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Linoleic acid binds to SARS‑CoV‑2 
RdRp and represses replication 
of seasonal human coronavirus 
OC43
Anna Goc*, Waldemar Sumera, Matthias Rath & Aleksandra Niedzwiecki*

Fatty acids belong to a group of compounds already acknowledged for their broad antiviral efficacy. 
However, little is yet known about their effect on replication of human coronaviruses. To shed light on 
this subject, we first screened 15 fatty acids, three lipid-soluble vitamins, and cholesterol, on SARS-
CoV-2 RdRp, and identified the four fatty acids with the highest RdRp inhibitory potential. Among 
them, linoleic acid was found to have the greatest interaction with SARS-CoV-2 RdRp, with its direct 
binding to the cavity formed by the RNA double helix and protein. Linoleic acid forms hydrophobic 
interactions with multiple residues, and at the same time forms electrostatic interactions including 
the hydrogen bond with Lys593 and Asp865. In line with these results, a dose-dependent inhibition 
of HCoV-OC43 replication in vitro was observed, additionally strengthened by data from in vivo 
study, which also confirmed anti-inflammatory potential of linoleic acid. Based on these results, 
we concluded that our study provides a new understanding of the antiviral properties of fatty acids 
against human coronaviruses including the SARS-CoV-2 strain. Particularly, they lays down a new 
prospect for linoleic acid’s RdRp-inhibitory activity, as a candidate for further studies, which are 
warranted to corroborate the results presented here.

The SARS-CoV-2 strain (earlier described as 2019-nCov, 2019-CoV-2, and nCoV-2019) has been identified 
as a causative agent responsible for the outbreak of pneumonia in Wuhan, China, in 2019 and the subsequent 
COVID-19 pandemic. Since then, several other variants have been identified, such as: Alpha (B.1.1.7), Beta 
(B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.429/B.1.427), Zeta (P.2), Eta (B.1.525), Theta (P.3), Iota 
(B.1.526), Kappa (B.1.617.1), and Lambda (C.37), as well as the more-recently reported Mu (B.1.621) and Omi-
cron (B.1.1.529)1–3. There are four widespread human coronaviruses (i.e., HCoV-229E, HCoV-NL63, HCoV-
OC43, and HCoV-HKU1) known to cause rather mild respiratory infection, in contrast to three others (i.e., 
SARS-CoV-1, identified in 2003; MERS-CoV, identified in 2013; and SARS-CoV-2, identified in 2019) that cause 
severe lung dysfunction4,5.

SARS-CoV-2 is a RNA type virus that contains a positive, single-stranded and polycistronic RNA (+ ssRNA), 
enveloped with four structural proteins, i.e., the spike (S) protein, envelope (E) protein, membrane (M) protein, 
and the nucleocapsid (N) protein6–9. In addition to these four structural proteins, its ~ 30 kb genomic RNA 
(gRNA) encodes 16 non-structural and auxiliary proteins (nsps), including RNA-dependent RNA polymerase 
(RdRp), 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), and helicase. After entry into 
the host cell, the SARS-CoV-2 gRNA, which has 14 open reading frames (ORFs), undergoes transcription and 
translation, resulting in the multiplication of viral virions. ORFs 1a and 1b encode two replicase polyproteins 
(PP1a and PP1ab), which are cleaved by PLpro and 3CLpro, generating nsps. Two proteins, nsp12 (i.e., RdRp) and 
nsp13 (i.e., helicase), are involved in guiding the viral genome and protein synthesis, with the assistance of nsp7 
and nsp8a/nasp8b as cofactors6,7. Therefore, nsp12 is considered a primary target for antiviral inhibitors, i.e., syn-
thetic agents such as nucleotide analogs, and naturally occurring compounds, e.g., polyphenols10–14. ORFs 2–14 
encode four viral structural proteins and nine auxiliary factors, which participate in the viral capsid formation.

In coronaviruses, RdRp catalyzes the synthesis of their own RNA by using the (+)RNA strand as a tem-
plate to produce a complementary (−)RNA strand, starting from a 3′‐poly‐A tail. Two possible mechanisms 
for gRNA synthesis by RdRp are recognized as de novo (primer‐independent) and primer‐dependent RNA 
synthesis15–17. Upon primer‐independent synthesis, gRNA is progressively synthesized through the formation of 
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a phosphodiester bond composed of a 3′‐hydroxyl group bond of a first nucleotide and the 5′‐phosphate group 
of the second one. Upon primer‐dependent synthesis, an RNA-complementary strain is synthetized using the 
template and created by an oligonucleotide-prime-guided base pairing.

As mentioned above, the replication complex of SARS-CoV-2 is composed of a catalytic subunit, nsp12, as 
well as two accessory subunits, nsp8a/nsp8b and nsp7. The nsp12 subunit contains an N-terminal nidovirus 
RdRp-associated nucleotidyltransferase (NiRAN) domain, an interface domain, and a C-terminal RdRp domain. 
The C-terminal RdRp domain, formed by the conserved polymerase motifs A to G, comprises the three domains 
named as “fingers”, “palm” and “thumb”. Nsp7 and nsp8b bind to the “thumb” subdomain, whereas an additional 
copy—nsp8a—binds to the “fingers” subdomain. The core structure of RdRp that participates in RNA synthesis, 
i.e., the active site of RdRp, is surrounded by these three subdomains, and is located in the “palm” domain, which 
contains a highly conserved architecture of α‐helices, antiparallel β‐strands, RNA-recognition motif, and catalytic 
aspartates. The active site of RdRp is configured similarly to RNA polymerases of other RNA viruses, including 
retroviruses, and is quite easily reachable, making it a therapeutic target of interest14–17.

Fatty acids (FAs) belong to the large group of bioactive compounds of either plant or animal derivation18,19. 
They are amphiphilic in nature since they comprise a lipophilic short, medium or long fatty acid chain, either 
saturated or unsaturated, and the hydrophilic “head”. Their health benefits have been observed in various aspects 
of cardiovascular diseases, as well as neurological, metabolic and immunological disorders20–23. This is because 
FAs, and especially essential fatty acids (EFAs), are heavily involved in shaping, controlling, and determining the 
course of the vast majority of physiological and biochemical processes in humans and animals. Thus, they have 
a meaningful clinical impact when their availability in diet or metabolism is altered18–24.

Deficiencies of EFAs such as cis-linoleic acid (LA, 18:2, n-6) in the human diet are uncommon, owing to their 
abundant presence in widely available and inexpensive agricultural products21,23,25. Presently, LA comprises 7% 
of daily calories consumed by Western populations, despite exhortations to shift consumption from favoring 
n-6 regardless of the shift in consumption from favoring n-6 to n-3 polyunsaturated acids (PUFAs). The intake 
of LA’s metabolic derivatives, i.e., arachidonic acid (AA, 20:4, n-6) and gamma-linolenic acid (GLA, 18:3, n-6), 
as well as alpha-linolenic acid (ALA, 18:3, n-3) and its derivatives, eicosapentaenoic acid (EPA, 20:5, n-3) and 
docosahexaenoic acid (DHA, 22:6, n-3), continues to be largely unchanged25,26. Although LA has been considered 
non-functional for the brain because of its low tissue contents (< 2% of total FAs), it is nevertheless a substrate 
for AA, a progenitor of pro-inflammatory eicosanoids and ALA, a precursor for anti-inflammatory eicosanoids. 
Subsequent metabolites of these eicosanoids may even function as anti-hypertensive and anti-atherosclerotic 
compounds27–29.

