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Circadian clocks are an intrinsic element of life that orchestrate appropriately timed daily 
physiological and behavioural rhythms entrained to the solar cycle, thereby conferring 
increased fitness. However, it is thought that the first archaic ‘proto-clocks’ evolved in 
ancient cyanobacteria in a marine environment, where the dominant time cues (zeitgebers) 
probably would have been lunar-driven and included tidal cycles. To date, non-circadian 
‘marine clocks’ have been described with circatidal (~12.4 h), circasemilunar (~14.8 days), 
and circalunar (~29.5 days) periodicity, mostly studied in accessible but temporally complex 
intertidal habitats. In contrast to the well-described circadian clock, their molecular 
machinery is poorly understood, and fundamental mechanisms remain unclear. We propose 
that a multi-species approach is the most apposite strategy to resolve the divergence 
that arose from non-circadian clockwork forged in an evolutionary environment with 
multiple zeitgebers. We review circatidal clock models with a focus on intertidal organisms, 
for which robust behavioural, physiological, or genetic underpinnings have been explicated, 
and discuss their relative experimental merits. Developing a comprehensive mechanistic 
understanding of circatidal clocks should be a priority because it will ultimately contribute 
to a more holistic understanding of the origins and evolution of chronobiology itself.
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INTRODUCTION AND BACKGROUND

For most of us, chronobiology is the study of the circadian clock in terrestrial species. 
However, life evolved in our oceans, harbouring a tremendous diversity of organisms and 
some of the most dynamic and extreme ecosystems on Earth. This has led to dramatic 
zonation of species and habitats (Dudgeon et  al., 1999; Hofmann, 2001) which are highly 
temporo-spatially variable. Links between chronobiology and ecology are apparent but often 
underexplored regarding temporal plasticity and the concept of ‘chronotype’, which define 
the characteristic temporal properties of organisms and are the targets of selection 
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(Helm et  al., 2017). Warming oceans, especially at high 
latitudes, are driving habitat range expansion (Poloczanska 
et  al., 2016) and exposure to different seasonal patterns of 
entrainment (and thermal/photoperiodic mismatches), limiting 
entrainment (Schmal et  al., 2020) or setting up potential 
barriers of migrations (Huffeldt, 2020). Investigating marine 
clocks using the right approaches and tools (Mat, 2019) 
provides an understanding of clock flexibility/lability and 
ultimately may be  relevant to even our own behaviour and 
behavioural disorders, such as sleep and mood, when 
considering the interplay of different, or disrupted, rhythms 
in single organisms (Häfker and Tessmar-Raible, 2020). This 
mini-review will focus on circatidal clocks most studied in 
intertidal animals, their origins, their zeitgebers, diversity, 
and future research directions. We  do not describe the 
molecular cogs of circadian clocks for which there are many 
excellent reviews (e.g., Zheng and Sehgal, 2012). Similarly, 
circalunar clocks have been comprehensively reviewed 
elsewhere (Andreatta and Tessmar-Raible, 2020) and will 
only be  fleetingly covered.

What Is the Evolutionary History of 
Circatidal Clocks?
To understand the clocks of marine organisms, we  must 
appreciate the origins of the circadian clock. There is a line 
of evidence, based on the evolutionary genomics of the kaiA, 
kaiB, and kaiC gene cluster in blue green algae, that suggests 
our ancient ancestors, the cyanobacteria, may have utilised a 
proto-clock as long as 2.5 billion (Ga) years ago (Tauber et  al., 
2004). The marine unicellular cyanobacterium Prochlorococcus 
is the most abundant and ancient photosynthetic organism on 
Earth, with ancestral lineages found in the fossil record ~3.2 Ga 
(Heubeck, 2009) that were adapted to low-oxygen, low-light, 
and high-nutrient conditions. Prochlorococcus evolved chlorophyll 
machinery and retained phycobilisomes, protein assemblages 
capable of absorbing light efficiently in generating energy and 
oxygen (Ulloa et  al., 2021). Together with their freshwater 
relatives Synechococcus, Prochlorococcus is not only credited 
for oxygenating the planet ~2.3 Ga but was also the first to 
evolve a functioning biological clock (Golden et  al., 1997). In 
both species, the clock consists of proteins KaiA, KaiB, and 
KaiC, with 24 h oscillations of KaiC phosphorylation persisting 
in vitro. It is suggested that possessing this endogenous timer 
may have been crucial in anticipating environmental extremes 
with active motile avoidance at a time when the atmosphere 
permitted significant UV radiation at the water’s surface 
(Pittendrigh, 1993; Hoiczyk, 2000).

