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Abstract

The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent
demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new
subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-
stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of
both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions
mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell
type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product,
IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated,
Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in
autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the
context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.
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Introduction

The production of high-affinity class-switched anti-
bodies is necessary for the clearance of pathogens after
infection, for the establishment of long-term humoral
immunity and for the effectiveness of vaccines (1).
Follicular helper T (Tfh) cells have been recently shown
to play a crucial role in instructing B cells to form a
repertoire of antibody producing cells that provide life-long
supply of high affinity, pathogen-specific antibodies (2).

Adaptive immune responses are regulated by the fine-
tuning of the functional activity of several T cell subsets
through a complex mechanism that integrates signals
from innate immune cells and the cytokine milieu acting
over naive T and B cells. Several CD4+ T cell subsets
functionally distinct from the traditional Th1 and Th2
subsets have been described, displaying either effector
(Tfh, Th17 and Th9) or regulatory functions (natural and
inducible regulatory T cells, Tr1 and Th3) (3). It is a
consensus that, during immune responses, many cell
subsets are directly involved as effector cells in the
inflammatory process. Tfh cells are described as non-
polarized CD4+ T cells that express the highest levels of
the chemokine receptor CXCR5, which is critical for their
homing and function. Other distinguishing features of Tfh

cells include the expression of the surface receptors
inducible T cell co-stimulator (ICOS) and programmed cell
death protein 1 (PD1; also known as PDCD1) as well as
the nuclear transcriptional repressor B cell lymphoma
6 (bcl-6) (Figure 1). Tfh cells express high levels of IL-21
and other cytokines that influence B cell differentiation and
antibody production. Also, they have down-regulated the
T cell zone-homing receptor CC-chemokine receptor
7 (CCR7) and IL-7 receptor-a (IL-7Ra) (4). Due to this
profile of receptors and cytokines, Tfh cells have the
unique ability to home to B cell follicles and to induce
antibody production during co-culture with B cells (5).

The B cell maturation process requires cognate help
provided by CD4+ T cells in the T cell-rich extra follicular
areas of secondary lymphoid organs. These are structures
within the B cell follicles of lymphoid organs that support
intense B cell proliferation and differentiation, somatic
hypermutation, selection of high-affinity B cells, and class
switching of immunoglobulin genes. B cells ultimately are
differentiated into memory B cells and long-lived plasma
cells that secrete high-affinity antibodies (6). In fact,
without Tfh cells, germinal center do not develop, long-
lived plasma cells are not generated, and long-term
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antibody responses are impaired (7). Memory B cells
mediate long-term protective immunity due to their
capacity to generate secondary humoral responses that
surpass naive B cell responses by rapidly differentiating
into high-affinity plasma cells (PC). Of interest, novel B cell
receptor specificities, including autoreactive ones, arise
continuously during the ongoing processes inside ger-
minal centers. Antibody secreting cells that emerge from
the germinal centers need to be tightly controlled due to
their longevity and high-affinity antibody production. Auto-
antibody production indicates a profound breakdown in
humoral tolerance mechanisms and B cell hyperactivity
caused by either B cell-intrinsic abnormalities or immune-
regulatory defects in other cell types.

In the last few years, significant progress has been
made in the study of Tfh cells and there has been a surge
of research activity aimed at understanding the function
and differentiation of these important cells (1), examining
the biochemistry of transcription factors involved in
programming Tfh cell differentiation, and exploring the
cellular biology of Tfh cell-mediated selection of germinal
center B cells (8). Given the importance of Tfh in
practically all T cell-dependent humoral responses, this
review will address the most important biological aspects
of this "new" lymphocyte subset in normal immune
responses against infectious agents, and discuss its
relevance on deregulated autoimmune processes.

Tfh: An overview

In the early 2000’s, a number of prominent studies in
mice and in humans led to the identification of B follicular
helper T cells, a subset of CD4 T cells localized in the
tonsils and characterized by high expression of the master
regulator bcl-6, which represses the expression of other
T-cell subset-specific transcription factors and promotes
the sustained expression of chemokine receptor CXCR5,
which is essential for the migration of Tcells into the B-cell
follicular zones (5). Within the follicle, crosstalk occurs
between B cells and Tfh cells, leading to class switch,
recombination and affinity maturation (2).