Here, we examined several important FAs, lipid-soluble vitamins, and cholesterol for their potential in inhib-
iting of SARS-CoV-2 RdRp. We were able to show that LA, AA, EPA, and ALA, which belong to the PUFA 
series, have a substantial inhibitory efficacy. Among them, LA exhibited the highest binding affinity to RdRp 
protein, and concurrent experiments using replication-competent rVSVΔG-SARS-CoV-2 particles revealed 
that LA impedes its replication in vitro. This was corroborated by an in vivo study, the results of which revealed 
lower viral load in the mouse lungs after intratracheal and oral administration of LA. In conclusion, this study 
documents that PUFAs, in particular LA, by acting directly on RdRp, could decrease viral replication. Although 
further study is warranted, the identification of this compound as a prospective antiviral agent forms the basis 
of further scientific investigations.

Results
Evaluation of inhibitory properties of FAs, lipid‑soluble vitamins, and cholesterol on activity 
of SARS‑CoV‑2 RdRp.  We tested 15 FAs, three lipid-soluble vitamins, and cholesterol, for their ability to 
inhibit activity of SARS-CoV-2 RdRp. As presented in Table 1, PUFAs revealed the highest inhibitory effect at 
1.0 mg/ml concentration, while saturated fatty acids were the least effective. Out of five tested PUFAs, the LA 
showed the highest dose-dependent inhibitory effect with 57% inhibition of recombinant RdRp observed at 
10.0 μg/ml (Fig. 1A,B). Using the mixture of nsp12 and its accessory factors nsp7 and nsp8, a dose-dependent 
inhibitory effect with 56% inhibition of recombinant RdRp observed at 10.0 μg/ml. When lysates of cells overex-
pressing RdRp were used, the dose-dependent inhibitory effect sustained with 42% inhibition of RdRp observed 
at 10.0 μg/ml (Fig. 1B). We verified that the viability of cells exposed to LA alone or together with the viral par-
ticles, was not affected (Fig. 1C,D).

Binding of linoleic acid to RdRp of SARS‑CoV‑2.  To obtain deeper understanding of the nature of LA 
and RdRp interaction, we utilized SPR assay that allows determining the binding affinity parameters. Select pro-
tein-grafted regions in the SPR images were analyzed, and the average reflectivity variations of the chosen areas 
were plotted as a function of time. Real-time binding signals were recorded and analyzed by Data Analysis Mod-
ule (DAM) (Plexera Bioscience, Seattle, WA). Kinetic analysis was performed and revealed that the equilibrium 
dissociation constant (KD value) was 9.30 × 10–7 M with ka = 1.57 × 103 M−1·s−1 and kd = 1.46 × 10−3 s−1 (Fig. 2A).

Next, we evaluated the binding characteristic of LA to the RdRp of SARS-CoV-2. The scores of 9 binding 
modes of linoleic acid with target protein RdRp obtained by molecular docking were generated as shown in 
Table 2. The Vina docking score was based on the experimental binding free energy value as the fitting object. 
The scores of the 9 binding modes obtained were between -7.0 and -4.5 kcal/mol, and the best binding mode 
was -7.0 kcal/mol. The free energy of binding and KD value could be converted according to formula 1 [Δ 
DG = − RT * In(Kd)] and R = 8.314 J·mol−1·K−1; T (K) = 298.15 K (25 °C); 1 kcal = 4185.851820846 J. According 
to the experimental KD value of 9.30 × 10–7 M, the binding free energy was calculated as − 8.22 kcal/mol. The 
binding modes obtained by molecular docking were distributed near the RNA binding pocket, in which the best 
binding location was between the RNA and the protein (Fig. 2B,C). In the best binding mode, LA was bound to 
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the cavity formed between the RNA double helix and the protein. One of its sides remains in contact with the 
RNA base pair, and the other side forms a hydrophobic interaction, and hydrogen bonds with the amino acid 
residues on the protein. The long alkyl chain of the LA molecule forms hydrophobic interactions with Ile589, 
Leu758, Ala688, Cys813, Lys593, Phe594, Ile864, and the terminal carboxyl group forms electrostatic interactions 
with Lys593. The hydroxyl group forms a hydrogen bond with Asp865.

Effect of linoleic acid on HCoV‑OC43 replication in vitro.  To gain more information about the effects 
of LA on activity of RdRp in vitro, we arranged 3 experimental treatment patterns of MRC-5 cells with LA: (a) 
pre-incubation of cells with LA for 2 h before exposure of cells to HCoV-OC43, respectively (b) simultaneous 
addition of LA and HCoV-OC43, and (c) addition of LA 3 h after exposure of cells to HCoV-OC43, respec-
tively. In all these 3 experimental configurations, we observed a dose-dependent decrease of viral particles in 
conditioning media of cells ranging from 1.1 to 3.6 log10 at LA concentrations from 10.0 μg/ml to 50 μg/ml. In 
more detail, the LA pre-treatment experiment revealed 1.1–3.2 log10 reduction in viral load, at LA concentra-
tions from 10.0 to 50 μg/ml. Simultaneous addition of LA caused 1.3–3.6 log10 reduction in viral load, at LA 
concentrations from 10.0 to 50 μg/ml. The LA post-treatment experiment revealed 1.2–3.6 log10 reduction in 
viral load. In all three experimental designs, viral particles were undetectable in samples treated with 75 μg/
ml of LA (Fig. 3A–C). Additionally, with the highest concentration of LA (i.e., 75 μg/ml) and different doses 
of HCoV-OC43 applied simultaneously, significant inhibition of viral replication was observed. As shown in 
Fig. 3D, 4.5-fold reduction in viral genomic copies was achieved at 104 of the initial viral application, 4.8-fold at 
106 of the initial viral application, and 4.4-fold at 107 of the initial viral application. Also, no changes in ACE2 
expression at the protein level was observed upon 24 h treatment with concentrations of LA ranging from 25 to 
75 µg/ml (Fig. 3E, and Supplementary Fig. S1).

Effect of linoleic acid on viral replication in vivo.  In order to verify whether or not LA can inhibit viral 
burden in lung tissue of animals as well, we used K18-hACE2 C57BL/6 J mice that were randomly divided into 
8 experimental groups (Table 3). The mice were infected intratracheally (non-surgically) with a 1 × 105 infec-
tious dose of HCoV-OC43 or a 3 × 105 infectious dose of rVSVΔG-SARS-CoV-2-S-D614Gd21-NLucP. LA was 
administrated either intratracheally or via oral gavage. Intratracheal administration of LA was further conducted 
in three schemes (Fig. 4A–C). Using TaqMan principle, as a measure of viral burden in the lungs, showed a sig-
nificant 1.10 log reduction in pre-treated group, 1.5 log10 in concurrent group and 1.2 log10 post-treated group, 
compared with their representative untreated infected controls. Western blot for HCoV-OC43 spike protein 

Table 1.   Effect of lipids on activity of SARS-CoV-2 RdRp. 1.0 mg/ml of tested FAs, lipid-soluble vitamins, 
and cholesterol were first incubated with the mix containing SARS-CoV-2 RdRp for 20 min at RT and then 
supplemented with NTPs and template, and further incubated for an additional 2 h at 34 °C. Plates were then 
developed with 1 × fluorescence dye for up to 10 min. Fluorescence was measured at Ex/Em = 480/535 nm; # 
p ≤ 0.05, ^p ≤ 0.01, *p ≤ 0.001.

