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What this study adds
This study uses novel simulation studies to quantify the errors 
that can result when measuring an environmental exposure 
from a data source with low spatial resolution. We show that 
epidemiologic studies that rely on low-resolution images (such 
as those provided by the Defense Meteorological Satellite 
Program Operational Line-Scan system) may be particularly 
prone to bias, confounding, and reduced statistical power. This 
work may help explain some of the variations in results from 
epidemiologic studies of artificial light at night exposure as a 
potential cause of various adverse health outcomes.

The impact of image resolution on power, bias, 
and confounding
A simulation study of ambient light at night exposure
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Introduction
People who live in urban environments are exposed to many 
environmental pollutants that are hypothesized or known to 
affect health, including heavy metals, air pollution, noise, and 
light pollution. Many of these pollutants have strong geograph-
ical correlations with each other.1 A busy arterial street, for 
example, can have much higher levels of air pollution, noise, 
and light pollution than a residential street only a few blocks 
away. In this article, we explore how these correlations and the 
spatial resolution of geographical data can potentially impact 
epidemiologic research.

The article is motivated by studies of the potential relation-
ship between outdoor artificial light at residences and breast 
cancer risk.2–8 In the ideal case, measurement of artificial light 
exposure would be done using personal devices that capture 
light exposure while a person is outside and inside, as well as in 
their sleeping environment. The use of such light meters9 is lim-
ited by cost and the fact that the biologically effective exposure 
time window occurs years before the development of adverse 
outcomes such as cancer. Some studies have used questionnaires 
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Background: Studies of the impact of environmental pollutants on health outcomes can be compromised by mismeasured 
exposures or unmeasured confounding with other environmental exposures. Both problems can be exacerbated by measuring 
exposure from data sources with low spatial resolution. Artificial light at night, for example, is often estimated from low-resolution 
satellite images, which may result in substantial measurement error and increased correlation with air or noise pollution.
Methods: Light at night exposure was considered in simulated epidemiologic studies in Vancouver, British Columbia. First, we 
assessed statistical power and bias for hypothetical studies that replaced true light exposure with estimates from sources with low 
resolution. Next, health status was simulated based on pollutants other than light exposure, and we assessed the frequency with 
which studies might incorrectly attribute negative health impacts to light exposure as a result of unmeasured confounding by the 
other environmental exposures.
Results: When light was simulated to be the causal agent, studies relying on low-resolution data suffered from lower statistical power 
and biased estimates. Additionally, correlations between light and other pollutants increased as the spatial resolution of the light expo-
sure map decreased, so studies estimating light exposure from images with lower spatial resolution were more prone to confounding.
Conclusions: Studies estimating exposure to pollutants from data with lower spatial resolution are prone to increased bias, 
increased confounding, and reduced power. Studies examining effects of light at night should avoid using exposure estimates based 
on low-resolution maps, and should consider potential confounding with other environmental pollutants.
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night band

www.environepidem.com
mailto:mmcisaac@upei.ca
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


McIsaac et al. • Environmental Epidemiology (2021) 5:e145 Environmental Epidemiology

2

to try to assess past light exposure, usually asking about past 
experiences with shiftwork and possible bedroom light expo-
sure.10,11 While indoor light at night (LAN) is believed to be the 
more relevant exposure,12 a frequently used proxy measure in 
epidemiologic studies is LAN from satellite imagery correspond-
ing to study participants’ place of residence.2–6,13–22

For many years, the only source of global light emission data 
was the Defense Meteorological Satellite Program Operational 
Line-Scan system (DMSP). This instrument has been used in 
epidemiologic studies,3–6,13–15,17,18 although it was not originally 
intended for scientific work. The radiance measurements were 
not calibrated, the radiance resolution was only eight bits, and 
as a result, city centers often reported saturated values (i.e., the 
maximum possible value). Furthermore, the DMSP had a low 
spatial resolution, in the range 2.5–5 km.23–25 Recently, higher 
resolution and calibrated data have become available,25 for 
example, from the Visible Infrared Imaging Radiometer Suite 
Day/Night Band (DNB) sensor24 (~750 m resolution) or from 
astronaut photographs from the International Space Station 
(ISS) (up to 10 m resolution).26 Despite this, many studies com-
pleted later than 2012 continued to use the lower resolution and 
uncalibrated DMSP images, rather than the higher resolution 
ISS photos or DNB measurements.3–5,8,13–15,17,18,20

