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Abstract: The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and
development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of
reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective
COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines
as bioisostere indomethacin analogues (5a–e) were carried out and evaluated for COX-2 enzyme
inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-
cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor
with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling
study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 in-
hibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c)
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was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework cal-
culations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic
crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å,
α = 90.000◦, β = 100.372(1)◦, γ = 90.000◦, and V = 4143.8(4)Å3. In addition, with the help of Crystal
Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the
interaction and graphical representation of energy value was measured in the form of the energy
framework in terms of coulombic, dispersion, and total energy.

Keywords: indolizine derivatives; molecular modeling; COX-2 inhibition; crystal structure; Hirshfeld
surface analysis; energy framework

1. Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly pre-
scribed drugs for the treatment of inflammatory conditions worldwide [1]. NSAIDs ex-
hibit their anti-inflammatory activity via inhibition of cyclooxygenase (COX), an enzyme
involved in the biosynthesis of prostaglandin G2 (PGG2). By inhibiting the formation
of PGG2, the pathway, which would ultimately lead to the inflammatory response, is
blocked [2,3]. The COX enzyme has two important isoforms, namely, COX-1 and COX-2.
The COX-1 isoform represents the constitutive type that is normally expressed in various
regions of the body, such as the kidney and the gastrointestinal tract (GIT), where it is
responsible for maintaining certain physiological functions including protection of the
gastric mucosa [4–7]. On the other hand, the COX-2 isoform represents the inducible type
that is expressed in response to various inflammatory stimuli and certain substances such
as mitogens and cytokines that are produced during injuries. Nonselective NSAIDs that
inhibit both COX-1 and COX-2 can have severe undesirable side-effects due to inhibition
of the customarily expressed isoform, COX-1. For example, GIT ulceration is a commonly
observed adverse effect associated with the use of nonselective NSAIDs [8,9]. Thus, in
order to develop anti-inflammatory agents with reduced side-effects, compounds with
high selectivity for inhibiting the COX-2 isoform over the COX-1 isoform are required.

Synthetic indolizine derivatives have been shown to interact with a wide range of
drug targets such as calcium channels [10], histamine receptors [11], and phospholipase
A2 [12]. In addition, they have shown numerous pharmacological properties [13] such
as analgesic [14], COX-2-inhibitory [15–18], anticancer [19,20], antidiabetic [21], antihis-
taminic [11], antileishmanic [22], antimicrobial [23], antimutagenic [24], antioxidant [25],
antiviral [26], larvicidal [27,28], herbicidal [29], antitubercular [30–37], and alpha-7 nico-
tinic acetylcholine receptor (α-7 nAChR)- [38], N-meningitidis-, N-acetylneuraminic acid
synthese (NmeNANAS)-inhibitory activities [39].

In persistence of our interest in pharmacologically active heterocyclic compounds [40–48],
polymorphism studies [49–52], and the discovery of anti-inflammatory agents [53–59], in
the present investigation, we synthesized a range of 7-methoxy indolizine derivatives
as indomethacin analogues (Figure 1 and Scheme 1) to evaluate their potential as anti-
inflammatory agents. The title compounds (5a–e) were evaluated for their pharmacological
activity against the COX-2 enzyme in order to study the influence of ethyl ester at the 1-
and 2-positions, ethyl at the 2-position, and the diverse substituent on the benzoyl ring at
the 3-positions of the indolizine core on the biological action.
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Scheme 1. Synthetic outline for the construction of diethyl 7-methoxy-3-(3-substituedbenzoyl)indolizine-1,2-dicarboxylates
(5a–d) [35] and ethyl 3-(4-bromobenzoyl)-2-ethyl-7-methoxyindolizine-1-carboxylates (5e).