Tested fatty acids (1.0 mg/ml) Inhibition of RdRp activity (% ± SD)

Polyunsaturated

Arachidonic acid 100 ± 0.02*

Docosahexaenoic acid 52.4 ± 3.7^

Eicosapentaenoic acid 100 ± 0.04*

Linoleic acid 100* ± 0.05*

Linolenic acid 100 ± 0.03*

Monounsaturated

Palmitoleic acid 96.3 ± 1.9^

Petroselinic acid 97.7 ± 2.1^

Oleic acid 98.9 ± 1.2^

Erucic acid 75.9.1 ± 5.8^

Saturated

Arachidic acid

Caprylic acid 18.6 ± 2.1

Myristic acid 19.3 ± 3.1

Palmitic acid 13.2 ± 3.9

Stearic acid 15.9 ± 2.9

Undecenoic acid 16.3 ± 3.1

Lipid-soluble vitamins and others

Vitamin D3 (1,25-dihydroxycholecalciferol) 36.9 ± 6.3#

Vitamin E (alpha-tocopherol) 39.2 ± 4.2#

Vitamin A (retinol) 65.3 ± 3.9^

Cholesterol 46.3 ± 4.1#
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confirmed its lower presence in the lungs of treated infected animals compared with the untreated infected mice 
(Fig. 4D). Quantification of the SARS-CoV-2 spike protein revealed ~ 1.5 × higher density of spike protein cor-
responding band in the infected untreated animals, compared with animals infected and pre-treated with LA, as 
well as ~ 4.0 × higher density of spike protein corresponding bands in the infected untreated animals compared 
with the animals treated concurrently with LA, and the post-treated mice (Fig. 4E, and Supplementary Fig. S2).

Oral LA gavage was carried out in two fashions (Fig. 5). During the first 3 days of infection with rVSVΔG-
SARS-CoV-2-S-D614Gd21-NLucP the clinical signs such as respiratory distress, weight loss, apathy, etc., were 
not observed. Weight loss, compared with control, was manifested only in the infected animals starting on the 
fourth day from the first infection in a subgroup of animals that were re-infected on the third day (Fig. 5A,B). 
The viral burden measured in the LA-gavaged groups was also significantly lower in the infected and treated 
animals compared with infected and not treated controls, with a 1.9 log reduction in viral load in the infected 
and LA-treated group, and 2.0 log in the re-infected and LA- treated group (Fig. 5B). Interestingly, viral load 
in the control single-infected animals was significantly 1.1 log higher compared with mice in the control re-
infected group. Analysis of spike protein expression in the lung tissues by IHC supported these observations by 
showing its rather clustered tissue distribution in contrast to more scattered distribution in the lungs of infected 
and re-infected untreated animals. We noticed that the presence of viral particles and spike protein in the re-
infected animals only was significantly lower compared with once- infected animals (Fig. 5C). Quantification 
of the SARS-CoV-2 spike protein (Fig. 5D) revealed that its presence in the lung of LA-treated and infected 
and LA-treated and re-infected animals was 38.2% and 37.1% lower compared with a control (infected animals 
only), respectively. In LA-treated and re-infected animals the spike protein was lower by 17.7% compared with 
the respective control (i.e., re-infected but not LA-treated).

Lung tissues were also subjected to standard histo- and immunochemical analysis by hematoxylin and eosin 
staining as well as CD45 + and CD11b staining. The analysis of stained slides revealed that the lungs sections 
from all LA-treated and either once-infected or re-infected animals had less inflammation compared to the 
corresponding control animals. As such, the LA-treated mice showed a lesser alveolar and peribronchiolar 

Figure 1.   Effects of PUFAs on activity of SARS-CoV-2 RdRp. (A) Recombinant RdRp was incubated with 
selected FAs at designated concentrations for 15 min at RT. Mix composed of NTPs and RNA template was 
then added, and reaction was carried out for 2 h at 34 °C. Signal was measured after 10 min at extension/
emission = 488/535 nm with spectrofluorometer. Data are presented as % of control – 1.0% DMSO. (B) 
Recombinant RdRp or its mixture with accessory nsp7/nsp8 and RdRp overexpressed in VeroE6 cells was 
incubated with designated concentrations of LA for 15 min at RT. Mix composed of NTPs and RNA template 
was then added, and reaction was carried out for 2 h at 34 °C. Signal was measured after 10 min at extension/
emission = 488/535 nm with spectrofluorometer. Data are presented as % of control – 1.0% DMSO, 100% 
inhibition – RdRp that was boiled at 100 °C and additionally exposed to UV for 30 min; insert – RFU readouts 
as an expression of activity of RdRp recombinant versus RdRp overexpressed. (C) Viability of cells treated only 
with designated concentrations of LA determined by measuring of absorbance after 24 h. (D) Viability of cells 
after treatment with designated concentrations of LA in the presence of viral particles determined by absorbance 
readouts after 24 h, EPA – eicosapentaenoic acid, LA – linoleic acid; ∆ p ≤ 0.01, * p ≤ 0.001.
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inflammatory representation, compared with re-infected and once-infected untreated mice. All control mice 
developed pulmonary pathology that could be described as the presence of perivascular leucocytes, hyaline 
membrane, edema, and infiltrated myeloid cells (Fig. 6A). We observed a 18.9% increase in the presence of 
CD45 + cells, but a 17.4% decrease of CD11b cells in the control animals re-infected but not treated compared 
with once-infected control animals. The LA treatment significantly decreased the percentage of CD45 + immune 
cells in the lungs by about 71.7% (LA-3 dpi) and 72.3% (LA-5 dpi) respectively, compared with infected-only 
animals (Fig. 6B upper panel, C). The recruitment of CD11b myeloid cells into the lungs of infected mice was 
about 64.4% (LA-3 dpi) and 64.9% (LA-5 dpi) lower respectively, compared with once infected-only animals 
(Fig. 6B lower panel, C). We noticed an 18.1% decrease in the presence of CD11b cells in the not-treated and 
re-infected animals compared with not-treated and only-once-infected animals.

Discussion
LA (cis, cis-9,12-octadecadienoic acid) is one of the PUFAs commonly found in the human diet. It is an energy 
source and the origin of myriad metabolites tangled to cellular membrane and various derivatives involved in 
cell signaling (i.e., 13-hydroxy or 13-hydroperoxy octadecadienoic acid). Concerns that LA can contribute to 
cardiovascular and inflammatory dysfunctions have not thus far found support from epidemiological and clinical 

Figure 2.   Binding of LA to SARS-CoV-2 RdRp. (A) Evaluation of the binding affinity and affinity parameters 
of LA to RdRp by SPR. The equilibrium dissociation constant (KD Value) with ka and kd were calculated. (B) 
Binding modes distribution of LA. The protein and RNA are represented by the green and orange cartoon 
models, respectively, and the 9 binding modes were represented by the pink stick model. (C) Best binding mode 
of LA. Protein and RNA are shown in green and orange ribbon models, and small molecules were shown in 
purple stick models (C in purple and O in red). The residues within 4 Å nearby LA are depicted in green stick 
models (C in green and O in red), and hydrogen bonds were shown by yellow dashed lines, LA- linoleic acid.

Table 2.   Docking scores for 9 binding modes obtained by molecular docking.

Models Docking score (kcal/mol)

Model1  − 7.0

Model2  − 6.6

Model3  − 6.4

Model4  − 5.9

Model5  − 5.5

Model6  − 5.2

Model7  − 4.9

Model8  − 4.8

Model9  − 4.8
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studies21–29. Dietary LA is absorbed by enterocytes in the small intestine and incorporated in chylomicrons, 
which then enter the circulation, delivering LA molecules to hepatic and non-hepatic tissues according to their 
needs. Emken et al.32 have demonstrated that up to 85% of dietary LA may be absorbed by humans. However, no 
maximum limits for LA have been established thus far, owing to a lack of information on defined intake doses 
that could trigger any adverse effects21,23,32.