A number of issues may arise from using lower resolution 
imagery to assess LAN, and only some are well understood. For 
example, using lower resolution imagery introduces something 
akin to Berkson-type measurement error to LAN assessment.27 
In other words, while we wish to assess the nighttime bright-
ness at a specific location, we actually observe a brightness that 
was averaged over a larger area. This likely reduces study power 
through exposure misclassification, and depending on the struc-
ture of the city and the chosen method of analysis, could poten-
tially introduce bias.

Another potential issue arising from using lower-resolution 
imagery is the possibility of an association between LAN and 
other risk factors that are strongly correlated at low resolu-
tions. Any risk factor that varies between urban, suburban, and 
rural environments (e.g., pollution, socioeconomic status) could 
hypothetically have some relationship with LAN, because LAN 
tends to be brighter in certain areas (e.g., city centers, industrial 
areas), and also brighter in more populous cities.28 There has 
been little investigation into the nature of such associations.

This study examines the impact of image resolution and con-
founding factors on bias and error rates—both type II errors 
(false-negative) and type I errors (false-positive). Hypothetical 
epidemiologic studies are conducted using Monte Carlo simula-
tions. Here, we simulate adverse outcomes caused by one type 
of environmental pollutant, and then examine (1) what would 
be observed in the case that analyses used exposure maps of this 
simulated causal agent at lower resolutions, or (2) what would 
be observed in the case that analyses used exposure maps of 
other (noncausal) pollutants, that may or may not be correlated 
with the simulated causal agent. We hypothesized that study 
power will be reduced when the simulated causal agent expo-
sure is estimated using lower-resolution spatial data23,29; and 
that statistically significant effects will frequently be observed 
even when testing noncausal pollutants instead of the simulated 
causal agent (due to confounding), especially when those non-
causal pollutant exposures are estimated using lower-resolution 
data. Although the focus here is on studies of outdoor artificial 
light at residences, these results can be generalized to other geo-
graphic pollutants.

Methods
In this article, we compare LAN (estimated from nighttime 
imagery) with seven other types of environmental pollution in 
the region near Vancouver, Canada. We conducted two stages 
of simulations. In stage 1, we focus on how spatial resolution 

of geographical data relates to type II errors (“false-negatives”; 
in other words, how often a study relying on lower-resolu-
tion data might mistakenly conclude that the simulated causal 
agent is not related to an adverse outcome). Here we simulated 
a setting where an adverse outcome is caused by light expo-
sure, and explored the impact that decreased image resolution 
would have on statistical power. In stage 2, we examine type 
I errors (“false-positives”; in other words, how often a study 
relying on lower-resolution data might mistakenly conclude 
that a noncausal agent is causing an adverse outcome). Here we 
run simulations in which some pollutant other than LAN is the 
assigned cause of an adverse outcome, and explore the impact 
that decreased image resolution would have on confounding 
(i.e., on the frequency of the technically correct but potentially 
misleading finding that LAN is associated with higher risk of 
the outcome).

Light at night data

On the night of March 30–31, 2013, an astronaut on board 
the ISS took dozens of photos with a 400 mm lens while 
passing over North America. Citizen scientists in the “Cities 
at Night” project later categorized the photos and identified 
Vancouver as the target of some of the images. Each of the 
images in the series cover slightly different areas, and some 
have more motion blur than the others (the ISS travels at nearly 
8 km/s). We selected image ISS035-E-13071 (available from 
the “Gateway to Astronaut Photography of Earth: https://eol.
jsc.nasa.gov), which has little motion blur and covers much of 
the Vancouver metro area. The image was radiometrically cal-
ibrated by Noktosat.com, using the techniques developed by 
Sánchez de Miguel et al.30–32 Briefly, the color ratio of the green 
and red band was used to estimate spectral radiance (nW cm-2 
sr−1Å−1) in a synthetic luminance band (i.e., the camera green 
band value was slightly adjusted to account for different lamp 
spectra). This is the same technique that was used by Garcia-
Saenz et al.2