2. Results and Discussion
2.1. Chemistry

The design of the target compounds (5a–e) was mainly based on the close chemical
structural relationship with the commercially available NSAIDs indomethacin (Figure 1).
The synthesis of the target compounds is depicted in Scheme 1. The intermediates (3a–e)
were obtained by stirring a mixture of 4-methoxy pyridine and para- and meta-substituted
phenacyl bromides in acetone medium at 5 h and were then further reacted with diethyl but-
2-ynedioate in the existence of potassium carbonate in dimethylformamide solvent medium
for 30 min. The resulting title compounds were purified by column chromatography using
mixture of ethyl acetate and hexane as an eluent, and the purity of the compounds was
more than 99% with a satisfactory yield (69% to 77%). The physicochemical property of the
target compound ethyl 3-(4-bromobenzoyl)-2-ethyl-7-methoxyindolizine-1-carboxylate (5e)
is presented in Table 1. The chemical structure of this compound (5e) was confirmed with
spectroscopic techniques such as FT-IR, 1H-NMR and 13C-NMR, and LC–MS. The Fourier-
transform infrared (FT-IR) spectroscopy revealed benzoyl and ester carbonyl groups at
1699 and 1668 cm−1, respectively (spectra are available as Electronic Supplementary Mate-
rials). The 1H-NMR spectra revealed the methoxy group at 3.86 ppm, ester peak triplet ap-
pearance of 1.34 ppm, and ester group quartet appearance of 4.30 ppm. The 13C-NMR spec-
tra revealed the appearance of benzoyl and ester carbonyl groups at 186.00 and 166.07 ppm,
respectively. The molecular ion peaks of this compound (5e) were in good agreement with
its molecular mass. Title compounds diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-
1,2-dicarboxylate (5a), diethyl 3-(4-fluorobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate
(5b), diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c), and diethyl
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7-methoxy-3-(3-methoxybenzoyl)indolizine-1,2-dicarboxylate (5d) were resynthesized [35],
and their physicochemical properties are presented in Table 1. The proposed general
reaction mechanism for the target compound (5e) is illustrated in Figure 2.

Table 1. Physicochemical properties of the target compound ethyl 3-(4-bromobenzoyl)-2-ethyl-7-methoxy-indolizine-1-
carboxylate (5e).
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5a C23H20N2O6 (420) 4-CN COOC2H5 72 171 3.4454

5b C22H20FNO6 (413) 4-F COOC2H5 77 147 4.0199

5c C22H20BrNO6 (473) 4-Br COOC2H5 73 134 4.7399
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c cLogP was calculated using ChemBioDraw Ultra 16.0v.
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Figure 2. Plausible reaction mechanism for the construction of ethyl 3-(4-bromobenzoyl)-2-ethyl-7-
methoxyindolizine-1-carboxylate (5e) [35,60].

The construction of the final indolizine compound (5e) was achieved via 1,3-dipolar
cycloaddition of intermediate pyridinium salt 3e, generating ylide 3e(1) using a base.
This ylide carbanion subsequently attacks the electron-deficient acetylene triple bond of
reactant (4). This triple bond anion then attacks the carbocation of compound 3e(1), yielding
compound 3e(2). This loss of hydrogen through oxidation leads to the construction of
indolizine nucleus 5e (Figure 2).
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2.2. Crystallography

The crystallographic details of 5c are listed in Table 2. The crystal structure of 5c
crystallized in the monoclinic space group P 21/n with eight molecules in the unit cell. The
lattice parameters were a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000◦,
β = 100.372(1)◦, γ = 90.000◦, and V = 4143.8(4)Å3. The asymmetric unit of 5c crystal
structure showed two molecules which preferred the intramolecular C–H···O interactions
shown as a dotted line and 50% thermal ellipsoidal probability of non-hydrogen atoms
(Table 3 and Figure 3). There were eight molecules in the unit cell of 5c, where inter-
molecular weak hydrogen bonds C2A–H2A···O6B and C4B–H4B1···O4A were the major
interactions, along with C–H···π interactions that stabilized the molecular assembly, as
shown in Figures 4 and 5 (Table 3).

Table 2. The crystallographic refinement parameters of 5c (diethyl 3-(4-bromobenzoyl)-7-methoxy-
indolizine-1,2-dicarboxylate).

DATA 5c

Formula C22H20BrNO6
Formula weight 474.30

CCDC 2,045,116
Temperature (K) 173(2)
Wavelength (Å) 0.71073
Crystal system Monoclinic

Space group P 21/n
a (Å) 12.0479(6)
b (Å) 17.8324(10)
c (Å) 19.6052(11)
α (◦) 90.000
β (◦) 100.372(1)
γ (◦) 90.000

V (Å3) 4143.8(4)
Z’, Z 2, 8

Density (g·cm−3) 1.52
µ (mm−1) 2.023

F (000) 1936.0
θ (min, max) 1.6, 28.3

hmin, max, kmin, max, lmin, max. −16, 15; −23, 23; −26, 26
No. of refl. 10,282

No of unique ref./Obs. ref. 10,282/6833
No. parameters 576

Rall, Robs 0.079, 0.041
wRall, wRobs 0.100, 0.088

∆ρmin, max(eÅ−3) −0.473, 0.393
G.O.O.F. 1.024

Table 3. Intra- and intermolecular interactions of 5c.