The mixed outcome of vaccination against SARS-CoV-2 has refocused the overall goals towards finding 
potential therapeutic or prophylactic agents, either novel or repurposed. Currently available nucleotide analogs 
such as remdesivir are in the scope of interest. However, recently published data prompt a caution, owing to 
the newly emerged remdesivir-resistant mutation E802D in the nsp12. Published clinical evidence indicates 
that, in an immunocompromised patient who developed a protracted course of SARS-CoV-2 infection, the 

Figure 3.   Effects of LA against viral replication in vitro. (A) Pre-treatment effect of increasing concentrations 
of LA on HCoV-OC43 replication. (B) Concurrent effect of increasing concentrations of LA on HCoV-OC43 
replication. (C) Post-treatment effect of increasing concentrations of LA on HCoV-OC43 replication. (D) Effect 
of concurrent application of single 75 µg/ml concentration of LA and different concentrations of HCoV-OC43 
virus. (E) Effect of increasing concentrations of LA on ACE2 expression at protein level. The effect against RdRp 
activity was determined by measurement of viral particles in conditioning media of MRC-5 cells by RT-qPCR 
and represented as viral copies/ml. The effect on ACE2 expression was determined in A549 cells by Western 
blot. Data are presented as mean + / − SD; control – cells exposed to virus and 0.05% DMSO, positive control – 
100% dead cells, i.e., cells that were exposed to 100% of DMSO and additionally to UV for 30 min, LA linoleic 
acid; # p ≤ 0.05, ∆ p ≤ 0.01, * p ≤ 0.001.

Table 3.   Experimental animal groups of in vivo study.

Group Treatment

1 Uninfected animals intratracheally injected with 0.5% DMSO

2 Intratracheally infected animals with intratracheally injected 0.5% DMSO

3 Uninfected animals intratracheally injected with 75 μg LA

4 Intratracheally infected animals and intratracheally injected with 75 μg LA

5 Uninfected animals gavaged with 5.0% ethanol

6 Intratracheally infected animals gavaged with 5.0% ethanol

7 Uninfected animals gavaged with 275 mg/kg LA

8 Intratracheally infected animals gavaged with 275 mg/kg LA
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remdesivir therapy alleviated symptoms but further recovery was complicated by recrudescence of high-grade 
viral shedding33.

Here, we tested the efficacy of 15 FAs, lipid-soluble vitamins such as A, E, and D, and cholesterol, in inhibiting 
the activity of SARS-CoV-2 RdRp. Preliminary screening allowed for selecting four PUFAs: LA, ALA, EPA, and 
AA. Interestingly, DHA did not display RdRp inhibition capability. A poor conformational fit of DHA chemical 
structure to the RdRp is the most likely cause of this. Further experiments testing dose-dependent inhibitory 
effects have narrowed this selection to LA as a source of the most promising compounds. The LA efficacy was 
also reproduced in an assay where the overexpressed RdRp was used, although the inhibitory effect was noticed at 
lower concentrations of LA, i.e., ≤ 25 μg/ml. Experiment, in which mixture of nsp12/nsp7/nsp8 was used provided 
similar inhibitory response to the one provided by the manufacturer of the kit. This could possibly be attributable 
to more favorable conformation of the recombinant proteins over the one that was overexpressed in monkey cells.

As Toelzer et al.34 showed, there is a binding pocket in RBD-SARS-CoV-2 spike protein for LA, which makes 
it capable of interfering with viral attachment and affecting the first step of infection. Our earlier published 
results confirmed that LA inhibits binding of SARS-CoV-2 pseudo-virions to hACE2. However, the binding-
inhibitory effects were achieved at higher concentrations than the ones required for inhibition of RdRp activity. 
As such, in vitro inhibition of SARS-CoV-2 attachment to hACE2 was noticed at LA concentrations of 80 μg/
ml and above, whereas inhibition of SARS-CoV-2 RdRp activity, in the study presented here, was observed at 
and below 75 μg/ml35.

Molecular docking revealed that LA binds to the cavity formed by the RNA double helix and protein. It forms 
hydrophobic interactions with multiple residues, and at the same time forms electrostatic interactions including 
hydrogen bonding with Lys593 and Asp865. Experimental data from SPR corroborated the computational mod-
eling with calculated KD = 9.3 × 107. In order to ensure that observed binding results, substantiated by a computa-
tionally aided model, could be confirmed at the cellular level, but being limited by BSL requirements, we applied 
three experimental patterns of MRC-5 cells treatment with LA infected with HCoV-OC43 virus (also human 
RNA type virus that contains a positive, single-stranded RNA) as a substitute for SARS-CoV-2. We observed 
that either pre-treatment, simultaneous treatment or post-treatment of cells with 10–75 µg/ml LA resulted in 
a significant, dose-dependent reduction of viral particles after 24 h. Also, the highest concentration of LA used 
in this study (i.e., 75 µg/ml) significantly reduced the viral genomic copies of HCoV-OC43 depending on its 
initial application. Importantly, we did not notice that LA (up to 75 µg/ml after 24 h of treatment) affects ACE2 
expression at protein level. Since the RdRp structure is rather conservative among RNA viruses, it is plausible 

Figure 4.   Effect of intra-tracheal administration of LA against viral replication in vivo. (A) Pre-treatment 
effect of LA on HCoV-OC43 replication in lung tissue of K18-hACE2 C57BL/6 J mice. (B) Concurrent effect 
of LA on HCoV-OC43 replication in lung tissue of K18-hACE2 C57BL/6 J mice. (C) Post-treatment effect of 
LA on HCoV-OC43 replication in lung tissue of K18-hACE2 C57BL/6 J mice. (D) SARS-CoV-2 spike protein 
detection in mice lungs with western blot. (E) Quantification of SARS-CoV-2 spike protein performed as 
described in Material and Method section. Data are presented as mean + / − SD; uninfected untreated animal 
n = 3, uninfected treated with LA animal n = 3, infected untreated animal n = 8, infected treated animal n = 8; 
viral burden in lung tissue was determined by RT-qPCR and represented as viral copies normalized to mouse 
Pol2Ra; LA – linoleic acid; # p ≤ 0.05, ∆ p ≤ 0.01, * p ≤ 0.001.
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that LA could be effective in blocking replication more than just coronavirus strains as well. Another factor to 
consider is LA’s metabolism in host cells, which could reduce its available amount. This might be reflected in a 
higher concentration of LA required for RdRp inhibition in the cells compared with the concentrations used in 
cell-free assays. In addition, it is also possible that LA may incorporate into cellular membranes and/or, in the case 
of the whole organism, in adipocytes. Taking into account that LA is an ampholytic and membrane-penetrating 
compound, alterations of the cell membrane properties of either host or capsules of virions, affecting the lipid 
structure, and as such influencing their fluidity, needs to be acknowledged as well.