Tfh cell differentiation is a multistage, multifactorial
process with significant heterogeneity involving a variety of
cytokines, surface molecules and transcription factors (4,8).
Following immunization or infection, a cohort of naive CD4
T cells in the T cell zone acquire characteristics of pre-Tfh
cells after interacting with dendritic cells (DCs) (9). The
transformation of CD4+ Tcells into Tfh lineage seems to be
determined early during T-DC interaction by means of an
increase in bcl-6 expression and downregulation of its
antagonist Blimp-1 under the influence of a combination
of elements, including IL-6, IL-21(mice) or IL-12 (humans),
IL-2, inducible co-stimulator (ICOS), T cell receptor (TCR)
and likely CD28 (8,10–12), as depicted in Figure 2A.

CD4+ T cells bearing high affinity TCRs seem to
preferentially suffer pre-Tfh differentiation over other
effector T helper cells (13). Fazilleau et al. (14) showed
that after the transfer of CD4+Tcells into immunized mice,
those T cells harboring TCRs with the highest affinity to
peptide-MHC class II complexes and the most limited TCR
diversity were selected into the Tfh cell pool. CD28 and
ICOS also have an important role in the induction of Tfh
cells differentiation and germinal center formation; CD28
appears to play a major role in the early phase of Tfh
generation while ICOS is critical for generation of pre-Tfh
cells as well as in later stages for Tfh differentiation (12).

The ability of activated CD4+ T cells to undergo
differentiation into Tfh or into polarized effector T cells is
dictated by the balance of cytokines that stimulate or
prevent Tfh differentiation. For example, IL-6 and IL-21
cooperate to induce Tfh cell formation by activating STAT3,
which in turn promotes bcl-6 and CXCR5 expression. In
contrast, IL-2 signaling avoids Tfh cell development via
STAT5 activation (7).

Several studies over the last few years have provided
insights into the roles of these cytokines in Tfh cell
commitment. Using different animal models of viral infection,
researchers found varying and transient degrees of impair-
ment in Tfh cell numbers in the absence of IL-6. Choi et al.
(15) found that early bcl-6(+) CXCR5(+) Tfh differentiation
was severely suppressed in the absence of IL-6; however,
STAT3 deficiency failed to recapitulate that defect. IL-6R
signaling activates the transcription factor STAT1 specifi-
cally in CD4+ T cells. Furthermore, IL-6-mediated STAT3

Figure 1. Follicular helper T cells (Tfh) lymphocytes are critically
involved in the formation of germinal centers and in the
development of T cell-dependent B cell response in secondary
lymphoid tissues. The figure represents Tfh cells with their most
important membrane molecules, transcription factor and soluble
effector molecules.
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Figure 2. Schematic view of dentritic cell (DC) participation in the naive CD4+ T cells differentiation into follicular helper T cells (Tfh)
lineage by means of an increase in Bcl-6 expression and downregulation of its antagonist Blimp-1 under the influence of a combination
of elements, including IL-21, inducible co-stimulator (ICOS), T cell receptor (TCR) and likely CD28 (A). Since T cells are primed during
interaction with DC in the T cell zone and B cells reside in the B cell follicle, antigen-specific T cells and their cognate B cells must
migrate towards a secondary lymphoid organ to meet each other and promote the generation of germinal centers by differentiation of
primed B cells (B).
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activation is important for downregulation of IL-2Ra, which
contributes to limit Th1 cell differentiation in an acute viral
infection. Thus, IL-6 signaling is an early inducer of the Tfh
differentiation program mediated by both STAT3 and STAT1
transcription factors (15). According with this, Karnowski
et al. (16) found that IL-6 production in follicular B cells in the
draining lymph node was an important early event during
antiviral response and that B cell-derived IL-6 was
necessary to induce IL-21 from CD4+ T cells in vitro and
to support Tfh cell development in vivo.