D–X···A D–X (Å) X···A (Å) D···A (Å) <D–X···A (◦)

C21B–H21B···O1B i 0.95 2.55 3.109(3) 118
C1A–H1A···O6A i 0.95 2.27 2.851(3) 119
C1A–H1A···O6A i 0.95 2.26 2.855(3) 120
C2A–H2A···O6B ii 0.95 2.52 3.466(3) 174

C4B–H4B1···O4A iii 0.98 2.50 3.442(3) 162
C13B–H13C···π iv 0.98(24) 2.92 3.735(3) 140
C13B–H13C···π* v 0.98(24) 2.86 3.785(3) 156

Symmetry codes: (i) 1 + x, y, z; (ii) 3/2 − x, 1/2 + y, 1/2 − z; (iii) −1/2 + x, 1/2 − y, 1/2 + z; (iv) x, y, z; (v) x, y, z;
Note: −π and π* are the centroids of the (N1A–C6A–C7A–C11A–C15A) and (N1A–C1A–C2A–C3A–C5A–C6A)
aromatic rings, respectively.
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2.3. Hirshfeld Surface Analysis

The Hirshfeld surfaces of the crystal structure 5c were investigated to illustrate the
nature of intermolecular interactions and visualization of intermolecular close contacts in
its crystal structure using Crystal Explorer 17.5 [60], which mapped over de, dnorm, shape
index, and curvedness, as shown in Figure 6. The contribution of individual intermolecular
interactions on the Hirshfeld surface can be defined by color codes. On the dnorm surface,
the red color shows the shorter molecular contacts and the blue color on the dnorm surface
area represents the longer molecular contacts. The white color on the dnorm surface indicates
the contact around the van der Waals radii. In the dnorm surfaces, the red color shows
the hydrogen bonding H···O contacts, whereas the blue surface area represents the H···H
contacts (Figure 6a). The de surface features appear as a relatively flat green region where
the contact distances are similar (Figure 6b). The adjacent highlighted red and yellow
regions on the shape index surface also show the strong hydrogen bonding interactions
present in the molecule (Figure 6c), whereas the blue curved and yellow regions on the
curvedness surfaces shows the H···H interactions (Figure 6d). The 2D fingerprint plots [61]
show the sharp spike, which represents the intermolecular interactions present in the
molecule (Figure 7a). Again, it shows that C–H···O interactions were predominant (23.2%)
after the H···H contacts, which led to the highest contribution of 35.8% in comparison to
other interactions, suggesting that weak C–H···O hydrogen bonding plays an essential role
in its crystal packing. The percentage contributions of other intermolecular interactions
in this crystal structure were as follows: C···H/H···C (18.4%), H···Br/Br···H (12.2%),
C···O/O···C (2.5%), C···C (2.1%), N···H/H···N (1.7%), etc. (Figure 7b).
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Figure 7. (a) The 2D fingerprint plots of the compound 5c with a percentage of interaction.
(b) The short contact contributions derived from H···H, O···H/H···O, C···H/H···C, Br···H/H···Br,
O···C/C···O, and C···C contacts. The values mentioned in the pie chart are in percentage form.

2.4. Energy Framework Calculation

Furthermore, the Crystal Explorer 17.5 software was used to evaluate the interaction
energies for the crystal structure 5c. Energy frameworks have a strong and remarkable
way of imagining the supramolecular existence of molecular crystal structures. The interac-
tion energies between the molecules are obtained using monomer wave functions at the
B3LYP/6-31G (d, p) level. [62]. As prescribed, the tube size used in all the energy frame-
works was 80 (scale factor), and the cutoff for the energy threshold value was set to zero. In
the 3D topological images, the diameter of the tube cylinder reflects the interaction energy
in the molecular packing for the corresponding interaction. The molecules present within
the 3.8 Å circle within 1 × 1 × 1 unit cell dimensions were selected for this calculation
(Figure 8a).
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Figure 8. (a) Selected molecules for 5c present within 3.8 Å and cylindrical tube formation for the
coulombic energy as red tubes (b), for dispersion energy as green tubes (c), and total energy as blue
tubes (d).