To further confirm the inhibitory effect of LA against RdRp, we evaluated the effects of LA administration in 
an animal model. We used C57BL/6 J mice expressing human ACE2 receptor. Our experiment was limited by 
the use of HCoV-OC43 and rVSVΔG-SARS-CoV-2-S-D614Gd21-NLucP virions that are deprived of specific 
infectivity. rVSVΔG-SARS-CoV-2-S-D614Gd21-NLucP virions, however, are replication-competent and infec-
tious, thus suitable for BSL2 + laboratories36. We chose to apply non-surgical intratracheal and conventional oral 
administration of LA. In intratracheal treatment, a short-term viral exposure was significantly reduced by LA. 
Our results showed effects either similar to or greater than the ones reported for remdesivir in the same mouse 
model37. One consistent outcome observed in both in vitro and in vivo studies was that simultaneous and post-
treatment with LA seem to be more effective in decreasing viral load than the pre-treatment with LA. That would 
accord with our above-mentioned supposition about the influence of LA metabolism and membrane-penetrating 
competence properties. In both short-term and mid-term oral application, again we observed that administra-
tion of LA has a significant antiviral effect as well. This could result in reduced inflammation in lung tissue of 
infected and LA-treated animals compared with their respective controls, where inflammation occurred. Since 
inflammation is the leading factor in SARS-CoV-2-triggered lung injury, our findings are of value, and they also 
clarify still-lingering controversy around LA being considered as a pro-inflammatory compound. We found it 
interesting that there were fewer viral particles detected in the lung tissue of re-infected animals compared with 
once-infected animals. This was accompanied by decreased inflammatory infiltration. However, there was an 
increase in the overall presence of CD45 + cells in re-infected not-treated animals compared with control once-
infected animals only. This could be associated with adaptive/ humoral responses facilitated by the spike protein. 
A similar phenomenon of decreased viral load and peribronchial and perivascular inflammatory infiltration 

Figure 5.   Effect of oral administration of LA against viral replication in vivo. (A) Effect of three-day oral 
administration of LA in K18-hACE2 C57BL/6 J mice with no observed weight change. (B) Effect of six-day oral 
administration of LA in K18-hACE2 C57BL/6 J mice and mid-term re-infected with observed weight change 
started on day four. The viral burden in lung tissue was determined by RT-qPCR and is represented as VSV 
L gene copies normalized to mouse Pol2Ra. (C) SARS-CoV-2 spike protein detection with immunochemical 
staining in representative lung tissue sections. (D) Quantification of SARS-CoV-2 spike protein performed as 
described in Material and Method section. Data are presented as mean + / − SD; uninfected untreated animal 
n = 3, uninfected treated animal n = 3, infected untreated animal n = 8, infected treated animal n = 8, re-infected 
untreated animal n = 8, re-infected treated animal n = 8, scale bar = 3 mm and 200 μm; LA – linoleic acid; # 
p ≤ 0.05, ∆ p ≤ 0.01, * p ≤ 0.001, dpi- days post-infection.
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was reported by Jing et al., who used the original SARS-CoV-2 virus at similar 7 × 105 infectious dose38. Overall, 
our in vivo results further confirm a significantly reduced viral replication and viral-triggered inflammation in 
the lungs of infected and LA-treated mice, as well as a decreased presence of CD45 + cells and infiltration with 
CD11b (pan-myeloid cells) that were acknowledged as initiators and maintaining factors of lung inflammatory 
process associated with SARS-CoV-2 infection38–42. Based on our results, we can also say that the engineered 
SARS-CoV-2 virus used by us can be suitable for in vivo experiments to study pulmonary pathologies, especially 
the aspects of inflammatory responses.

As a note, LA encompasses approximately 20% of all the FAs in human plasma and 9% in cellular membranes 
of erythrocytes43. Abdelmagid et al. reported that plasma concentrations of circulating LA accounts in the range 
of 0.2 to 5.0 mM44. Vermunt et al. observed that after intake of a single dose of 45 mg of 13C-LA, the mean peak 
of absolute amount of 13C-LA reached 3.4 ± 0.8 mg after about 17 h, which accounts for 7.6% of the total ingested 
dose45. This corresponds to mean concentration in plasma total lipids of 953 ± 52 mg/l (i.e., 32.54 ± 1.12% of total 
FAs) and mean plasma concentrations (Cmax) of 9.3 ± 1.4 mg/l (i.e., 0.31 ± 0.02% of total FAs). In that study, 
about 21% of the ingested 13C-LA was recovered in breath, while the peak amount of 13C-LA in plasma was about 
8%. Peak of 13C-LA in breath was obtained 3–5 h after the intake of C13labeled LA. This study also indicated that 
LA began to be directly converted to its metabolites (mainly ALA), reaching their peak at 25 h, and to diminish 
after 168 h. Demmelmair et al. observed that 13C-LA detected in the milk of lactating women reached its peak at 
12 h after ingestion of 1 mg 13C-LA/kg body weight, with a similar time to peak (Tmax) in the breath reported by 
Vermunt et al., and the total recovery of 18–24%46. By comparison, consumption of 140 mg of LA by rats resulted 
in a Cmax of 102 ± 11 nmol/ml, at Tmax 6.45 ± 0.05h47. By our assessments, LA inhibited in vitro SARS-CoV-2 
replication in a dose-dependent fashion when applied at the range between 17.8 and 267.4 µM. In our in vivo 
study, a single dose of 75 μg of LA administrated intratracheally, and a 5.5–6.88 mg daily dose administrated 
orally, resulted in lowering the viral load in the lung tissue and at the same time hindering the inflammatory 
burden. However, since our studies were limited to using the engineered SARS-CoV-2 virus, in order to comply 
with the safety issues, the use of the original SARS-CoV-2 virus instead is warranted.

Figure 6.   Inflammatory status after mid-term oral administration of linoleic acid in vivo. (A) Effect of LA 
orally gavaged for six days in K18-hACE2 C57BL/6 J mice infected and re-infected with viral particles on 
lung tissue stained with H&E. (B) Effect of LA orally gavaged for six days in K18-hACE2 C57BL/6 J mice and 
re-infected on lung tissue stained with CD45 + antibody and CD11b antibody. (C) Quantification of CD45 + and 
CD11b antibodies as described in Material and Method section. Data are presented as mean + / − SD; uninfected 
untreated animal n = 3, uninfected treated animal n = 3, infected untreated animal n = 8, infected treated animal 
n = 8, re-infected untreated animal n = 8, re-infected treated animal n = 8, scale bar = 3 mm and 200 μm; # 
p ≤ 0.05, ∆ p ≤ 0.01, * p ≤ 0.001, dpi- days post-infection.
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In conclusion, PUFAs, in particular LA, manifested a direct inhibitory effect on RdRp activity, and repressed 
viral replication. The results presented here lay the foundation for further studies to expand our understanding 
of FAs’ efficacy against SARS-CoV-2.

Material and methods
Cells, viruses, test compounds, antibodies and inhibitors.  MRC-5 cell line, human coronavirus 
OC43 (HCoV-O43) and human coronavirus 229E (HCoV-229E) were obtained from ATCC (American Type 
Culture Collection) (Manassas, VA) and maintained in Modified Eagle’s Medium containing 10% fetal bovine 
serum. Replication-competent SARS-CoV-2 as rVSVΔG-SARS-CoV-2-S-D614GΔ21-NLucP was purchased 
from Kerafast (Boston, MA). rVSVΔG-SARS-CoV-2-S-D614Gd21-NLucP is a recombinant vesicular stomatitis 
virus, in which the native glycoprotein has been replaced with the SARS-CoV-2 spike protein lacking the last 21 
residues of the cytoplasmic tail, and contains the D614G amino acid change (SMet1D614GΔ21), thus the virus is 
capable of interacting with and entering cells through the SARS-CoV-2 spike, but once fusion occurs, it repli-
cates using the vesicular stomatitis virus (VSV) machinery. SARS-CoV-2 RdRp complex (i.e., nsp12/nsp7/nsp8) 
was from BPS Bioscience (San Diego, CA). All FAs (except EPA and DHA) and vitamin A (all-trans-retinol) 
were obtained from Cayman Chemical Company (Ann Arbor, MI), and other lipid-soluble vitamins, and choles-
terol were purchased from Sigma (St. Louis, MO). HCoV-OC43 anti-spike antibody was from CusaBio Technol-
ogy LLC (Houston, TX), SARS-CoV-2 anti-spike antibody was from GeneTex, Irvine, CA, whereas anti-ACE2 
and anti-β-actin antibody were from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-CD45 + and anti-CD11b 
antibodies were from Cell Signaling (Danvers, MA).