By the time the first Eukaryotes emerged a billion years 
later, the stage was set for the rise of the modern trans-
nuclear circadian clock. Putative early multicellular organisms, 
such as Grypania, probably either a bacterial colony or an 
alga (Han and Runnegar, 1992), may have been the first to 
evolve a clock, now mirrored in contemporary marine 
algae such as Acetabularia. Furthermore, the temporal 
environment in which the proto-clock evolved would have 
been very different to the present day. During the time of 

the first Eukaryotes 2.7–1.6 Ga, the rotational period of 
the earth is estimated to have been between 13.5 and 4 h 
(Krasinsky, 2002)! Given that the current circadian period 
is 24 h, the molecular clock must have had the flexibility to 
adapt to a changing zeitgeber and opens the question: how 
may this proto-clock have evolved and diversified through 
these geological timescales? We  can say with some certainty 
(but little evidence) that since the first proto-clocks evolved 
in an aquatic environment, we  should examine the marine 
environment for clues to the early evolution of chronobiology, 
including the deep-sea, considered analogous to regions of 
the primitive ocean (Mat et al., 2020), and investigate whether 
circatidal clocks are the precursors to the circadian clock 
(Wilcockson and Zhang, 2008). To do so, we  should first 
consider the cyclic complexity of the marine realm.

Cyclic Complexity of Intertidal 
Environments
The intertidal zone is dominated by the relentless ebb and 
flow of the tides, which vary in magnitude and range depending 
on seasonality, atmospheric conditions, and geography. Abiotic 
cycles linked to tidal movements include salinity, pH, temperature, 
turbidity, nutrient availability, and hydrostatic pressure, as well 
as diel, lunar, and seasonal events which superimpose on these 
dramatic changes (de la Iglesia and Johnson, 2013), each carrying 
ecological implications (Figure  1). These cycles are driven by 
gravitational and centrifugal forces of the Earth and moon 
spinning around a common centre of gravity and modulated 
by the gravitational effects of the sun over the annual cycle. 
The lunar day (the time it takes the earth to complete one 
revolution beneath the moon) takes 24.8 h and results in a 
single diurnal tide, i.e., as found in the Caribbean Sea or, 
more commonly, two high and low tides a day known as 
semidiurnal tides, with a period of ~12.4 h. When the sun 
and moon align (full and new moon), their combined gravity 
generates larger ‘spring’ tides, and when at 90° relative to the 
earth (quarter moons), generate smaller ‘neap’ tides. These are 
known as semilunar tides, with a period of ~14.8 days, repeated 
every ~29.5 days but under a full moon (i.e., light at night) 
as the lunar cycle.

What Is the Evidence for Circatidal 
Clocks?
Circatidal (12.4 h) rhythms were first observed in the intertidal 
acoel worm Symsagittifera (formerly Convoluta) roscoffensis by 
Gamble and Keeble (1903). After collecting the animals from 
the shore into laboratory tanks the researchers noted: ‘After 
a spell of insolation, colonies sink below the surface [of the 
sand], and after a certain sojourn in darkness they return to 
the surface. These movements synchronise with the covering 
and uncovering of the Convoluta zone by the tides’. The worms’ 
innate ability to anticipate the tidal cycle enabled predictive 
downward migrations into the sand even when removed from 
the shore. Later, several studies revealed similar behaviour 
under constant conditions in a number of other marine organisms 
including molluscs (Brown et  al., 1954; Morton, 1977) and 
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crustaceans (Enright, 1963; Morgan, 1965; Barnwell, 1966; Jones 
and Naylor, 1970). Naylor (1958) conducted a seminal study 
which demonstrated circatidal behaviour in the crab Carcinus 
maenas but modulated by a circadian ‘suppressor’ of activity. 
This revealed that such rhythms were generated endogenously 
without external stimulus in the laboratory. In the following 
years, more work contributed to the diversity of marine taxa 
displaying biological rhythms (see Naylor, 2010). Other classic 
examples of circatidal behaviours include locomotory and 
metabolic activity in the isopod Eurydice pulchra (Hastings, 
1981a; Wilcockson and Zhang, 2008; O’Neill et  al., 2015) and 
foraging behaviour in the mangrove cricket, Apteronemobius 
asahinai (Satoh et  al., 2008; see Figure  1).

