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Measles (aka rubeola) is a highly contagious disease caused by a single-stranded RNA

virus belonging to the family Paramyxoviridae. Measles virus (MeV) caused major epi-

demics and claimed an estimated 2.6 million lives annually prior to 1963 when a measles

vaccine was introduced. Immunization against measles is estimated to have prevented 23.2

million deaths between 2000 and 2018. Notwithstanding, MeV continues to ravage impov-

erished regions, especially in the aftermath of natural disasters. In addition, despite the

availability of safe, effective and affordable vaccines against MeV, anti-vaccination senti-

ments have created vulnerable societal pockets, which can be troubling in light of the

increasing ease of global travel. It is therefore not surprising that recent years have wit-

nessed a multitude of measles outbreaks and that measles-associated deaths have been

alarmingly on the rise.

Measles-induced immunosuppression

Many deaths from measles are due to secondary infections with unrelated pathogens amid a

profound state of immunosuppression [1,2]. The three receptors dictating the cellular tro-

pism of MeV are CD46 (aka membrane cofactor protein) [3,4], nectin 4 (aka poliovirus

receptor-related 4) [5,6], and CD150 (aka signaling lymphocyte activation molecule family

member 1) [7–9]. Wild-type (WT), laboratory-adapted and vaccine strains of MeV utilize

or hijack CD150 to interact with or infect permissive immunocytes, and measles-elicited

lymphopenia and antigen (Ag)-presenting cell (APC) impairments have been linked to

CD150 expression.

The acquired immune deficiency of patients with measles was reported as early as in

1908 when a failure to mount normal tuberculin skin reactions was observed in children fol-

lowing measles [10]. The mechanisms underlying measles-associated immunosuppression,

which can last for weeks to months, are wide-ranging and far from fully understood. Macro-

phages and dendritic cells (DCs) become infected with MeV and serve as Trojan horses

transferring the virions to select lymphocyte subpopulations [11–13]. Exposure to or infec-

tion with MeV alters signal transduction pathways operating in DCs and interferes with

their survival, maturation, and pro-inflammatory cytokine production and naïve T cell

priming capacities [14–16]. T/B cell lymphopenia, retarded T cell proliferation in response

to nonspecific mitogens [17], a prolonged cytokine imbalance in favor of T helper 2 (TH2)-

type and anti-inflammatory mediators [e.g., interleukin (IL)-4, IL-13 and IL-10] [18,19],

and CD4+CD25+ regulatory T cell accumulation in the peripheral blood [20] are among

other immunological consequences of measles.
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Adaptive immune amnesia

By infecting and eliminating preexisting memory cells that express high levels of CD150, MeV

erases the recollection of past exposures to microbes and “resets” the host’s defense system

back to its default. This is referred to as “immune amnesia” [21], which is thought to contrib-

ute to measles immunosuppression (Fig 1A and 1B).

Using human tonsillar tissue blocks, Condack and colleagues reported that WT MeV

strains infect approximately 5 to 6 times more CD3+CD45RO+ memory T (TM) cells than

CD3+CD62L+CD45RA+ naïve T (TN) cells [22]. These results were recapitulated in an in vivo

setting in which intratracheal infection of rhesus macaques and cynomolgus macaques

resulted in the preferential infection of CD4+ and CD8+ TM cells [23]. de Vries and colleagues

subsequently demonstrated that MeV infects central memory T (TCM) and effector memory T

(TEM) cells present in the peripheral blood, tracheobronchial lymph nodes, tonsils/adenoids,

and Peyer’s patches of infected macaques [21]. Importantly, a numerical decline in the TM

compartment was followed by massive lymphoproliferation. Accordingly, the authors posited

that measles lymphopenia, driven by TM depletion, can be masked by the expansion of MeV-

Fig 1. By killing memory cells, MeV causes adaptive immune amnesia. (A) Primary T and B cell responses to various

microbial pathogens generate diverse memory cell pools. Once reexposed to cognate antigens, memory cells respond

specifically, quickly and strongly to eliminate pathogens through cell-mediated and humoral mechanisms that are often

protective. (B) MeV binds CD150 and destroys naïve and memory B cells as well as memory T cells. As a result, memory

cell repertoires are depleted of many specificities, and a state of adaptive immune amnesia is established, which is

responsible, at least partially, for measles-associated immunosuppression and heightened susceptibility to infections that

are unrelated to measles. APC, antigen-presenting cell; BCR, B cell receptor; BM, memory B [cell]; BN, naïve B [cell]; CTL,

cytotoxic T lymphocyte; MeV, measles virus; MHC, major histocompatibility complex; TCR, T cell receptor; TH, helper T

[cell]; TM, memory T [cell]; TN, naïve T [cell].

https://doi.org/10.1371/journal.ppat.1009071.g001
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specific lymphocytes and bystander cells. This may explain, at least partially, the sustained

immunosuppression of measles patients despite their seemingly short-term lymphopenia.