SARS‑CoV‑2 RdRp expression.  RdRp expression was performed according to published methodology 
(16). Target DNA sequence of RdRp (sequence of SARS-CoV-2 strain Wuhan-Hu-1) was taken from Gen-
bank accession YP_009725307. The SARS-CoV-2 RdRp gene (as nsp 12) was codon-optimized for expression 
in insect cells, then synthetized and sub-cloned into a target vector for insect cell expression (i.e., construct 
pFAStBac1-RdRp-His-Strep) (GenScript, Piscataway, NJ). DH10Bac strain was then used for recombinant bac-
mid (rBacmid) generation. The positive rBacmid- containing the RdRp gene was selected and confirmed by 
sequencing. Sf9 cells were grown in Sf-900 II SFM Expression Medium (Life Technologies, Carlsbad, CA). The 
cells were maintained in a 27 °C flask in an orbital shaker. One day before transfection, the cells were seeded in 
a 6-well plate. On the day of transfection, DNA and transfection reagent (Promega, Madison, WI) were mixed 
together at the optimal ratio and then added into the plate with the cells ready for transfection. Cells were incu-
bated in Sf-900 SFM for 5–7 days at 27 °C before harvest. The supernatant was collected after centrifugation and 
designated as P1 viral stock. Viral stock designated as P2 was amplified for later infection. The expression was 
analyzed by western blot. The 1 L of SF9 cell culture was infected by P2 viral stock. Cells were incubated in Sf-900 
II for 3 days at 27 °C before harvest. The expression was again analyzed by western blot. Cell pellet was har-
vested, lysed in cell buffer [300 mM NaCl, 50 mM Na-HEPES pH 7.4, 10% (v/v) glycerol, 30 mM imidazole pH 
8.0, 3.0 mM MgCl2, 5 mM β-mercaptoethanol, 0.284 μg/ml leupeptin, 1.37 μg/ml pepstatin, 0.17 mg/ml PMSF, 
and 0.33 mg/ml benzamidine], and sonicated. The cell lysate (i.e., supernatant) was incubated with Ni–NTA to 
capture the target protein and then further purified by Superdex 200 16/600GL (GE Healthcare, Chicago, IL). 
Fractions with the higher purity were pooled, followed by 0.22 μm filter sterilization, and stored in − 80 °C. Pro-
teins were analyzed by SDS-PAGE and western blot. Concentration was determined by Bradford protein assay. 
Synthesis of RdRp gene and sequencing of positive rBacmid was performed by GenScript (Piscataway, NJ).

Surface plasmon resonance (SPR) binding assay.  SPR binding assay, which measures binding affinity 
KD as well kinetic parameters ka and kd of human RdRp protein, with LA as the ligand, was utilized, where RdRp 
protein was printed onto the chip and the analyte was LA at different concentrations (Creative Biostructure, 
Shirley, NY). The bare gold-coated (thickness 47 nm) PlexArray Nanocapture Sensor Chip (Plexera Bioscience, 
Seattle, WA) was prewashed with 10 × PBST (PBS + Tween-20) for 10 min, 1 × PBST for 10 min, and deionized 
water twice for 10 min, before being dried under a stream of nitrogen prior to use. Various concentrations of 
human RdRp protein dissolved in water were manually printed onto the chip with Biodo bio-printing at 40% 
humidity via biotin-avidin conjugation. Each concentration was printed in replicate, and each spot contained 
0.2 µl of sample solution. The chip was incubated in 80% humidity overnight at 4 °C, and rinsed with 10 × PBST 
for 10 min, 1 × PBST for 10 min, and deionized water twice for 10 min. The chip was then blocked with 5% (w/v) 
non-fat milk in water overnight, and washed with 10 × PBST for 10 min, 1 × PBST for 10 min, and deionized 
water twice for 10 min before being dried under a stream of nitrogen prior to use. SPR measurements were 
performed with PlexAray HT (Plexera Bioscience, Seattle, WA). Collimated light (660 nm) was passed through 
the coupling prism reflecting off the SPR-active gold surface, and was received by the CCD camera. Buffers and 
samples were injected by a non-pulsatile piston pump into the 30 µl flowcell that was mounted on the coupling 
prism. Each measurement cycle contained four steps: washing with PBST running buffer at a constant rate of 
2.0 µl/s to obtain a stable baseline, sample injection at 5 µl/s for binding, surface washing with PBST at 2 µl/s 
for 300 s, and regeneration with 0.5% (v/v H3PO4 at 2 µl/s for 300 s. All the measurements were performed at 
25 °C. The signal changes after binding and washing (in AU) were recorded as the assay value. Kinetics fitting 
and analysis-selected protein-grafted regions in the SPR images were analyzed, and the average reflectivity vari-
ations of the chosen areas were plotted as a function of time. After data collection with SPR and kinetics fitting 
and analysis, the KD, ka and kd were calculated. Real-time binding signals were recorded and analyzed by Data 
Analysis Module (DAM, Plexera Bioscience, Seattle, WA). Kinetic analysis was performed using BIA evaluation 
4.1 software (Biacore, Inc.).
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Molecular docking.  The structure of PDB code 7c2k was downloaded from the PDB library (www.​rcsb.​
org). It is a complex structure of SARS-CoV-2 RNA polymerase with double-strand RNA fragments (Creative 
Biostructure, Shirley, NY). The three-dimensional structure of the LA molecule in the sdf format was down-
loaded from pubchem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/​compo​und/​Linol​eic-​acid), and OpenBabel (30) was 
used to convert it into the mol2 file for further processing. In this study, AutoDock Vina (31) was selected as 
the molecular docking tool. MGLTools 1.5.6 was used to read in 7c2k, and performed hydrogenation and gave 
Kollman charge to generate the protein.pdbqt file. With reference to the compound structure 7bv2 of RdRp 
and Radixivir, the center coordinates of the docking box x, y, z were defined as 133.1, 139.1, 141.1, based on the 
binding position of Radixivir, and the box size was set to 30 × 30 × 30 Å, so it could contain the entire pocket 
area. The ligand_prepare.py script in the molecular docking package was used to deal with the mol2 file of the 
ligand linoleic acid. The flexible bond was set by default, and Gasteiger charge was added to generate the ligand 
pdbqt file. The exhaustiveness value of the search parameter was set to 10 and defined to output the top 9 rank-
ing conformations according to docking scores. The default values were selected for the rest of the parameters.