The requirement of IL-21 for Tfh cell differentiation from
naive Tcells and formation of the germinal center has been
consistently demonstrated by several groups (11,17,18).
Furthermore, recent studies convincingly showed that
IL-12 can also drive Tfh cell differentiation by inducing IL-21
in a STAT3-dependent manner both in mice and in humans
(10,19). Interestingly, a recent study provided evidence for a
pivotal role of IL-7 in Tfh generation and germinal center
formation in vivo, as treatment with anti-IL-7 neutralizing
antibody, which markedly impaired the development of Tfh
cells and IgG responses. Moreover, co-delivery of mouse
Fc-fused IL-7 (IL-7-mFc) with a vaccine enhanced the gener-
ation of germinal center B cells as well as Tfh cells but not of
other lineages of T helper cells, including Th1, Th2, and Th17
cells (6).

IL-2 is considered a canonical growth factor for CD4+

and CD8+ T cells (7). IL-2 signaling probably disturbs the
differentiation of Tfh by stimulating Blimp-1 expression via
STAT5 or by inducing the expression of T-bet, which forms
complexes with bcl-6 masking the DNA-binding domain of
bcl-6 and preventing bcl-6 from repressing the expression
of Blimp-1 (20). Early studies found that the transcription
repressor bcl-6 is necessary (when ectopically overex-
pressed) for programming Tfh cells, including CXCR5
expression. CD4+ T cells from bcl6� /� mice are impaired
in the production of CXCR5+ Tfh cells in vivo whereas the
differentiation of other CD4+ T cell subsets is relatively
unaffected by the loss of bcl-6. This transcription factor acts
in part by repressing the transcription of Tbx21 [encoding
T-box expressed in T cells (T-bet)] and Rorc [encoding
retinoic acid-related orphan receptor gt (RORgt)] or by
direct binding to GATA-bind protein 3 (GATA3) (11,18). How-
ever, a study conducted by Liu et al. (21), using bcl-6-RFP
reporter mice and phenotypic, functional and genome-wide
transcriptome analysis of Tfh cells generated in vivo, found
that the initial up-regulation of CXCR5 was not dependent on
bcl-6, but once bcl-6 is highly expressed, Tfh cells can
persist in vivo and some of them develop into memory cells.

Recently, Liu et al. (22) showed that the expression of
transcription factor achaete-scute homologue 2 (Ascl2) is
selectively upregulated in Tfh cells. Ectopic expression of
Ascl2 upregulates CXCR5 but not bcl-6, and down
regulates CCR7 expression in T cells in vitro, as well as
accelerates T-cell migration to the follicles and Tfh cell
development in vivo in mice. Furthermore, studies indicate
that Ascl2 directly regulates Tfh-related genes and inhibits

the expression of Th1 and Th17 signature genes. Deletion
of Ascl2, as well as blockade of its function with the Id3
protein in CD4+ T cells, results in impaired Tfh cell
development and germinal center response (22). In addition
to bcl-6, Ascl-2 and STAT3, other transcription factors are
also known to be crucial for Tfh cell development, such as
the basic leucine zipper transcription factor (BATF) (23) and
the IFN regulatory factor 4 (IRF4) (24). It is interesting to
note that STAT3, BATF, and IRF4 are also needed for
differentiation of the Th17 cell lineage.

Since Tcells are primed during interaction with DC in the
T cell zone and B cells reside in the B cell follicle, antigen-
specific T cells and their cognate B cells must migrate
towards a secondary lymphoid organ to meet each other.
This process is required for the generation of germinal
centers and the differentiation of primed B cells along both
germinal centers and extra follicular pathways (Figure 2B).

Tfh cells have a high ability to stimulate naive B-
lymphocytes present in the follicle germinal center of
secondary lymphoid organs by engaging B cells through
co-stimulator molecules like CD40L, ICOS and SAP, and
by producing important cytokines to humoral response as
IL-10 and IL-21. Tfh cells produce also a diversity of
cytokines, such as INF-g and IL-4, which direct B cells
antibody isotype commitment (25), and IL-17, a pro-
inflammatory cytokine, recently reported as an important B
cell factor, directly influencing its survival, proliferation and
differentiation (26). IL-4-producing Tfh cells induce B cell
IgG1 switch, and IFN-g-producing Tfh cells induce B cell
IgG2a switch. Interestingly, high-affinity IgG1 antibodies
could only be induced by IL-4 produced by Tfh cells (25).