Energies between molecular pairs are expressed as cylinders that connect molecular
pair centroids with a cylindrical radius proportional to the energy interaction magnitude.
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The energy framework was outlined as red cylinders for Eelec, green cylinders for Edis, and
blue cylinders for Etot, as shown in (Figure 8b–d), and the relative strength of molecular
packing was expressed in various directions by these tubes. The supramolecular nature
of the crystal structure was, thus, visualized by energy structures in a special way. The
calculated energy values are listed in Table 4 for electrostatic, polarization, dispersion,
and total interaction energy, which suggests that 5c crystal structure preferred dispersion
energy over others.

Table 4. Interaction energies as obtained from the Crystal Explorer 17.5 (in kJ/mol) for the 5c compound.

Color N Symop R E_ele E_pol E_dis E_rep E_tot
1 - 4.55 −22.8 −5.1 −98.5 37.6 −84.7
1 - 14.58 −0.5 0 −0.4 0 −0.8
1 - 11.1 4.2 −5.5 −31.3 16.2 −14.4
1 - 14.41 0.2 0 −0.3 0 −0.1
1 - 13.98 0 0 −1.3 0 −1.3
1 - 17.79 0.2 0 −0.2 0 0
1 - 11.16 1 −4.4 −22.6 8.9 −15
1 - 16.73 0.1 0 −0.1 0 0
1 - 18.83 0.3 0 −0.2 0 0.2
1 - 12.4 0.8 0 −0.8 0 0.1
1 −x + 1/2, y + 1/2, −z + 1/2 11.15 −16.2 −1.2 −22.8 49.6 2.5
1 x + 1/2, −y + 1/2, z + 1/2 12.57 −0.6 0 −0.6 0 −1.2
1 −x, −y, −z 18.25 0.3 0 −0.1 0 0.2
2 −x + 1/2, y + 1/2, −z + 1/2 12.35 −0.3 −0.1 −2.1 0 −2.3
1 x + 1/2, −y + 1/2, z + 1/2 10.75 −2.2 −0.3 −3.1 0 −5.2
1 x, y, z 12.05 −11.3 −2.6 −26.1 14.3 −25.2
1 −x, −y, −z 23.43 0.1 0 0 0 0.1
1 x, y, z 17.83 −0.1 0 −0.2 0 −0.3
1 −x, −y, −z 16.07 −0.3 0 −0.1 0 −0.4
1 x + 1/2, −y + 1/2, z + 1/2 22.54 0 0 0 0 0

2.5. Pharmacology

The COX-2-inhibitory activity of the target compounds (5a–5e) is presented in Table 5.
As can be seen from Table 5, all the indolizines displayed interesting inhibitory activity
against COX-2 similar to the commercially available drug indomethacin. Compound 5a
with a 4-cyanobenzoyl group attached to the 3-position of the indolizine scaffold, having
two ethyl carboxylate groups attached to the 1- and 2-position of the scaffold, emerged as
the most promising compound with the highest COX-2-inhibitory activity (IC50 = 5.84 µM).
Replacement of the electron-withdrawing nitrile group with halogens such as fluorine and
bromine atoms at the 4-position of the benzoyl ring exhibited detrimental COX-2 inhibitory
activity for compounds 5b and 5c with IC50 values 6.73 µM and 6.99 µM, respectively.
It is remarkable to note that title compound 5e with only one ethyl ester moiety at the
first position of the indolizine pharmacophore exhibited a further reduction in activity
(IC50 = 7.38 µM) as compared to the structurally similar compound 5c (IC50 = 6.99 µM).

The compound 5d, substituted with a methoxy functional group at the 3-position
of the benzoyl ring, displayed the least inhibitory activity (IC50 = 8.49 µM). In general,
the availability of the electron-withdrawing functional groups at the para position of the
benzoyl ring was found to be favorable for COX-2-inhibitory activity as compared to the
presence of the electron-donating functional groups at the meta position. Previously these
derivatives demonstrated excellent safety profiles [35]; thus, they could be considered as
lead molecules for further improvement of novel potential COX-2 inhibitors.
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Table 5. In vitro inhibitory study of cyclooxygenase-2 (COX-2) on diethyl 7-methoxy-3-(3-substitued-
benzoyl)-indolizine-1,2-dicarboxylates (5a–d) and ethyl 3-(4-bromobenzoyl)-2-ethyl-7-methoxy-
indolizine-1-carboxylate (5e).