How Are Circatidal Clocks Entrained?
The greatest difference between marine and terrestrial 
(predominantly circadian) clocks is in the mode and mechanism 
of entrainment. The marine component of circasemilunar 
rhythmicity in Clunio marinus, for example, is entrained by 
tidal cycles of temperature and mechanical disturbance 
(Neumann, 1978). Conversely in the congener Clunio 

tsushimensis, circasemilunar rhythmicity is entrained by 
moonlight and is suspected to be  driven by an endogenous 
circasemilunar oscillator (Neumann, 1988, 2014). That the 
circasemilunar mechanisms in two species of midge from the 
same genus are entrained by different stimuli supports the 
putative diversity of marine clocks; if not in the fundamental 
clockwork, then at least the transducer linking environmental 
stimuli to the endogenous oscillator. Circatidal swimming in 
E. pulchra conversely (Figure  1) is likely entrained by a 
combination of synchronised wave action or vibration 
(turbulence) and variation in hydrostatic pressure as associated 
with benthic dwellers covered by different depths of water 
over a tidal cycle (Jones and Naylor, 1970; Hastings, 1981b; 
Zhang et  al., 2013). Common tidal zeitgebers include pH, 
temperature, salinity and hydrostatic pressure (Reid and Naylor, 
1990), vibration (Zhang et al., 2013), air/water exposure (Williams 
and Naylor, 1969), turbulence (Klapow, 1972; Neumann and 
Heimbach, 1984; Reid and Naylor, 1986), habitat access and 
immersion cycles (Chabot et al., 2008), and food pulses (Williams 
and Pilditch, 1997), which all vary cyclically with the tides 
(Figure  1).

FIGURE 1 | Representation of clocks of the speckled sea louse, Eurydice pulchra and the mangrove cricket Apteronemobius asahinai on a hypothetical shore. 
(A) Diurnal high tide; Eurydice appears more pigmented (circadian behaviour) and is active in the water column (circatidal behaviour). Apteronemobius is active 
(circadian) but does not forage (circatidal). (B) Nocturnal high tide; Eurydice appears less pigmented but is very active in the water column. Apteronemobius is not 
active. (C) Diurnal low tide; Eurydice appears pigmented but is buried in the sand. Apteronemobius is actively foraging on the shore. (D) Nocturnal low tide; Eurydice 
appears less pigmented and is buried. Apteronemobius is active but does not forage. (E) Summary of phenotypes as they relate to the circadian and circatidal 
cycles. Principle environmental zeitgebers for circatidal and circadian rhythms shown to the left and above panels, respectively.
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How Have Circatidal Rhythms Been 
Explained?
At a mechanistic level, there are several hypotheses which 
aim to address this question from different angles (Kim et al., 
2003). Enright (1976) first proposed the bimodal clock 
hypothesis in which a single oscillator commands both circatidal 
and circadian rhythms, depending on the dominant zeitgeber 
(Enright, 1976). Such a clock could be fundamentally circadian, 
but entrainable by tidal zeitgebers such as water current. 
Indeed, it has been shown that in the oyster, Crassostrea 
gigas, tidal rhythms can be  entrained by 6 h of light and 
dark cycles with circadian rhythms entrained by water current 
cycles (Mat et  al., 2012, 2014).

While the bimodal clock hypothesis is simple in that it 
abrogates the need for dual endogenous oscillators, Palmer 
(1995) and Naylor (1996) each proposed mechanisms to 
reconcile circadian and circatidal rhythms. Palmer (1995) 
proposed the Circalunidian Clock Hypothesis, while Naylor 
(1996) the Circatidal/Circadian-Clock Hypothesis. Palmer 
tendered that in the fiddler crab Uca pugnax, circatidal 
behaviours are the effect of dual circalunidian clocks with a 
period of ~24.8 h coupled in antiphase, while Naylor argued 
that these behaviours were better explained by the interaction 
of a ~24 h circadian clock and a distinct ~12.4 h circatidal 
clock, at least in the green crab Carcinus maenas. While 
both hypotheses have their merits, there has been mounting 
evidence supporting the latter including the independent 
disruption of the circadian rhythm, while leaving circatidal 
behaviour unaffected in both E. pulchra and A. asahinai 
(Takekata et  al., 2012, 2014a,b; Zhang et  al., 2013).