A cluster of microRNAs (miRNAs) known as miR17-92
has been recently reported to have a regulatory role on
Tfh cell differentiation and in germinal center reaction.
Initially, bcl-6 was proposed to repress the miR17-92
inhibiting effect over Tfh cell development (18). However,
more recent studies show that miR17-92 cluster acts as a
positive regulator of Tfh cell differentiation since mice with
T cell-specific deletion of miR17-92 cluster (tKO mice)
exhibit severely compromised Tfh differentiation, germinal
center formation and antibody responses (27).

The inducible co-stimulator (ICOS) is another highly
expressed molecule in Tfh cells and is essential for both
Tfh differentiation and its effector function over B cells. The
importance of ICOS is highlighted by the multiple ways in
which ICOS signaling is regulated. Roquin inhibits ICOS,
and combined loss of Roquin 1 and Roquin 2 results in
spontaneous Tfh cell and germinal center development
(28). A study suggested that ICOS is also essential for
Th17 cell development (29); however, it has been shown
that its importance for these cells is mostly associated with
cell survival and to its function by regulating IL-21
production, which contributes to the expression and
maintenance of IL-23R. In addition to the dependency to
ICOS, Tfh and Th17 cells have more features in common.
Both subsets produce IL-21 and IL-17, express IL-23R and
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are dependent of the transcription factors c-Maf and Stat3 to
expand and produce IL-21. However, Th17 cells express
the transcription factor RORy that is neither expressed by
Tfh cells nor necessary for its development. Tfh and Th17
cells also differ in the ability to home to different immune
microenvironments; while most Tfh cells are CXCR5+ and
migrate to the secondary lymphoid tissue B cell areas, Th17
cells, when activated, down regulate CCR7 and up regulate
CCR6, migrating to the target organs where they exert their
effector functions. However, one may not exclude the
possibility that some Th17 cells, with high expression of
ICOS and IL-23R, may down regulate CCR7 and up
regulate CXCR5 becoming part of the heterogeneous Tfh
cell pool that migrates to the follicles. When activated, Tfh
cells also express other non-specific markers such as
CD69, CD95 and CD40L, but none of them characterizes
these cells as a distinct subset (29).

As mentioned before, it was recently shown that Tfh
cells develop preferentially from naive T cells with high
avidity TCR. In the same study the authors proposed the
existence of three Tfh compartments based on their
migratory properties and molecular characteristics (14).
Evidence indicates that depending on the cytokine micro-
environment and the nature of the APC-activating antigen,
naive CD4+ T cells acquire specific chemokine receptors
that dictate their migration to a specific environment and
their fate as specific Th subset. In fact, recent studies in
mice and humans show that Tfh lineage cells are composed
of subsets that differ in their localization, phenotype and
function. The compartment of circulating Tfh memory cells
in human blood contains heterogeneous subsets that differ
in phenotype and function (30). Growing evidence has
demonstrated that dysfunction of Tfh cells results in
abnormal positive selection of autoreactive B cells, which
contributes to the development of autoimmune diseases.

Tfh and autoimmune diseases

The avoidance of autoimmunity is heavily dependent
of T and B lymphocyte tolerance mechanisms. It is
postulated that progressive breakdown in the tolerance
mechanism would involve an increasing variety of cells.
The classical example is shown by murine models for
studying CD4+ T cells tolerance, in which a single disturb
in CD4 helper responses can result in both cellular and
humoral mediated immune responses against self-antigens
(31). This occurs because most B cell responses depend on
T cell help. The absence of T cell help during B cell
priming, a mechanism of peripheral tolerance, leads to
apoptosis or anergy; B cells lose their access to lymphoid
follicles and the chance to differentiate into germinal
center cells or plasma cells. How auto-reactive B cells
avoid central tolerance in bone marrow and how they
evade peripheral tolerance to access follicles remains an
area of active investigation. The exclusion of self-reactive
B cells from germinal center has been shown to be defective

in systemic lupus erythematosus (SLE) patients, and spon-
taneous germinal center organization has been observed in
different murine models of lupus (32). Another possibility is
that B cells become auto-reactive after gaining access to the
follicle. In this situation, after foreign antigen recognition in
germinal centers, B cells undergoing affinity maturation,
which improves the receptor affinity by somatic mutations,
accidentally would give rise to auto-reactive cells. In SLE
patients and murine models of lupus, auto-reactive B cells
become competent to produce autoantibodies, mostly high
avidity IgG (33).

