also apply to other mature B-NHL subtypes. On the other hand, PODXL expression has been
determined in malignant cells from a reduced cohort of patients with mature B-NHL. The analysis of
a broad array of mature B-NHL samples would allow to establish whether stratification of patients
according to PODXL expression predicts patients’ survival and defines a novel subgroup of patients
with unfavorable prognosis. PODXL might predict response to therapy, central nervous system
relapse, or transformation of indolent follicular lymphoma to aggressive diffuse large B-cell lymphoma.
Moreover, PODXL might constitute a potential therapeutic target for the treatment of B-NHL expressing
this molecule. In this regard, the expression of tumor-specific PODXL glycoforms would allow the
development of blocking antibodies with reduced undesirable side effects. Further studies are still
required to decipher the biological function of PODXL in different subtypes of mature B-NHL and the
molecular mechanism governing PODXL-induced mature B-NHL progression in order to determine
the potential of PODXL as a therapeutic target.

Funding: This study has been funded by Instituto de Salud Carlos III through the project PI18/00629 (Co-funded
by European Regional Development Fund; “A way to make Europe”).

Conflicts of Interest: The authors declare no conflict of interest.



Cancers 2020, 12, 396 17 of 25

Abbreviations

Abb. Full Name
ADCC Antibody-dependent cellular cytotoxicity
BMI-1 B-cell-specific Moloney murine leukemia virus integration site 1 homolog
B-NHL B-cell non-Hodgkin lymphoma
CXCR4 C-X-C motif chemokine receptor 4
CXCL12 C-X-C motif chemokine ligand 12
EMT Epithelial-mesenchymal transition
FASN Fatty acid synthase
G6PD Glucose-6-phosphate dehydrogenase
GLUT3 Glucose transporter 3
GSK3B Glycogen synthase kinase-3B
KLF4 Kruppel-like factor 4
MAPK Mitogen-activated protein kinase
NHL Non-Hodgkin lymphoma
PI3K Phosphatidylinositol 3-kinase
PINCH1 Particularly interesting new cysteine-histidine rich protein 1
PODXL Podocalyxin
PPP Pentose phosphate pathway
shRNAs Short hairpin RNAs
SP1 Specific protein 1
TGF-beta Transforming growth factor-beta
WT1 Wilms´ tumor antigen 1
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