Separate circadian and circatidal clockwork, as proposed by 
Naylor, also provide an explanation for seemingly endogenous 
semilunar rhythms, given their natural harmonic relationship; 
the Beat Hypothesis (Bünning and Müller, 1961) states that 
independent circadian and circatidal clocks would come into 
phase every ~14.8 days thereby generating a circasemilunar 
rhythm of behaviour coincident with the spring/neap tidal 
cycle (Neumann, 2014; Kaiser and Neumann, 2021). Tidal-
related rhythms may also emerge where sensitivity to an 
exogenous stimulus is regulated by the circadian clock, explained 
by the Coincidence Detection Hypothesis (Kaiser and Neumann, 
2021). Tidal turbulence is strongest during the rising high 
tide, which occurs at the same time of day every ~14.8 days. 
Therefore, if the circadian clock was to regulate the sensitivity 
of turbulence receptors to engage at a consistent time of day, 
the turbulence of the rising tide would be  detected once every 
~14.8 days and produce a circasemilunar stimulus (Kaiser and 
Neumann, 2021).

DISCUSSION

The nature of circatidal clocks has been extrapolated from 
overt behavioural rhythms in many marine organisms over 
the last century (see Naylor, 2010). The value of 
behavioural studies in describing rhythmic phenotypes 
controlled by the circatidal clockwork is undeniable, but a 

definitive mechanistic model of the core tidal oscillator and 
entrainment pathways is needed. To establish a testable 
mechanistic model of the circatidal clockwork, contemporary 
functional molecular and cellular approaches must be  used 
against the rich backdrop of rhythmic tidal phenotypes, and 
across multiple species.

How Do We Decipher the Molecular Basis 
of Circatidal Clocks?
Genomic and transcriptomic datasets on circadian ‘clock genes’ 
in rhythmic marine species have provided insights to the 
relationships between species and the temporal expression 
profiles of whole transcriptomes, yet functional analyses are 
lacking (with a few exceptions, see below), and with few 
attempts at deciphering how tidal (and semilunar and lunar) 
clocks actually work. For example, functional and loss of 
function strategies applied to marine species include in vivo 
genome/transcription manipulation and mutagenesis—RNA 
interference (Takekata et  al., 2012, 2014a; Zhang et  al., 2013; 
Payton et  al., 2017), transcriptional activator-like effector 
nucleases (TALENs; Bannister et  al., 2014), and rhythmic 
phenotype rescue in transgenic flies expressing clock, or clock-
associated genes from marine animals (Beckwith et  al., 2011; 
Zhang et  al., 2013). Pharmacological perturbation of clock 
biochemistry (such as casein kinase inhibition), clock cell 
localisation (in situ hybridisation and immunochemical detection) 
and in vitro cell-based protein interaction assays (such as fly 
S2 cell systems) have been used to shed light on the role of 
canonical circadian genes in tidal and lunar rhythmicity (Zantke 
et  al., 2013; Zhang et  al., 2013). The paucity of functional 
studies on circatidal clocks likely reflects that organisms exhibiting 
robust, persistent and observable phenotypes lack tried and 
tested, species-specific and validated laboratory reagents or, in 
many cases, genomes. Many marine species also exhibit complex 
lifecycles, usually with planktonic phases, that make genome 
editing a significant challenge.

Nevertheless, it is increasingly evident that non-model systems 
are essential in revealing the nature and evolution of clocks 
and so called ‘wild clocks’ have emerged as a fertile ground 
for research (Schwartz et  al., 2017). The breadth of marine 
species explored for their rhythmicity represents an exciting 
platform for targeted mechanistic approaches to gain insight 
to circatidal clock function. To facilitate this, good models 
should have some key attributes: a reliable and measurable 
circatidal phenotype (due to the inherent variability in tidal 
cues and to decipher between daily and truly tidal rhythms); 
genetic and experimental tractability; availability, accessibility, 
and simple husbandry.

Several suitable candidate non-model organisms have been 
identified. For example, E. pulchra has been shown to exhibit 
robust, entrainable phenotypes and is relatively content in 
experimental settings. However, its protracted development 
means that genome editing is challenging. Apteronemobius 
asahinai also shows promise as a tidal model (Satoh and Terai, 
2019) and has a recently published draft genome (Satoh et  al., 
2021). Other models include an intertidal limpet (Schnytzer 
et  al., 2018) and bivalves (Connor and Gracey, 2012; 
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Mat et al., 2012, 2014, 2016; Gracey and Connor, 2016; Payton 
et al., 2017) but for the limpet in particular, individual, entrainable 
phenotypes are not as easily measured as for more mobile 
animals that lend themselves to infra-red beam monitoring. 
Therefore, energies and resources across multiple emerging 
model species are necessary; each model has its merits, and 
it is a tantalising prospect that concerted and collaborative 
efforts might yield deep insight into the evolution of the 
circatidal clockwork.