Whether and how Tfh cells collaborate to the
pathogenesis of human autoimmunity is not clear. Recent
advance in understanding the biology of peripheral
memory Tfh cells has rendered the analysis of human
Tfh responses in the context of autoimmunity feasible
(30). Different groups have studied the presence of
circulating Tfh cells as a potential biomarker of disease
in various autoimmune conditions, including myasthenia
gravis (MG), autoimmune thyroiditis, Sjögren’s syndrome
(SS), rheumatoid arthritis (RA), multiple sclerosis (MS),
systemic lupus erythematosus, ulcerative colitis, Crohn’s
disease, ankylosing spondylitis, type 1 diabetes mellitus
(T1D), autoimmune hepatitis, primary biliary cirrhosis (Table 1)
and juvenile dermatomyositis.

MG is an organ-specific autoimmune disease character-
ized by the T cell-dependent production of anti-acetylcholine
receptor (AChR) antibodies. Patients with MG show a
significantly higher frequency of CXCR5+ CD4+ T cells in
the peripheral blood, which correlates with disease severity
(34). Furthermore serum CXCL13 was found to be
increased in MG patients and high CXCL13 serum level
was associated with severe clinical stages (35). Interaction
between CXCR5 and CXCL13 is especially required for
B-cell architectural organization regulating compartmentali-
zation of B- and T-cells in secondary lymphoid organs.
Accordingly, Meraouna et al. (36) reported that CXCL13
expression was also increased in the thymus as well as in
sera of MG patients not receiving glucocorticoid therapy and
that CXCL13 level decreased with glucocorticoid treatment,
in correlation with clinical improvement. Taken together,
these results suggest dysregulation of blood CXCR5+

CD4+ T cells in MG patients and that serum CXCL13
reflects the general status of MG severity.

Also, in Graves’ disease, the affected thyroid tissue
showed a positive correlation of CXCR5 and CXCL13
mRNA expression with the number of lymphocytic infiltrates
and ectopic germinal centers (37). Recent studies detected
increased percentages of circulating Tfh cells in patients
with autoimmune thyroid disease as well as a positive
correlation between the percentages of circulating Tfh cells
and the serum concentrations of antibodies against TSH
receptor, thyroperoxidase and thyroglobulin (38).

Patients with juvenile dermatomyositis show a strong
skewing of blood CXCR5+ Th cell subsets toward Th2 and
Th17 phenotypes. Importantly, this skewing correlated with
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disease activity and the frequency of blood plasma blasts
(39). In light of this observation, circulating CD4+ CXCR5+

T cells from patients with SS were recently re-examined with
respect to the Th phenotypes. A positive correlation was
found between the levels of serum autoantibodies and the
numbers of circulating CD4+ CXCR5+ T cells, particularly
with regard to those that also expressed CCR6. The
frequency of Th17-like subsets (CD4+ CXCR5+ CCR6+)
in SS patients was found to be significantly higher than in
healthy controls. Functional assays showed that activated
Th17-like subtypes in the peripheral blood display the key
features of Tfh cells, including invariably co-expressed PD-1,
ICOS, CD40L and IL-21. Th17 subsets were found to highly
express bcl-6 protein in contrast to Th1 and Th2 cells that do
not express these markers (40).

RA is another autoimmune disorder that has been
recently studied with regard to Tfh cell dysregulation.
Increased frequency of CD4+ CXCR5+ ICOShigh circulating
Tfh cells was detected in the peripheral blood of RA patients,
and this was positively correlated with high levels of serum
anti-CCP antibody. Furthermore, increased expression of
bcl-6 mRNA and plasma IL-21 concentrations was observed
in these patients (41). Increased serum IL-21 levels in RA
patients correlate with disease activity score, anti-CCP
antibody titer and the frequency of circulating Tfh-like cells
(42). In addition, Jang et al. (2009) reported that IL-21
receptor-deficient K/BxN mice have less severe RA with
reduced Tfh cell population in draining lymph nodes (43).
Platt et al. (44) found increased Tfh cells and antibody
production in an OVA-induced RA mouse model.