We used this image to produce synthetic satellite imagery 
with lower spatial resolution. This was done by simulating the 
spatial sampling process of a hypothetical satellite sensor. For 
each desired output resolution, we convolved the original image 
with a 2D spatial (x, y) point spread function using a simple 
Gaussian kernel with a full width at half maximum equal to the 
output resolution (Figure 1).33 To speed processing, the special 
size of the kernel extended only to 3σ, which covers >0.997 of a 
complete Gaussian distribution. The pixel values therefore con-
tain only 99.7% of the surrounding information like the actual 
ground instantaneous field of view. Note that this is different 
from simply averaging data and producing an image with larger 
ground sample distance, and is more representative of what a 
real satellite with a reduced resolution would observe.34 For 
ease of programming, all images were saved with an identical 
extent in a Universal Transverse Mercator projection, with a 
5-m ground sample distance. The full and reduced resolution 
data are shown in Figure 2.

Other pollutant data

For comparison to the LAN data, we obtained maps of a 
number of other pollutants from colleagues at the University 
of British Columbia (Figure  3). The pollutants include: “all 
noise,”35 “street noise,”35 black carbon,36 NO,37 NO2,

37 PM2.5,38 
and ultrafine particles.39 These datasets were clipped and resized 
(using nearest neighbor interpolation) to the same extent as 
the LAN datasets (with 5 m ground sample distance). Each of 
the maps are based on different models, with reference data 
obtained in different years, times of day, and times of year (see 
eTable 1; http://links.lww.com/EE/A130). The heterogeneity 
is not a problem for this study; we are using them as related 

https://eol.jsc.nasa.gov
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examples of spatial distributions of pollutants, not trying to 
identify the underlying cause of real disease.

Simulated residence locations and exposures

For each simulated study, we produced a set of geographical 
coordinates for the residences of 2000 simulated study partici-
pants. Population is known to scale approximately linearly with 
LAN for low-resolution imagery.28 We therefore decided to use 
a modified version of the 50 m resolution LAN data as a proxy 
for population density, and assigned locations proportionally 
(e.g., so that areas with twice as much LAN were twice as likely 
to have a resident assigned). The 50 m resolution image was 
chosen so that simulated residences would be more common in 
bright neighborhoods, but would not necessarily always have 
bright values at full resolution. This process was repeated to 
create 2000 simulated data sets (each containing 2000 simu-
lated residences).

As shown in Figure 2, the Metro Vancouver area contains a 
few large regions where people do not live (e.g., mountainous 
or water-filled areas). These areas do not always have values of 
zero in the LAN map, either because of sensor noise or because 
of the detection of scattered skyglow.40 Therefore, before gen-
erating the residences, large sections of these dark areas were 
set to zero LAN (preventing participants from being assigned 
these locations as residences). Once a location was assigned for 
a simulated participant, the pixel value was recorded from the 
maps for each of the pollutants (including LAN at different res-
olutions), and saved to a data file.

Relationship between light at night and other pollutants

We examined the correlation between pollutants in two differ-
ent ways. First, we paired the non-zero areas of each map to the 
non-zero areas of each other map, and calculated the Pearson 
correlation coefficient for each dataset pair (Figure 4). This is 
the spatial correlation for the study area, but is not necessarily 
the same as the correlation that would be observed at residences, 
because the population is not uniformly distributed across the 
map. We therefore also calculated the Pearson correlation coef-
ficients between the different LAN measurements and each pol-
lutant at all simulated residences (Figure 5).

Stage 1 simulations: exploring type II errors when light at 
night is the cause of the adverse outcome

In stage 1, we simulated a situation in which light exposure at 
the place of residence in the full resolution map is the cause of 
an adverse outcome. We then examined what researchers would 
observe if they estimated light exposure using a map that had 
reduced spatial resolution.

Individual outcome statuses were simulated based on a 
logistic model. That is, the probability of an adverse out-
come (Yi = 1 ) for individual i with LAN exposure of Xi  

was P Y X Xi i i( exp= = + − +( )( ) 
−

1 1 0 1
1
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LAN exposure in the full resolution map, the odds of an adverse 
outcome increased by a factor of eλ1 .