Compound Compound Structure IC50 * (µM)

5a
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Table 5. Cont.

Compound Compound Structure IC50 * (µM)
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2.6. Computational Studies

Molecular docking studies are considered an invaluable in silico approach to cor-
relate the in vitro structure–activity relationship (SAR) of chemical compounds [63]. To
gain insight into the inhibitory activity of indolizines (5a–e), we investigated their key
interactions with the COX-2 receptor through a computational approach. The docking
study was conducted with Accelrys Discovery Studio Client 4.0 software. The docking
interaction energies and the residue interactions of indolizines 5a–e and indomethacin are
reported in Table 6. All the compounds demonstrated favorable docking energy ranging
from −38.22 to −53.29 kcal/mol, indicating that they have a good binding affinity with the
COX-2 receptor, as demonstrated from their biological activities.

The predicted docking poses of indolizines 5a–e and indomethacin are depicted in
Figure 9. All the compounds adopted a similar conformation to that of indomethacin,
where the indolizine ring is taken into a sandwich between the amino-acid residues Ala527,
Val523 and Val349, Leu352. The benzoyl ring is oriented toward the residues Tyr385 and
Trp387, while the methoxy group is located in the deep region of the receptor. As can
be observed from the binding poses, indolizines 5a, 5b, and 5d demonstrated favorable
hydrogen bonding interaction between Arg120 with the ester group at the 1-position of
the indolizine scaffold, while indomethacin showed hydrogen bonding and ionic bonding
interactions between the same residue Arg120 and its carboxylic acid group. This indicated
that the ionic interaction with Arg120 is not a requirement for maintaining the potency
of the compounds. Furthermore, the indolizines 5c and 5e containing a bromine atom
at the para position of the benzoyl ring showed no hydrogen bonding involvement with
the residue Arg120. Therefore, the major contribution to the COX-2 activity of our com-
pounds principally involves hydrophobic interactions with the indolizine ring and with
the substituents at positions 2 and 3 of indolizine. It can be noted that only the bromine
substituent on the benzoyl ring (5c and 5e) demonstrated hydrophobic interactions with
residues Leu384 and Met522, while pi–pi interactions were observed for all indolizines
with the exception of fluoro indolizine 5b and indomethacin. Therefore, the substituent
in the benzoyl ring has a minor contribution to the activity of indolizine. However, it has
been demonstrated that the benzoyl ring on indomethacin is important to bioactivity since
the replacement of N-benzoyl by N-benzyl led to a reduction in COX-2 inhibition [64].
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Table 6. Docking results of indolizines (5a–e) and indomethacin against cyclooxygense-2 (COX-2) receptor (PDB 4COX).
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Val349, Leu352,
Ala527, Val523,

Tyr355

Val116, Leu359,
Leu531

5e Et 4-Br 48.54 - Trp387

Val349, Leu352,
Ala527, Val523,
Tyr385, Trp387,

Phe381

Val116, Val349,
Leu359, Leu 531,
Leu534, Leu384,

Met522

Indomethacin 55.36 Arg120
(ionic)

Val349, Leu352,
Ala527, Val523,

Trp387

Val349, Ala527,
Leu531, Leu384,

Met522
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The molecular modeling study provided insight into the structural requirement of
indolizines for COX-2-inhibitory activity. Moreover, indolizines 5a–e are more likely to be
selective COX-2 inhibitors. It has been validated that COX-1 and COX-2 selectivity is mainly
due to the ionic interaction with residue Arg120 since the corresponding ester and amide
of indomethacin derivatives presented good selectivity in favor of COX-2 inhibition [64].