The involvement of activated Tfh cells in MS was
recently demonstrated by Christensen et al. (45). This study
was the first to report prominent Tfh, Th17 and B-cell
activation in the peripheral blood from patients with pro-
gressive MS, and these findings parallel recent pathology
studies. Tfh and B cell activation correlated with disease

progression and Tfh activation marker IL-21 was decreased
in MS patients treated with mitoxantrone. Furthermore, there
was increased expression of genes associated with Tfh and
B cell activation in the cerebral-spinal fluid cells from MS
patients. These findings emphasize an association between
the systemic immune compartment and disease progression
in the protected central nervous system environment.

Dysregulated activation of both T and B lymphocytes
with overt production of auto-reactive antibodies is a
hallmark of SLE. This prototypic systemic autoimmune
disease is characterized by various immunologic abnor-
malities, including the presence of antibodies against double
stranded DNA (dsDNA). Previous studies demonstrated
that B cell chemokine CXCL13 is highly expressed in the
thymus and kidneys in murine models for SLE (46). These
results are in accordance with the study by Wong et al.
(47), who showed that the significant increase in plasma
concentration of CXCL13 in SLE patients correlated
significantly with SLE disease severity. Recently, Le Coz
et al. (48) found an increased proportion of Tfh cells in SLE
patients with active disease. This increase was associated
with key biological SLE parameters (total immunoglobulin
serum levels and anti-dsDNA antibodies), B cell subset
alterations and the presence of high IgE levels (49).

The relationship between Tfh cells and autoantibody
production is evident in several mouse strains over or under
expressing important Tfh cell-associated molecules such as
ICOS, CD40L, SAP and IL-21 (50,51). In mice homozygous
to Roquin gene mutation (Rc3h1 mice), both naive and
activated T cells express abnormally high levels of ICOS,
which apparently contributes to the development of SLE-like
disease and early-onset diabetes (52). The disruption of
ICOS-ICOSL signaling prevents autoantibody formation and
organ inflammation in Rc3h1 mice and other murine models
of autoimmune diseases, such as SLE-like disease,
collagen-induced arthritis, and myasthenia gravis (53–56).

Table 1. Influence of follicular helper T cells (Tfh) in human and mouse diseases.

Disease ICOS IL-21 Tfh cells References

Mouse Human

Rheumatoid arthritis Pathogenic Pathogenic Pathogenic 43, 44, 52, 57 41, 42, 75, 76
Multiple sclerosis Pathogenic Pathogenic Pathogenic – 45, 78
Systemic lupus erythematosus Pathogenic Pathogenic Pathogenic 50, 51, 53, 57, 74, 79 47, 49, 59, 80, 82

Systemic sclerosis Pathogenic – – – 78, 83
Colitis, Crohn’s disease Pathogenic Pathogenic Pathogenic 84 81, 84
Ankylosing spondylitis – Pathogenic Pathogenic – 85

T1D Pathogenic Pathogenic Pathogenic 51 86
Sjögren’s syndrome – – Pathogenic – 40, 87
Myasthenia gravis – – Pathogenic – 34, 88
Thyroid diseases – Pathogenic Pathogenic – 37, 38

Autoimmune hepatitis,
Primary biliary cirrhosis

Pathogenic Pathogenic Pathogenic – 89, 90

ICOS: inducible co-stimulatory molecule; IL-21: interleukin 21; T1D: type 1 diabetes mellitus.
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In addition, three murine lupus models (NZB\NZW,
C57BL/6J (B6) and BXSB) and one arthritis model
(collagen-induced arthritis) are known to be dependent
on the maintenance of the ICOS pathway. They are
characterized by a Tfh cell-like transcriptome, with exces-
sive numbers of Tfh cells and germinal centers (51,57).
Humans who are deficient in ICOS develop common
variable immunodeficiency, in which there is impairment in the
development of memory B cells and immunoglobulin class
switch does not occur (58), highlighting the importance of the
ICOS-ICOSL interaction for the development of an effective
humoral response. It has been reported that ICOS signaling
can stimulate Tfh cells to produce IL-10, which has been
implicated (at high-levels) in the terminal differentiation of
germinal center B cells into plasma cells (19). In this context, it
is relevant that circulating CD4 and CD8 Tcells from SLE and
rheumatoid arthritis (RA) patients and synovial fluid cells from
RA patients show increased ICOS expression (49,59).