Unlike their naïve counterparts, human blood and tonsillar TCM and TEM cells are highly

susceptible to MeV infection in vitro [21,24,25]. By comparison, naïve B (BN) and memory B

(BM) cells are comparable in their permissiveness to MeV [24]. A 2013 measles outbreak that

afflicted unvaccinated children from a Dutch Orthodox Protestant community provided Lak-

sono and coworkers with a unique opportunity to analyze serial peripheral blood mononuclear

cell (PBMC) samples collected before and after measles [26]. These investigators confirmed T/

B lymphopenia during prodromal measles. They also detected MeV-infected CD4+ and CD8+

TM cells, but not TN cells, which had reached their peak frequencies approximately 1 day

before the onset of the characteristic measles rash. By contrast, infected BN and BM cells were

detectable at similar levels. Importantly, comparing pre- and post-measles samples revealed

significant drops in IgG+ and IgA+ BM cell percentages [26]. Although BM cells are not the

only B cell population targeted by MeV, their depletion should compromise recall responses of

humoral nature to a plethora of pathogens. Consistent with this notion, experimental infection

of rhesus macaques and natural infection of unvaccinated children with MeV shrunk the size

of preexisting antibody repertoires by up to 60% and 73%, respectively [27], likely due to long-

lived plasma cell (LLPC) deletion. Some of the missing specificities should recover upon reex-

posure to cognate Ags. However, some antibodies may be permanently lost if BN and BM cells,

along with LLPCs, are drastically eliminated. In fact, B cell receptor (BCR) sequencing of pre-

and post-measles PBMCs by Petrova and colleagues showed inadequate reconstitution of BN

cell pools as well as a loss of previously expanded BM cell clones after MeV infection [28].

Petrova and colleagues also employed a ferret model of influenza A virus (IAV) vaccination

to document the functional significance of immune amnesia [28]. Infecting IAV-vaccinated

ferrets with canine distemper virus (CDV), a morbillivirus closely related to MeV, lowered

IAV-neutralizing antibody titers, indicating the abolishment of “serological memory” other-

wise maintained by plasma cells. Moreover, CDV infection curtailed the animals’ recall

response to a secondary IAV challenge and worsened the severity of their flu symptoms.

Unmasking the innate face of immune amnesia

Immunological memory is commonly viewed as a hallmark feature of adaptive immunity.

However, numerous studies in the past decade or so have demonstrated that priming innate

and innate-like immune cells with a pathogen may prepare or “train” them for stronger

responses to the same, similar or even somewhat dissimilar microbes [29].

Up until recently, immune amnesia was discussed exclusively in the context of adaptive

immunity, and whether MeV also targets innate, “memory-like” T cells remained unknown.

These include mucosa-associated invariant T (MAIT) and invariant natural killer T (iNKT)

cells, which are regarded as emergency responders to microbial invaders [30–33].

MAIT cells recognize riboflavin precursor derivatives of bacterial and fungal origin, among

other compounds, in the context of MHC-related protein 1 (MR1) [34–37] (Fig 2A). iNKT

cells detect glycolipid Ags, including those derived from pathogens, presented within the

hydrophobic pocket of CD1d [38–40] (Fig 2A). The antimicrobial properties of these invariant

T (iT) cells are owed to their tremendous immunomodulatory and cytolytic activities [32,41–

43].

Several phenotypic markers of NK cells (e.g., CD56 and CD161) and mainstream T cells

(e.g., CD3) and their memory subset (e.g., CD45RO) are also expressed by many iT cells [44–

47]. Therefore, iT cells may have been given mistaken identities in previous studies, including

but not limited to those conducted on measles. This is particularly important in the case of
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MAIT cells that form a substantial fraction of peripheral blood CD3+, CD8+, and CD45RO+

(or CD45RA−) cells in humans. Of note, human MAIT cells can be loosely divided into inter-

feron (IFN)-γ-producing MAIT-1 and IL-17-producing MAIT-17 subsets with transcription-

ally overlapping features [48,49]. Interestingly, of functional T cell subsets, TH17- and TH1/

TH17-type cells are reportedly most sensitive to MeV infection in vitro [24] and circulate at

reduced frequencies in children with measles [26]. The latter observation lends credence to the

possibility of MAIT cell depletion during measles.