SARS‑CoV‑2 RdRp activity assays.  Cell-free assay with recombinant RdRp: RdRp activity was evaluated 
using a SARS-CoV-2 RNA Polymerase Assay Kit (ProFoldin, Hudson, MA) according to the manufacturer’s 
protocol. Briefly, 0.5 µl of 50 × SARS-CoV-2 recombinant RdRp was incubated with 2.5 µl of 50 × buffer, 20 µl of 
water, and 1.0 µl of FA at 0, 10, 25, 50, and 75 μg/ml concentrations (i.e., 0, 35.7, 89.2, 178.3, and 267.4 μM) for 
15 min at RT, followed by the addition of master mix containing 0.5 µl of 50 × NTPs and 0.5 µl of 50 × template 
(as a single-stranded polyribonucleotide). The reaction (25 µl) was incubated for 2 h at 34 °C and then stopped 
by the addition of 65 µl of 10 × fluorescence dye, and the fluorescence signal was recorded in 10 min at exten-
sion/emission = 488/535  nm using a fluorescence spectrometer (Tecan, Group Ltd., Switzerland). Results are 
expressed as a % of control without test compound (mean + / − SD, n = 6).

Cell-free assay with recombinant RdRp (complex of nsp12/nsp7/nsp8): RdRp activity was evaluated using a 
RNA Polymerase Assay Kit (ProFoldin, Hudson, MA) according to the manufacturer’s protocol. Briefly, 1 µl 
(25 ng) SARS-CoV-2 recombinant RdRp complex was incubated with 2.5 µl of 50 × buffer, 20 µl of water, and 
1.0 µl of FA at 0, 10, 25, 50, and 75 μg/ml concentrations (i.e., 0, 35.7, 89.2, 178.3, and 267.4 μM) for 15 min 
at RT, followed by the addition of master mix containing 0.5 µl of 50 × NTPs and 0.5 µl of 50 × template (as a 
single-stranded polyribonucleotide). The reaction (25 µl) was incubated for 2 h at 34 °C and then stopped by 
the addition of 65 µl of 10 × fluorescence dye, and the fluorescence signal was recorded in 10 min at extension/
emission = 488/535 nm using a fluorescence spectrometer (Tecan, Group Ltd., Switzerland). Results are expressed 
as a % of control without test compound (mean + / − SD, n = 6).

Cell-free assay with overexpressed RdRp: To determine the inhibitory effect of LA on SARS-CoV-2 RdRp 
overexpressed in Vero cells, 20 µl of cell lysate/20 µg protein was incubated with 2.5 µl of 50 × buffer and 1.0 µl 
of LA at 0, 10, 25, 50, and 75 μg/ml concentrations (i.e., 0, 35.7, 89.2, 178.3, and 267.4 μM), respectively, for 
15 min at RT, followed by the addition of master mix containing 0.5 µl of 50 × NTPs and 0.5 µl of 50 × template 
(as a single-stranded polyribonucleotide). The reaction (25 µl) was incubated for 2 h at 34 °C and then stopped 
by addition of 65 µl of 10 × fluorescence dye, and the fluorescence signal was recorded after 10 min at extension/
emission = 488/535 nm using a fluorescence spectrometer (Tecan, Group Ltd., Switzerland). Results are expressed 
as a % of control without test compound (mean + / − SD, n = 6).

To transduce cells with eGFP-luciferase-SARS-CoV-2 RdRp lentivirus (GenScript, Piscataway, NJ), Vero 
cells seeded into a 6-well plate in the presence of complete growth medium were treated with 8 µl/ml polybrene 
(Sigma, St. Louis, MO) for 30 min, followed by the addition of eGFP-luciferase-SARS-CoV-2 RdRp lentivirus 
(GenScript, Piscataway, NJ) at a multiplicity of infection (MOI) of 5 (our previous preliminary results showed 
an almost 100% transduction rate can be achieved with this MOI), and spin-inoculation at 1000 × g for 1 h. After 
24 h at 37 °C incubation, cells were fed with fresh complete growth medium. After 48 h post-inoculation, cells 
were detached with 1.0 mM EDTA, washed twice with 1 × PBS (phosphate-buffered saline), and disrupted with 
a Dounce tissue homogenizer and sonication. Efficacy of transduction was validated by western blot with anti-
RdRp antibody at dilution 1:1000 (Kerafast, Boston, MA).

In vitro replication assays.  In vitro pre-treatment study: MRC-5 cells were seeded in a 6-well plate at 
1.0 × 106. After attachment, the growth media were replaced with maintenance media containing 0, 10, 25, 50, 
and 75 µg/ml of LA, or DMSO-only control. Treated plates were incubated in a 33 °C 5% CO2 incubator for 
2 h. After pre-treatment, HCoV-O43 particles were added for 3 h to all wells, yielding a MOI of 0.1. The growth 
medium was then replaced with a fresh one and the infection was allowed to proceed for 24 h at 33 °C in 5% CO2. 
Next, conditioning media were collected and viral load in conditioning medium was determined by RT-qPCR. 
Results are expressed as a log10 genomic copies/ml compared to LA-free control (mean + / − SD, n = 6).

In vitro treatment study: MRC-5 cells were seeded in a 6-well plate at 1.0 × 106. After cell attachment, the 
growth media were replaced with maintenance media containing 0, 10, 25, 50, and 75 µg/ml of LA, or DMSO-
only control, and either HCoV-O43 particles were added to all wells, yielding an MOI of 0.1. The incubation was 
allowed to proceed for 3 h at 33 °C in 5% CO2. The growth medium was then replaced with a fresh one and the 
infection was allowed to proceed further for 24 h at 33 °C and 5% CO2. Next, conditioning media were collected 
and viral load in conditioning medium was determined by RT-qPCR. Results are expressed as a log10 genomic 
copies/ml compared to LA-free control (mean + / − SD, n = 6).

In vitro post-treatment study: MRC-5 cells were seeded in a 6-well plate at 1.0 × 106. After cell attachment, the 
growth media were replaced with maintenance media containing HCoV-O43 added to all wells for 3 h, yielding 
an MOI of 0.1, after which 0.1. 5, 10, 25, 50, and 75 µg/ml of LA, or DMSO-only control was added. After the next 
2 h, the growth medium was replaced with a fresh one and the infection was allowed to proceed for 24 h at 33 °C 
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and 5% CO2. Next, conditioning media were collected and viral load in conditioning medium was determined by 
RT-qPCR. Results are expressed as a log10 genomic copies/ml compared to LA-free control (mean + / − SD, n = 6).

In vitro viral dose-addition study: MRC-5 cells were seeded in a 6-well plate at 1.0 × 106. After cell attachment, 
the growth media were replaced with maintenance media containing HCoV-O43 added to all wells for 3 h, yield-
ing an MOI of 0.01, 1.0, and 10.0 concurrently with single 75 µg/ml of LA concentration, or DMSO-only control 
was added. After the next 2 h, the growth medium was replaced with a fresh one and the infection was allowed 
to proceed for 24 h at 33 °C and 5% CO2. Next, conditioning media were collected and viral load in conditioning 
medium was determined by RT-qPCR. Results are expressed as a log10 genomic copies/ml compared to LA-free 
control (mean + / − SD, n = 6).

Cytotoxic assays.  Cell viability without virus: To assess cell viability, CellTiter 96®AQueous One Solution 
(Promega, Madison, WI) was used. Briefly, Vero cells were seeded into a 96-well plate at a cell density of 5 × 104 
per well and allowed to adhere for 24 h, followed by treatment with serially diluted selected LA for 24 h. Next, 
100 μl CellTiter 96®AQueous One Solution was added according to the manufacturer’s protocols. The absorbance 
was measured using a microplate spectrophotometer (Molecular Devices, San Jose, CA). Results are expressed as 
a % of LA-free control (mean + / − SD, n = 10).