However, Tfh cells are not the single effector T cell
subtype that determine the dominant pathway of high-
affinity isotype-switched autoantibody production in murine
models of lupus. In the MRL/MpJ-Fas lpr murine model of
lupus, a subset of CD162lowCXCR4+ T cells, localized in
extra-follicular sites, has been shown to mediate IgG
production through IL-21 and CD40L. CD162lowCXCR4+

T cells are abundant in other autoimmune murine models
and can exhibit either a follicular or an extra-follicular
phenotype (60). However, although isotype-switched auto-
antibody production may occur outside germinal centers,
the process is far less efficient (48).

Similarly to ICOS, CD40L and SAP are essential for
B cell effective help, and deficiency of either one results in
a poor germinal-center humoral response with defective
differentiation of both long-lived effector memory and
plasma cells (61,62). In human patients and in mouse
models of autoimmune diseases, an imbalanced expression
of these molecules has been reported to contribute to the
immune pathology, leading to maturation and differentiation
of long-term antibody-secreting cells and autoantibody
production (63). Some studies observed that the blockade
of CD40L/CD40 interaction might be an efficient therapeutic
approach to alleviate immunoglobulin secretion, autoanti-
body production and disease activity in lupus patients with
proliferative glomerulonephritis (64,65). It was also reported
that SAP deficiency prevents the development of experi-
mentally induced SLE-like disease. An excessive Tfh
number in Roquinsan/san (sanroque) mice is associated with
spontaneous germinal center development, autoantibody
production and lupus-like autoimmunity (66). In these mice,
SAP deletion caused a substantial reduction in Tfh fre-
quency, IL-21 levels, as well as reduced ICOS expression
by Tfh cells. SAP deficiency also abrogated formation of
germinal centers, autoantibody production and renal pathol-
ogy in sanroque mice (67). Interestingly, the adoptive
transfer of sanroque Tfh cells caused spontaneous germinal
center formation in wild type mice. Altogether, these findings

indicate a noticeable causative link between Tfh dysfunction
and systemic autoimmune pathways (66).

IL-21 implication

IL-21 has arisen as a powerful inducer of human B cell
differentiation (68,69). It has been considered the most
potent human T cell-derived cytokine for the induction of
B cell proliferation (69). In mice, this cytokine is largely
produced by Th2, Th17, NKTand Tfh CD4 cells, however,
in humans the Tcell types responsible for IL-21 production
are less well characterized (70,71), and Tfh cells are still
considered one of the most important sources (70).

In mouse models, Tfh cells are a central source of IL-21
in germinal centers of secondary lymphoid organs, provid-
ing cognate help to B cells in the germinal center dynamic
microenvironment, acting specially on naive B cells to
induce isotype switch to IgG and IgA (68). IL-21 also acts
on B cells of cord blood and peripheral blood inducing
plasma cell differentiation (69), whereas IL-10, a well-
known mediator of human B cell differentiation, has the
same effect on terminally differentiated B cells (72). The
ability of IL-21 to induce differentiation of naive B cells into
plasma cells suggests that IL-21 may have a major role in
primary responses to antigens (73). One study with IL-21-
transgenic mice and using hydrodynamic injection of IL-21
plasmid-based methodologies into wild-type mice showed
that IL-21 induced apoptosis just in a subset of mature
B cells, but increased the number of immature and post
switch B cells (74). Thus, it appears that IL-21 differentially
influences B cell fate depending on the signaling context
and B cell differentiation stage. This would explain how
IL-21 can be pro-apoptotic for B cells in some in vitro
experiments and yet critical for Ag-specific immunoglobulin
production in vivo. In transgenic mice, IL-21 overexpression
promotes the differentiation of activated B cells into plasma
cells and unexpectedly induces expression of both Blimp-1
and bcl-6, indicating mechanisms by which IL-21 can serve
as a complex regulator of B cell maturation and terminal
differentiation. BXSB-Yaa mice, which develop SLE-like
disease, have an increased serum expression of IL-21,
suggesting a possible role for IL-21 in the development of
the autoimmune disease in this animal model (74).
Accordingly, other animal studies have indicated that the
production of autoantibodies and systemic autoimmunity is
associated with elevated production of IL-21, Tfh dysfunc-
tion within germinal centers and aberrant positive selection
of germinal center B cells (50,66).