After the outcome data were generated using the full reso-
lution map, we examined what would happen if researchers 
used logistic regression to estimate the effect of LAN using 
exposure estimates based on maps with lower spatial resolu-
tion. That is, for each spatial resolution under consideration, 
we determined the estimated LAN exposure, X* , for each indi-
vidual in the simulation. We then performed a logistic regres-
sion using these exposure estimates in order to calculate λ� 0
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and λ� 1

* , the point estimates of the parameters in the expression 
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analyzing this study using LAN exposure measured from a map 
with that particular spatial resolution.

Each simulation included 2000 simulated participants, and we 
performed 2000 such simulations in order to calculate empirical 
power and bias. For each of the LAN maps at different resolu-
tions, the statistical power of the experiment is defined as the 
percentage of simulations that did not result in a type II error 
(i.e., as the percentage of simulations that correctly identified 
a statistically significant relationship between LAN and the 
adverse outcome). We therefore calculated the percentage of sim-
ulations in which researchers would have observed a statistically 

Figure 1. Kernel functions (upper layer) used to reduce spatial resolution of images using sets of pixels from the original image (lower layer). Shown here are a 
Gaussian kernel (left), with decreasing weighting from the center to the edges when reducing spatial resolution, and a uniform rectangular kernel (right), which 
weights pixels equally in a rectangle when reducing spatial resolution. Figure modified from the work of Bochow 2010.33
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significant effect of LAN (defined here as obtaining a 95% con-
fidence interval for λ1  that does not include 0). Additionally, 
empirical bias was calculated as the difference between the aver-
age LAN coefficient estimate (λ�1

* ) and the true LAN coefficient 

used for outcome generation (i.e., λ λ�
1 1
* − ).

These simulations were conducted using a large range of val-
ues of λ1  representing no effect of LAN up to a very strong 
effect of LAN, and using λ0  values representing three levels 
of prevalence of the adverse outcome. Specifically, λ1  values 
were chosen corresponding to odds ratios ranging from 1 to 
2 per 1 SD increase in full-resolution LAN, and correspond-
ing λ0  values were chosen such that outcome rates at mean 
LAN exposure were 5%, 20%, and 50%. This wide range of 
settings was explored such that the findings might be generally 
applicable across research settings involving a variety of envi-
ronmental factors and health outcomes. Note that study power 
is a function of not only effect size, but also sample size, which 

can vary drastically from one study to another. Our goal here 
is not to predict power for a particular effect size, but rather to 
compare the relative power of theoretical studies relying on esti-
mates of LAN exposure from data sources with different spatial 
resolutions.

Stage 2 simulations: exploring type I error when light at 
night is not a cause of the adverse outcome

In stage 2, we simulated a situation in which a type of pollu-
tion other than LAN is the cause of adverse outcomes. We then 
examined what researchers would find if they explored whether 
LAN exposure estimated via images with various resolutions 
was related to the adverse outcome rates.

We used the same simulated residences as in stage 1. In 
this case, however, individual outcome statuses were sim-
ulated based on a pollutant, W, that was not LAN. Thus, 

Figure 2. Street map (A) and topographic map (B) of Vancouver, British Columbia. Distribution of LAN in Vancouver as measured from the ISS (full resolution; 
C) and at calculated reduced resolutions (50 m, 100 m, 200 m, 500 m, 1000 m, and 2000 m; D–I) using a Gaussian Point Spread Function (PSF).
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the simulated logarithmic odds of an adverse outcome  
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After the outcome data were generated, we performed logistic 
regressions to see to what degree a researcher might (incorrectly) 
identify LAN as a cause of the adverse outcome. That is, for 
a given estimate of LAN, X* , we estimated the corresponding 

logistic regression parameters as ln
|

|
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i i
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As before, 2000 simulations with 2000 participants were used 
separately for each resolution. We then evaluated the number of 
simulations that resulted in a type I error (i.e., observing a 95% 
confidence interval for λ1  that does not include 0, even though 
LAN is not actually the cause of the outcome).

Such simulations were conducted for a large range of values 
of λ1  corresponding to odds ratios ranging from 1 to 2 per 1 SD 
increase in pollutant exposure, with λ0  values corresponding to 

adverse outcome rates of 20% at mean pollutant exposure. This 
was done for each of the seven available pollutants: PM2.5, NO, 
NO2, all noise, street noise, black carbon, and ultrafine particles. 
Again, this collection of simulations represents a wide variety 
of possible settings, with λ1  ranging, in each set of simulations, 
from considerations of no effect (OR = 1) of the given pollutant 
up to a very strong effect (OR = 2).