Circadian genes have been the focus of tidal and lunar 
clock research until now and there is evidence that dominant 
cycles of the organism (Mat et  al., 2016, 2020; Tran et  al., 
2020), or even the demands of photosynthetic symbionts (in 
the case of the coral, Aiptasia diaphana), shape tidal or 
daily gene expression (Sorek et  al., 2018). Such studies are 
intriguing but do not directly address the functional basis 
of circatidal phenotypes. In parallel with the manipulation 
of circatidal genomes to dissect the tidal clock (Takekata 
et  al., 2012, 2014a; Zhang et  al., 2013; Payton et  al., 2017), 
efforts might also focus on identifying regulatory elements 
of tidally rhythmic gene transcription (tidally responsive DNA 
enhancers; TyDEs; O’Neill et  al., 2015). These are suggested 
for nuclear expression of mitochondrial transcription factors 
in E. pulchra and were revealed by examination of metabolic 
markers of tidal activity. The recent discovery of a cell-
autonomous 12 h murine clock regulated by the spliced form 
of X-box Binding Protein 1 (XBP1s) is interesting because 
XBP1s-driven rhythms of transcription are distinct and 
independent from the circadian clock. This feature resonates 
with the notion of independent circadian and tidal clocks. 
Moreover, XBP1s are conserved through evolution and have 
been described in some marine species (Pan et  al., 2020; 
Tong et  al., 2021); analysis of 12 h cycling transcripts in two 
intertidal species, the anemone Aiptasia diaphana and limpet 
Cellana rota, revealed significant overlap with 12 h cycling 
transcripts in mice (Pan et  al., 2020).

Where Is the Circatidal Clockwork?
The hypothesis that some tidal (and indeed, lunar) clocks 
are distinct from the circadian clock (Reid and Naylor, 1989; 
Takekata et  al., 2012, 2014a,b; Zantke et  al., 2013; Zhang 
et  al., 2013; Satoh, 2017) raises questions about the physical 
interactions of clock cells with different periods and whether 
discrete subsets of neurons interact to drive circatidal 
phenotypes. There have been remarkably few attempts to 
describe the neuroarchitecture of clocks in lunar and tidal 
organisms with efforts hampered by the current lack of bona-
fide tidal candidate genes or proteins to target. Some reagents, 
including antisera to circadian proteins, have been generated 
specifically for circatidal marine species such as E. pulchra 
(Zhang et  al., 2013), while heterologous sera have been used 
to describe the brain regions expressing circadian neuropeptides 
or proteins in the mangrove cricket (Takekata et  al., 2014b) 
and crabs (Beckwith et  al., 2011). Attempts at isolating the 
cellular foci of tidal clocks using optic lobe ablation in the 
mangrove cricket have been reported and corroborate the 
notion of separate tidal and daily clocks (Takekata et al., 2014b). 

Efforts to generate and collaboratively share resources for 
cell localisation and functionality would be  well rewarded.

Understanding Circatidal Entrainment 
Mechanisms 
The diversity of zeitgebers in coastal habitats offers the 
opportunity to explore how these environmental signals are 
transduced into the oscillator(s) of tidal organisms, a relatively 
untouched area of marine chronobiology; indeed, environmental 
perception per se in marine animals is poorly researched. For 
example, E. pulchra entrain to cycles of vibration or mechanical 
stimulation and Drosophila chordotonal organs, peripheral 
mechano-receptors, have been linked to the circadian entrainment 
via periodic vibration (Simoni et  al., 2014) and temperature 
(Sehadova et  al., 2009). A recent, elegant study on Platynereis 
dumerilii segmentally iterated r-opsin expressing peripheral 
sensory cells demonstrated dual photo and non-photosensory 
(mechanosensory) roles. Here, mechanosensory roles of the 
r-opsin receptors may have evolved secondarily to light receptors 
(Revilla-I-Domingo et  al., 2021). Exploration of entrainment 
pathways from receptor to oscillator in other evolutionarily 
ancient marine species might yield important comparative 
outcomes with relevance to extant circadian systems.

CONCLUSION

The first molecular proto-clocks probably evolved in the same 
organisms which paved the way for all aerobic life by 
oxygenating Earth’s atmosphere. These adapted to an ever-
changing cyclic environment over geological timescales, 
including lengthening of the diel cycle. In the last century, 
many marine behavioural rhythms have been identified and 
multiple mechanisms suggested. Now, the rapid advance of 
powerful cellular and molecular methods has equipped 
chronobiologists with the necessary tools to reveal the 
clockwork in non-model marine organisms. Only through 
collaborative and interdisciplinary research linking marine 
biologists, molecular and cellular biologists, and neuroscientists, 
will we  achieve a holistic understanding of the evolution, 
mechanism, and principles of the circatidal clock.
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