3. Materials and Methods
3.1. Chemistry

All the commercially offered chemicals and solvents were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA). All the chemical reactions were performed in hot-air-
dried glassware in the presence of a nitrogen atmosphere consuming dry solvents. A
Shimadzu FT-IR spectrophotometer (Columbia, MD, USA) was used to record the FT-IR
spectra. Furthermore, 1H- and 13C-NMR spectra were documented at ambient temperature
on Bruker AVANCE III 400 MHz instruments (San Jose, CA, USA) using CDCl3 and
DMSO-d6 as solvents. An Agilent 1200 series instrument (Santa Clara, CA, USA) in
conjunction with a 6140 single-quadrupole mass spectrometer using positive and negative
ESI mode with a mass selective detector (MSD) range of 100–2000, as well as 0.1% aqueous
trifluoroacetic acid in an acetonitrile system on the C18-BDS column, was used to record
liquid chromatography–mass spectrometry (LC–MS) spectra. Then, an elemental analysis
was carried out using the analyzer FLASH EA 1112 CHN (Thermo Finnigan LLC, New
York, NY, USA). A single-crystal X-ray diffraction study was performed using a Bruker
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KAPPA APEX II DUO diffractometer (Madison, WI, USA) equipped with a charge-coupled
device (CCD) detector; monochromated Mo Kα radiation (λ = 0.71073 Å) was used. Data
collection was carried out using an Oxford Cryostream cooling system featuring the Bruker
Apex II software (Madison, WI, USA) at 173(2) K [16].

3.2. General Synthetic Procedure for 4-methoxy-1-(2-(substituted phenyl)-2-oxoethyl)pyridinium
Bromides (3a–e)

To a solution of 4-methoxypyridine (1) (0.0091 mol, 1 g) in dry acetone solvent (10 mL),
substituted-phenacylbromide (0.0091 mol, 2.03 g) was added and agitated at room temper-
ature for 5 h. The completion of the reaction was observed on thin-layer chromatography
(TLC). The product obtained was separated, filtered, and desiccated under vacuum to yield
92–99% 1-(2-(substituted phenyl)2-oxoethyl)-4-methoxypyridinium bromides.

3.3. Synthetic Procedure for the Synthesis of Ethyl 3-(4-bromobenzoyl)-2-ethyl-7-methoxyindolizine-
1-carboxylate (5e)

To a stirred solution of 1-(2-(4-bromophenyl)-2-oxoethyl)-4-methoxypyridinium bro-
mide (3e) (0.0026 mol, 1 g), in dry dimethylformamide, ethyl pent-2-ynoate (4) (0.0025 mol,
0.512 g) and K2CO3 (0.0051 mol, 0.713 g) were added. It was stirred at room temperature
for 30 min. The completion of the reaction was monitored on TLC. After completion of the
reaction, the solvent was evaporated under reduced pressure and diluted with ethyl acetate.
The organic layer was washed with water, brine, and dried with sodium sulfate. The crude
compound was purified by column chromatography to afford a 69% yield of compound
5e. The physicochemical characteristics are tabulated in Table 1. Appearance: light-yellow
crystalline compound. FT-IR (KBR neat cm−1): 1699, 1668, 1639, 1602. 1H-NMR (400 MHz
CDCl3) δ = 9.18 (d, J = 7.2 Hz, 1H), 7.69–7.60 (m, 3H), 7.10–7.05 (m, 2H), 6.57–6.54 (m, 1H),
4.30 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 2.57 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H), 0.91 (t,
J = 7.2 Hz, 3H). 13C-NMR (100 MHz CDCl3) δ = 186.00, 166.07, 165.01, 163.56, 159.37, 144.79,
142.77, 137.58, 137.55, 130.95, 130.86, 129.61, 121.61, 121.10, 115.64, 115.42, 108.20, 102.82,
97.57, 59.64, 55.57, 20.06, 15.99, 14.41. Analysis calculated for C21H20BrNO4: C, 58.62; H,
4.68; N, 3.26; found: C, 58.69: H, 4.52: N, 3.24. The spectra are available as Electronic
Supplementary Materials.

3.4. Crystallography

Single-crystal X-ray diffraction data of 5c were collected on a Bruker KAPPA APEX II
DUO diffractometer using graphite-monochromated Mo-Kα radiation (χ = 0.71073 Å). Data
collection was carried out at 173(2) K. Oxford Cryostream was used to control temperature
(Oxford Cryostat). The cell refinement and data reduction for 5c were performed using the
program SAINT [65], and the absorption correction was performed using SADABS [65].

The crystal structure of 5c was solved by direct methods using SHELXS-18 [66] and
refined by the full-matrix least-squares method based on F2 using SHELXL-2018 [66]. The
program WinGx [67] was used to prepare molecular graphic images. All non-hydrogen
atoms were refined anisotropically, and all hydrogen atoms were placed in idealized
positions and refined in riding models with Uiso assigned 1.2 or 1.5 times Ueq of the parent
atoms [67]. The C–H bond distances was constrained to 0.95 Å for aromatic hydrogen and
1.00 Å for methyl hydrogen. The crystallographic parameters are listed in Table 2.