In human autoimmune diseases, IL-21 appears to
have the potential to exacerbate cellular processes that
determine the course of autoimmune response. In patients
with RA, IL-21R is overexpressed in the inflamed synovial
membrane and in leukocytes from peripheral blood (PB)
and synovial fluid (SF). In addition, PB and SF Tcells from
RA patients, when stimulated with IL-21 and anti-CD3
monoclonal antibody, secreted markedly higher levels of
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TNF-a and IFN-g than those from controls, indicating that
IL-21 enhances local T-cell activation and pro-inflammatory
cytokine secretion (75). The blockage of IL-21R signaling
pathway may have a therapeutic potential in RA patients.
In fact, blockade of IL-21 and IL-15, cytokines belonging to
the common g-chain receptor family, is effective to inhibit
the release of pro-inflammatory cytokines (TNF-a, IL-6 and
IL-1b) in RA synovial cell cultures (76). On the other hand,
another study showed that IL-21R expression by fibroblasts
and macrophages in RA synovium did not correlate with the
destruction of articular cartilage and bone (77).

IL-21R mRNA was up-regulated in keratinocytes and
dermal fibroblasts in biopsy specimens from patients with
systemic sclerosis (SSc; scleroderma). In addition, in situ
hybridization and immunohistochemical analysis showed
up-regulation of IL-21R in samples of epidermis from SSc
patients (78).

Polymorphism of IL-21 gene has also been reported to
be associated with SLE (79), however it is not known
whether this polymorphism is functional. IL-21 implication
in human SLE remains to be more extensively investi-
gated since in several murine models of SLE, IL-21 has
been either directly or indirectly shown to be a contributing
factor to disease (51,53). Recently, Dolff et al. (80)
published the first study demonstrating increased propor-
tions of circulating IL-21+ T-cells in SLE patients.
Elevated plasma IL-21 in SLE is probably a result of Tfh
cell activity in the formation of germinal centers (17).

In both Crohn’s disease (CD) and ulcerative colitis
(UC), the major forms of inflammatory bowel diseases
(IBD) in humans, high IL-21 production was related to the
pathological process. High levels of IL-21 were observed
in the inflamed colon of most patients with UC. In addition,
IL-21 stimulated gut fibroblasts to secrete extracellular

matrix degrading enzymes and was involved in recruiting
T cells to the inflamed gut by inducing MIP-3 a production
by epithelial cells. Altogether, these data denote that IL-21
is an important mediator of the chronic inflammatory
response in CD and UC, and might be a potential
therapeutic target in IBD (81).

Concluding remarks

In vivo and in vitro experiments present considerable
evidence that Tfh cells interact with B cells and play
a critical role in the formation of germinal centers and in
the development of T cell-dependent B cell response in
secondary lymphoid tissues. Exaggerated expansion of
Tfh cells results in excessive germinal center reaction,
self-reactive B cell proliferation, and excess long-lived
plasma cells differentiation, as well as overproduction of
high-affinity pathogenic autoantibodies. The pathological
abundance of Tfh cells could provide a crucial help for
the cognate self-reactive B cells survival and escape from
the tolerance checkpoints at the germinal center. These
observations suggest an important role for Tfh cells in
human autoimmunity. Alteration of Tfh cells have been
reported in patients with various autoimmune diseases,
such as rheumatoid arthritis, systemic lupus erythemato-
sus and autoimmune thyroid diseases, where Tfh cells are
present at increased frequency and show positive corre-
lation with serum autoantibody titer. Therefore, a better
understanding of the biology and roles of Tfh cells is
expected to contribute in designing tools to abrogate the
inappropriate activity of these cells. The intervention by
agents selectively targeting specific signature molecules
of Tfh cells, such as ICOS and IL-21, may prove to be
therapeutically effective.
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