Results

Relationship between light at night and other pollutants

The Pearson correlation coefficients between environmental 
pollutants at the map level are presented in Figure 4. The impact 
of spatial resolution on the relationship between LAN estimates 
and other environmental pollutants at the residence level is 
highlighted graphically in Figure 5.

When considering the correlations based on equal geo-
graphic weighting (Figure 4), all environmental pollutants have 

Figure 3. Distribution of pollutants in Vancouver, with LAN for comparison (full resolution A; low resolution B) in order PM2.5, black carbon, NO, NO2, street 
noise, all noise, ultrafine particles (C–I).
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a positive correlation with each of the other environmental pol-
lutants. The size of these correlations varies depending on the 
pair of pollutants. The level of ultrafine particles, for example, 
has a Pearson correlation coefficient of 0.6 with black carbon 
at the citywide scale, but only a 0.22 correlation with PM2.5. 
Differences arise when considering the correlation at simulated 
residences (eTable 2; http://links.lww.com/EE/A130) rather than 
comparing the complete maps. In general, the correlation coeffi-
cients are higher (sometimes much higher) for the full map than 
they are for the residences.

LAN is positively correlated with many other environmental 
pollutants, and the strength of this relationship tends to increase 

as the spatial resolution of the LAN image decreases (Figure 5). 
In particular, NO, NO2, PM2.5, and, to a lesser extent, black 
carbon had much stronger correlations with LAN when it 
was recorded at lower spatial resolutions (e.g., LAN and NO2 
correlation ranges from near 0.2 at high spatial resolutions to 
over 0.4 at low spatial resolutions; see Figure 5). There is much 
smaller variation in the correlation between LAN and the other 
pollutants as spatial resolution changes (e.g., correlation with 
ultrafine particles ranges only from 0.36 to 0.41). This suggests 
that higher resolution maps could reduce confounding of LAN 
with some pollutants (NO, NO2, PM2.5, and black carbon), but 
perhaps not with others.

Figure 4. Pearson correlation coefficients between various forms of pollution, including light at different spatial scales. This figure shows the correlations calcu-
lated using the entire map, not the locations where simulated study participants lived. Numeric headers refer to resolution (m) of LAN measurement. AN indicates 
all noise; BC, black carbon; TN, traffic noise; UFP, ultrafine particles.

Figure 5. Correlation between other pollutants and light at residence locations for different resolutions of the light maps. The different symbols indicate which 
pollutant was compared in each case.

http://links.lww.com/EE/A130
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Stage 1 simulations: exploring type II errors when light at 
night is the cause of the adverse outcome

Figure  6 shows the probability of a type II error (false-nega-
tive) for studies relying on LAN maps at each resolution and 
for three different effect sizes at mean exposure (i.e., λ0). Each 
power curve shows the percentage of simulated trials in which 
the relationship between LAN and the outcome was found to be 
statistically significant, as a function of the strength of the sim-
ulated relationship between LAN and the adverse outcome (i.e., 
as a function of λ1 ). The strength of the relationship is measured 
in ORs per 1 SD increase in full resolution LAN, where the SD 
of full-resolution LAN was found to be 0.04 nW cm−2 sr-1Å−1.  
For purposes of visualization, a smoothed curve is shown (the 
stochastic nature of Monte Carlo means that individual sets of 
simulations came in higher or lower than the curves).

Statistical power decreased with decreasing spatial resolution 
in all simulations. The loss of power from using low-resolution 
maps was often substantial, though the extent of this reduction 
depended on the strength of the simulated relationship (i.e., 
when a small change in exposure caused a large effect, it was 
easier to conclude that a significant relationship existed even 
when using low-resolution data). In some settings, the power 
when estimating LAN exposure from high-resolution images 
was up to five times greater than the power that resulted from 
estimating LAN exposure from low-resolution images. We 
also used these results to estimate the sample size that would 
be required to achieve 80% power to detect a statistically sig-
nificant relationship between LAN and adverse outcome; the 
sample size required to observe an effect with equivalent power 
is generally over 10 times larger for the 2 km resolution map 
compared to the full resolution map (eFigure 1; http://links.lww.
com/EE/A130).