Using tetramer reagents to precisely identify human MAIT [36,50] and iNKT cells [51,52],

we recently demonstrated that CD150 is more highly expressed by iT cells than by any other

lymphocyte subsets, including TCM and TEM cells [25]. We found MeV to effectively infect iT
cells and to quickly program MAIT cells for apoptotic death. Based on these results, it is plausi-

ble to assume that MeV tracks and destroys iT cells, thus putting an important component of

innate antimicrobial defense out of commission. This, in turn, renders measles patients prone

to a wide range of unrelated infections (Fig 2B). This phenomenon may be referred to as

Fig 2. Invariant T cell depletion by MeV results in innate immune amnesia and contributes to adaptive immune

amnesia. (A) MAIT and iNKT cells recognize certain bacterial and/or fungal components displayed by the

monomorphic antigen-presenting molecules MR1 and CD1d, respectively. These iT cells can also be activated during

viral infections in a cytokine-dependent manner, primarily through IL-12 and IL-18 receptor signaling. iT cells may

remember their encounter with pathogens or may be “trained” to launch more robust responses to the same, similar,

or unrelated microbes in the future. They also promote classic memory cell responses, thus indirectly aiding in cell-

mediated and humoral immunity to cognate microbial antigens. (B) iT cells express very high levels of CD150 and may

be consequently targeted and eliminated by MeV. The net effect is hindered trained immunity and compromised

classic memory against a broad spectrum of pathogens, which together cause severe immunosuppression and

increased proneness to many infections. APC, antigen-presenting cell; IL, interleukin; iNKT, invariant natural killer T

[cell]; iT, invariant T [cell]; MAIT, mucosa-associated invariant T [cell]; MeV, measles virus; MR1, MHC-related

protein 1; TCR, T cell receptor.

https://doi.org/10.1371/journal.ppat.1009071.g002

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009071 December 17, 2020 4 / 10

https://doi.org/10.1371/journal.ppat.1009071.g002
https://doi.org/10.1371/journal.ppat.1009071


“innate immune amnesia” for several reasons. First, most iT cells have a TEM-like phenotype

[45–47]. Second, genuine memory iT cell pools may exist [53–55]. Third, exposing MAIT cells

to infectious agents or vaccine adjuvants may result in their clonal expansion and sustained

activation and may also “train” them to respond more vigorously when they encounter the

same agent, other stimuli, or even heterologous infections [56–59] (Fig 2A). This is distinct

from the fine specificity of adaptive memory. Fourth and perhaps most definitively at this

point, iT cells promote conventional memory cell responses [53,59–64]. As such, their deple-

tion by MeV should also negatively impact classic immunological memory (Fig 2B).

The concept of innate immune amnesia is supported by additional findings. First, some of

the bacterial culprits of post-measles infections are recognized and responded to by MAIT

cells in vitro [65,66]. Second, reactivation of infection with Mycobacterium tuberculosis, which

is known to elicit MAIT cell responses [55], has been reported after measles [67]. Third, mea-

sles-induced mortality due to immunosuppression is typically caused by secondary infections

in the respiratory tract, MeV’s main port of entry, and also in the gut [68–70]. These are

among locations in which MAIT cells strategically reside and operate.

Implications and future directions

MAIT cells comprise up to approximately 10% of all T cells in the human peripheral blood

and a substantial fraction of immune cells in mucosal layers—hence their denomination. They

fulfill critical roles early in the course of antibacterial and antifungal host responses. They may

detect and kill infected cells displaying MR1-bound Ags [42,71–74], transactivate other anti-

pathogen effectors such as NK cells, iNKT cells, and cytotoxic T lymphocytes (CTLs) [75–77],

and facilitate memory B cell responses [59,64]. They may also participate in tissue repair [78–

81], thus indirectly assisting with the maintenance of tissue-resident memory compartments.

Therefore, MAIT cell depletion should have serious repercussions for host defense.

The final extrathymic stage of MAIT cell maturation and their homeostasis in the periphery

require the presence of commensal bacteria and B cells [82,83]. One may thus speculate that mea-

sles-induced peripheral B cell depletion may affect the numerical reconstitution of MAIT cells

after measles. To this end, MAIT cells and B cells, among other MeV targets, need to be com-

pared for their reconstitution kinetics. From a qualitative standpoint, it will be important to

ascertain whether returning MAIT cells will exhibit bias, for instance in their cytokine production

capacity, as they will be gradually reoccupying their niches. This may be studied longitudinally

after MeV is cleared and no longer considered an existential threat to either MAIT cells or B cells.

Unlike in mice, iNKT cells are rare in the human peripheral blood and in human tissues.

This is with the exception of the omentum [84], historically dubbed as the “abdominal police-

man” [85], which serves to promote peritoneal immune responses [86]. Therefore, iNKT cell

elimination by MeV may be detrimental to protective immunity in specialized sites.

Viruses are devoid of the riboflavin biosynthesis machinery that supplies prototypic MAIT

Ags [35–37] and of glycolipids that stimulate iNKT cells. However, they can still activate iT
cells in an MR1/CD1d-independent fashion, predominantly through cytokines like IL-12 and

IL-18 [87–89] (Fig 2). As such, innate immune amnesia should also weaken host responses to

viral pathogens other than MeV.

To conclude, iT cell depletion by MeV represents a novel immune evasion strategy that

impedes memory responses to bacteria, yeasts, and viruses, either directly or indirectly. There-

fore, MAIT and iNKT cells may be considered the missing link for measles immunosuppres-

sion at the interface between the innate and adaptive arms of immunity. Future studies on

experimental and natural measles will need to document the contributions of innate amnesia

to immunosuppression in the wake of measles.
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