3.5. In Vitro COX-2 Inhibition Assay

The title compounds 5a–e were tested for in vitro human recombinant COX-2 enzyme
inhibition activity following our previously reported protocol [68].

3.6. Computational Studies

The computational study for test compounds 5a–e was conducted with Accelrys
Discovery Studio Client 4.0 (Waltham, MA, USA) using the indomethacin crystal structure
PDB 4COX following our previously reported protocol [68].
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4. Conclusions

In this study, a series of diethyl 7-methoxy-3-(3-substituted benzoyl)indolizine-1,2-
dicarboxylate derivatives (5a–d) and ethyl 3-(4-bromobenzoyl)-2-ethyl-7-methoxyindolizine-
1-carboxylate (5e) were synthesized and evaluated for the inhibition of COX-2 enzyme
activity. All the compounds were demonstrated to be active inhibitors of COX-2, with
the most active compound (5a) having an IC50 value comparable to that of indomethacin,
a marketed COX inhibitor. Computational studies were conducted to analyze the key
interactions of these compounds with the amino-acid residues of the COX-2 receptor.
Hydrophobic interactions were observed to be mainly responsible for the inhibitory COX-
2 activity of indolizines. The compound 5c was crystallized in a monoclinic crystal system
with space group P 21/n. The molecule was observed to have both intra- and intermolecu-
lar hydrogen bonds and exhibited C–H···π interactions for stability. In order to understand
and visualize the contribution of different intermolecular interactions, Hirshfeld surface
analysis with 2D fingerprint plots was carried out to provide insight into the stability of
the crystal structure. In terms of electrostatic, dispersion, and total energy, the systematic
and theoretical energy was calculated using the software program Crystal Explorer, which
further provided 3D topological images. Indolizines 5a–e could be considered as lead
compounds for developing novel COX-2 inhibitors.

Supplementary Materials: The following are available online: Figure S1. FT-IR of FT-IR of di-
ethyl 3-(4-cyano benzoyl)7-methoxyindolizine-1,2-dicarboxylate (5a); Figure S2. 1H-NMR of di-
ethyl 3-(4-cyano benzoyl)7-methoxyindolizine-1,2-dicarboxylate (5a); Figure S3. 13C-NMR of di-
ethyl 3-(4-cyano benzoyl)7-methoxyindolizine-1,2-dicarboxylate (5a); Figure S4. FT-IR of diethyl
3-(4-fluoro benzoyl)7-methoxyindolizine-1,2-dicarboxylate (5b); Figure S5. 1H-NMR of diethyl
3-(4-fluoro benzoyl)7-methoxyindolizine-1,2-dicarboxylate (5b); Figure S6. 13C-NMR of diethyl
3-(4-fluoro benzoyl)7-methoxyindolizine-1,2-dicarboxylate (5b); Figure S7. FT-IR of diethyl 3-
(4-bromobenzoyl)7-methoxyindolizine-1,2-dicarboxylate (5c); Figure S8. 1H-NMR of diethyl 3-(4-
bromobenzoyl)7-methoxyindolizine-1,2-dicarboxylate (5c); Figure S9. 13C-NMR of diethyl 3-(4-
bromobenzoyl)7-methoxyindolizine-1,2-dicarboxylate (5c); Figure S10. FT-IR of diethyl 7-methoxy-3-
(3-methoxybenzoyl)indolizine-1,2-dicarboxylate (5d); Figure S11. 1H-NMR of diethyl 7-methoxy-3-(3-
methoxy benzoyl)indolizine-1,2-dicarboxylate (5d); Figure S12. 13C-NMR of diethyl 7-methoxy-3-(3-
methoxy benzoyl)indolizine-1,2-dicarboxylate (5d); Figure S13. FT-IR of ethyl 3-(4-bromobenzoyl)-
2-ethyl-7-methoxyindolizine-1-carboxylate (5e); Figure S14. 1H-NMR of ethyl 3-(4-bromobenzoyl)-
2-ethyl-7-methoxyindolizine-1-carboxylate (5e); Figure S15. 13C-NMR of ethyl 3-(4-bromobenzoyl)-
2-ethyl-7-methoxyindolizine-1-carboxylate (5e); Figure S16. checkCIF/PLATON report of check-
CIF/PLATON report of diethyl-3-(4-bromo benzoyl)7-methoxyindolizine-1,2-dicarboxylate (5c).
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