The bias of the estimates depends upon the resolution, 
adverse outcome rate at mean exposure (i.e., λ0 ), and simu-
lated odds ratio between LAN and adverse outcome (i.e., λ1 )  
(Figure 7). Each bias curve shows the mean difference across 2000 
simulated trials between the estimated LAN effect and the simu-
lated LAN effect, as a function of the strength of the simulated 
relationship between LAN and the adverse outcome. As with 
Figure 6, smoothed curves are shown to aid interpretation. There 
is no simple relationship here, though in general, bias is larger 
when a map with lower resolution is used to assess LAN exposure.

Stage 2 simulations: exploring type I error when light at 
night is not a cause of the adverse outcome

The probability of type I errors (false-positives) is shown for 
the LAN maps of different resolutions for each of the other pol-
lutants at each resolution in Figure 8. Each type I error curve 
shows the percentage of simulated trials that observe a statis-
tically significant relationship between LAN and adverse out-
comes, as a function of the strength of the relationship between 
the simulated causal agent and the adverse outcome. These type 
I error rates reflect how easy it would be to mistakenly conclude 
that LAN is an important cause of the outcome when the true 
causal agent was actually another pollutant. In the case of NO, 
NO2, PM2.5, and black carbon (Figure 8C–F), the resolution 
of the LAN image plays a clear role in the frequency of type I 
errors. This is because the correlation between these pollutants 
and LAN differs depending on the spatial resolution of the light 
map (Figure 5). Since these correlations were in general larger 
for lower-resolution maps, this suggests that using high-resolu-
tion light imagery could reduce the frequency of these errors.

The impact of this confounding depended not only on the cor-
relation between the measurement of LAN and the simulated 
causal agent, but also on the strength of the relationship between 
the simulated causal agent and the adverse outcome (Figure 8C–
F): when the causal agent had very little impact on the outcome 
( OR ≈ 1 ), there would be a low type I error rate regardless of 
the resolution to which LAN was measured; when the causal 
agent had a very large impact on the outcome ( OR ≈ 2  for NO 
and NO2), there would be a high type I error rate regardless of 
the resolution to which LAN was measured. However, in settings 
with moderate effects of NO, NO2, PM2.5, and black carbon, 
high-resolution light imagery could reduce the chance of making 
incorrect conclusions about causality due to confounding.

In contrast, this type I error rate is fairly consistent across 
all resolutions of LAN when the simulated cause of the adverse 
outcome is ultrafine particle pollution (regardless of the strength 
of the simulated relationship) (Figure  8G). This makes sense, 
as the correlation between ultrafine particles and LAN does 
not strongly vary with the spatial resolution of the LAN map 
(Figure 5).

In the case of noise (Figure  8A and B), we see fairly low 
type I error rates regardless of the strength of the effect or the 

Figure 6. Stage 1 simulation results: power achieved for each spatial resolution as a function of the strength of the true relationship between LAN and the 
adverse outcome, measured in ORs per 1 SD increase in full resolution light. Results are presented from simulations with adverse outcome rate of 5% (a), 20% 
(b), and 50% (c) at mean exposure.

http://links.lww.com/EE/A130
http://links.lww.com/EE/A130
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Figure 8. Stage 2 simulation results: Type I Error Rate as a function of the strength of the true relationship between pollutant and the adverse outcome (mea-
sured in ORs per 1 SD increase in pollutant level). Light resolution of the regression predictor varies by line type. Results are presented from simulations with true 
outcome risk determined by, respectively, All noise (A), street noise (B), black carbon (C), NO (D), NO2 (E), PM2.5 (F), and ultrafine particles (G). All simulations 
have outcome rate at mean exposure of 0.2.

Figure 7. Stage 1 simulation results, bias observed for each image resolution as a function of the strength of the true relationship between LAN and the adverse 
outcome (measured in ORs per 1 SD increase in full resolution light; the SD of full-resolution light was found to be 0.04 nW cm−2 sr-1Å−1). Results are presented 
from simulations with outcome rate of 5% (A), 20% (B), and 50% (C) at mean exposure.
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resolution of the LAN imagery. This is explained by the low 
correlations between noise and light pollution at the residences 
for all resolutions (Figure 5).