Cell viability with virus: To assess cell viability, Vero cells were seeded into a 96-well plate at a cell density 
of 5 × 104 per well and allowed to adhere for 24 h, followed by treatment with serially diluted selected LA and 
HCoV-OC43, yielding an MOI of 0.1. The cell viability was assessed using CellTiter 96®AQueous One Solution 
(Promega, Madison, WI) after 24 h, following the manufacturer’s protocols. The absorbance measurements were 
done using a microplate spectrophotometer (Molecular Devices, San Jose, CA). Results are presented as a % of 
LA-free control (mean + / − SD, n = 10).

In vivo study.  K18-hACE2 C57BL/6 J 6–8-week-old mice weighing approximately 20–25 g were used in this 
study (The Jackson Laboratory, Bar Harbor, ME). The mice were kept at an ambient temperature of 21 °C with 
fat-deprived standard rodent diet (with adjusted calories content) and water provided ad libitum during a light 
and dark cycle of 12 h. Experimental animal protocol No. 02/B042021 was reviewed by and approved in 2021 
by the Animal Care and Use Committee at the Dr. Rath Research Institute. The study is reported in accordance 
with ARRIVE guidelines as well as all methods were performed in accordance with the relevant guidelines and 
regulations. Mice were randomly divided into 8 experimental groups as presented in Table 3. Either 1 × 105 tis-
sue infectious doses (TCID50) of HCoV-O43 or 3 × 105 (TCID50 of rVSVΔG-SARS-CoV-2-S-D614Gd21-NLucP 
particles were inoculated intratracheally into the animals from infected groups as well as infected and LA-treated 
groups. In addition, animals from infected group as well as infected and LA-gavaged group were mid-term 
intratracheally re-infected with continued oral administration of LA. Oral gavaging began 24 h prior to viral 
infection, and the weight of gavaged animals was monitored daily. At the end of each study, all animals were 
sacrificed by overdosing of isoflurane, and the lung samples were collected, immediately snap-frozen in liquid 
nitrogen, and subjected to RT-qPCR and western blot test. For histology/immunohistochemistry, tissues were 
fixed in 10% neutral-buffered formalin for 3 days and moved to 70% of ethanol and stored until histology/immu-
nohistochemistry was performed.

Quantification of RNA.  In vitro study: HCoV-O43 load in conditioning medium was quantified by 
extracting RNA using Zymo Quick-RNA Viral 96 Kit (Zymo Research, Irvine, CA) according to the manufac-
turer’s protocol. Next, TaqMan Advanced Master Mix exploiting one-step RT-qPCR principle was used in trip-
licates for each sample with TaqMan Gene Expression System (ThermoFisher, Waltham, MA) on BioRad CFX 
instrument (Hercules, CA), with cycling parameters as: 20 s at 95 °C; and 40 cycles at 95 °C for 3 s and 60 °C for 
30 s. Standard curve of viral copy number/CT value was created using serially diluted positive control of know 
concentrations of HCoV-OC43 RNA (ATCC, Manassas, VA).

In vivo study: HCoV-O43 genome copies in lung tissues were quantified by extracting RNA with a Qiagen 
RNA Plus Isolation kit (Germantown MD), according to the manufacturer’s protocol. 2.0 µg/ml extracted RNA 
was then taken for cDNA synthesis using a High-Capacity RNA-to-cDNA kit, following the manufacture’s 
protocol (ThermoFisher, Waltham, MA). Two-step RT-qPCR with TaqMan Advanced Master Mix and TaqMan 
Gene Expression Assay (ThermoFisher, Waltham, MA) was then executed in triplicates for each sample on 
BioRad CFX instrument (Hercules, CA), with cycling parameters as: 20 s at 95 °C; and 40 cycles at 95 °C for 
3 s and 60 °C for 30 s. Genomic copies per lung tissue were normalized to the relative expression of the mouse 
RNA Polymerase II gene (Pol2Ra) using TaqMan™ Gene Expression Assays (ThermoFisher, Waltham, MA). 
rVSVΔG-SARS-CoV-2-S-D614Gd21-NLucP genome copies in lung tissues were quantified by extracting RNA 
with a Qiagen RNA Plus Isolation kit (Germantown MD), according to the manufacturer’s protocol. 2.0 µg/
ml extracted RNA was then taken for cDNA synthesis using a High-Capacity RNA-to-cDNA kit, following the 
manufacture’s protocol (ThermoFisher, Waltham, MA). Two-step RT-qPCR exploiting the TaqMan® principle 
was then executed in triplicates for each sample using Vesicular Stomatitis Virus Polymerase (L) Gene® Genesig 
Advanced Kit (Primerdesign Ltd, Plymouth Meeting, PA) and BioRad CFX instrument (Hercules, CA), with 
cycling parameters as: 2 min. at 95 °C; and 50 cycles at 95 °C for 10 s and 60 °C for 60 s. Viral copies of SAR-
SCoV-2 were detected using primers for the L region of the VSV genome. Genomic copies per lung tissue were 
normalized to the relative expression of the mouse RNA Polymerase II gene (Pol2Ra) using TaqMan™ Gene 
Expression Assays (ThermoFisher, Waltham, MA).

Immunohistochemistry.  Lung tissues were immediately fixed after harvesting, embedded in paraffin, sub-
jected to sectioning (5 μm sections), and stained with hematoxylin and eosin (H&E) as well as with antibodies 
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against SARS-CoV-2 spike protein, CD45+ , and CD11b, respectively. For H&E staining, lung sections were 
processed following standard histological routine. For indirect immunohistochemistry (IHC), lung sections 
were also processed following standard IHC routine slides with antigen retrieval (i.e., 15  min heat-induced 
with EDTA pH 6.0). Primary antibodies were used as follow: anti-spike protein at 1:200, anti-CD45+ at 1:200, 
and CD11b at 1:200. Taken images were scanned with Aperio AT2 system (Leica, Buffalo Grove, IL). The areas 
with detected spike protein, CD45+ , and CD11b, were divided by the sum of the areas corresponding to cellu-
lar structures counterstained with hematoxylin + anti-spike protein, anti-CD45+ , and anti-CD11b, respectively. 
Calculated ratios are represented as a % of control. All histology and IHC was performed cryptically coded sec-
tions by third party at the Inotiv facility (Boulder, CO).

Western blot analysis.  Cells were treated with indicated concentrations of LA and lysed using lysis buffer 
[50 mM Tris–HCl (pH = 7.4), 1.0% Triton X-100, 150 mM NaCl, 1.0 mM EDTA, 2.0 mM Na3VO4, and 1 X com-
plete protease inhibitors (Roche Applied Science, Indianapolis, IN)]. Lung tissue samples were also lysed with 
the same lysis buffer. The protein concentration was measured by the Dc protein assay (Bio-Rad, Hercules, CA). 
An 80 µg/well of protein was separated on 8–16% gradient SDS-PAGE gels (i.e., Tris-based electrophoresis using 
standard Laemmle’s method) and transferred to a PVDF membrane. Proteins were detected either with com-
mercially available anti-spike antibody at 1:500 dilution, anti-ACE2 antibody at 1:500 dilution, and anti-β-actin 
antibody at 1:2500 dilution as a loading control. WB images were acquired using the Azure cSeries system and 
auto-exposure settings (Azure Biosystems, CA).

Statistical analysis.  Data for all experiments, unless indicated otherwise, are presented as an average value 
and standard deviation from at least three independent experiments, each at least in three replicates. Compari-
son between different samples was done by a two-tailed T-test using the Microsoft Office Excel program. Differ-
ences between samples were considered significant at p values less than 0.05.

Data availability
All data are contained within the manuscript.
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