Discussion
If LAN exposure at the place of residence truly causes an 
adverse outcome, studies relying on higher resolution measures 
of LAN will be more likely to have statistically significant find-
ings. This conclusion is almost certainly true for other pollutants 
as well. For example, NO2 can vary between streets with heavy 
traffic and neighboring parks,41 and near roadways it even var-
ies between the height of a child and an adult.42 In addition to 
having lower power (Figure 6), studies that estimate exposure 
from lower-resolution maps may introduce biases that are not 
predictable (Figure 7). Spatial aliasing due to city factors such as 
the size of blocks size and grid-type structures may potentially 
contribute to the complicated relationship with bias (see espe-
cially at a resolution of 200 m). However, the overall trend is 
still clear: maps with a higher spatial resolution tend to result in 
lower bias and greater statistical power.

Urban pollutants are often highly correlated with each 
other. Studies of the health impacts of light exposure there-
fore face a danger of confounding if their modeling does not 
account for other urban pollutants. Our results show that the 
effects of LAN are likely to be particularly confounded with 
black carbon, NO, NO2, PM2.5, and ultrafine particles, rather 
than with noise. Furthermore, we have shown that confound-
ing with black carbon, NO, NO2, and PM2.5 can be somewhat 
mitigated through higher resolution mapping of LAN. This is 
because measurements from lower resolution LAN maps effec-
tively acted as proxies for NO, NO2, PM2.5, and, to a lesser 
extent, black carbon in our data. These pollutants have high 
spatial autocorrelation. If LAN is measured at low resolution, 
it also has high spatial autocorrelation, so it induces a correla-
tion across predictors. Due to the spatial correlations between 
the pollutants, this would also be the case for a study that also 
accounted for people’s motion through the landscape. Studies 
of the effects of LAN that rely on these lower resolution LAN 
maps may be unable to differentiate between effects of LAN 
and effects of these other pollutants. Conversely, high-resolu-
tion maps (of both light and other pollutants) will in general 
reduce correlations between exposures, which will reduce the 
likelihood of false positives in epidemiologic studies estimating 
exposure using geographic data.

A number of investigations have shown a relationship 
between LAN and the risk of negative outcomes using low-res-
olution LAN data.3–18 More recent work using higher resolu-
tion images has led to varying results.2,6 The results presented 
here confirm that epidemiologic research testing the hypothesis 
that LAN is associated with adverse outcomes can suffer from 
serious problems if LAN is estimated from low-resolution data 
sources. Furthermore, these results confirm the value in reevalu-
ating older studies with newly available higher resolution data, 
as in Rybnikova and Portnov.43 Studies that rely on estimates 
of LAN from satellite imagery corresponding to study partic-
ipants’ place of residence should use imagery with spatial res-
olution near the scale of individual buildings if possible (5–20 
m), and otherwise the highest spatial resolution data available.29 
While higher-resolution LAN data relies on more-recent satellite 
imagery that will in many cases reflect a time period after the 
effective exposure window, the rate of change of LAN emissions 
is quite small compared to the spatial variation in most devel-
oped countries.44 Overall, we argue that when faced with the 
choice between more-recent data with higher spatial resolution 
(e.g., VIIRS DNB, astronaut photographs) or lower-resolution 
data collected at a time closer to the effective exposure window 
(DMSP), researchers should choose the higher resolution data.

Conclusions
To lower the risk of both type I errors and type II errors, we sug-
gest that studies of the impact of outdoor LAN using low-res-
olution satellite images be interpreted with caution. Reliance 
on lower-resolution exposure maps will result in imprecise 
estimates of exposure that increase the risk of failing to iden-
tify a true association if one exists. Furthermore, epidemiologic 
research using geographical data for estimating exposures in 
urban contexts is susceptible to confounding due to correlation 
among geographical variables; use of lower-resolution maps 
may exacerbate this. Studies that rely on lower-resolution maps 
for estimating exposures are likely to have lower power, be 
more prone to bias, and be less able to examine the independent 
effects of the exposure of interest.
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