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Direct evidence for hula twist and single-bond
rotation photoproducts

Aaron Gerwien', Monika Schildhauer!, Stefan Thumser!, Peter Mayer! & Henry Dube'

Photoisomerization reactions are quintessential processes driving molecular machines and
motors, govern smart materials, catalytic processes, and photopharmacology, and lie at the
heart of vision, phototaxis, or vitamin production. Despite this plethora of applications fun-
damental photoisomerization mechanisms are not well understood at present. The famous
hula-twist motion—a coupled single and double-bond rotation—was proposed to explain
proficient photoswitching in restricted environments but fast thermal follow-up reactions
hamper identification of primary photo products. Herein we describe an asymmetric chro-
mophore possessing four geometrically distinct diastereomeric states that do not inter-
convert thermally and can be crystallized separately. Employing this molecular setup direct
and unequivocal evidence for the hula-twist photoreaction and for photoinduced single-bond
rotation is obtained. The influences of the surrounding medium and temperature are quan-
tified and used to favor unusual photoreactions. Based on our findings molecular engineers
will be able to implement photo control of complex molecular motions more consciously.
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ight-induced motions of molecules play a fundamental role

for sensing and responsiveness in nature and have become

similarly important in the construction of artificial nanos-
cale machinery!, molecular motors’~%, smart materials’~!!, or
photopharmacophores'>!3. In crucial cases however, the geo-
metrical changes induced by light irradiation are not known and
even the most fundamental photoreaction mechanisms are still
under dispute!*~23, This uncertainty not only hampers the con-
scious and rational design of synthetic systems with predictable
responsive functions but at the same time prevents mechanistic
and atomistic understanding of central photochemical processes
in living systems.

One central problem concerns the photoisomerization of
carbon-carbon double bonds with adjacent carbon-carbon single
bonds (Fig. 1a)—a configuration that is found in the vast class of
polyenes®?, styrenes, and stilbene dye compounds'®?°=%7, and in
the biological most relevant retinal?®?®, p-coumaric acid'®3%31,
previtamine D;!71%20, or GFP chromophores®>33. For this
bonding situation the photoreaction has essentially been descri-
bed as either a sole double-bond isomerization (DBI)!7"%, a
combination of double bond and single-bond rotations i.e., the
famous hula twist (HT) initially proposed by Liu!®1%2535-38 or
in extended conjugated systems as bipedal motions as progosed
by Warshel?!?? and later experimentally shown by Saltiel**-4!.
Additionally, sole single-bond rotations (SBR) are also described
as viable photoreactions*?~*°. The main problem to differentiate
between these mechanisms is the short lived nature of primary
products of the photoreaction, which are high-energy inter-
mediates undergoing rapid thermal conversion to more stable
structures in solution (Fig. 1a). Due to their fleeting character an
unambiguous assignment of their molecular and electronic
structure has not been possible so far, as time resolved meth-
0ds!4-16:2831:4647 o1 jsolation of these intermediates under
extremely cold!”1*20 or rigid-medium conditions?>3%484 pro-
vide still too little direct structural information. In rigid matrices
(i.e., solvent glasses) and at very low temperatures intermediates
have frequently been observed with absorption or fluorescence
spectroscopy but the assignment of similar spectra to a particular
isomeric structure is not straight forward. Consequently, Saltiel
and co-workers have recently refuted earlier claims of HT evi-
dences and identified the intermediate photoproducts as the
result of simple DBIs!7*%°!, The question whether a possible HT
mechanism is an intrinsic property of the molecule itself'® or on
the contrary is dictated mainly bz outside restrictions®>>? (e.g,,
imposing volume conservation!®>* during the motion) is even
less resolved.
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To overcome this dilemma we have designed a geometrically
strongly restricted asymmetric molecule 1 (Fig. 1b), which can
assume only four stable diastereomeric states in the ground state
(Fig. 2a). Different to the systems studied so far the barriers for
thermal interconversion between the intermediate states are very
high, which effectively decouples geometry changes during the
photoreaction from thermal processes. With this molecular setup
it is possible to track the formed photoproducts at ambient tem-
peratures in solution directly and without interference of thermal
follow-up reactions. After studying the photochemistry of 1 we
provide direct experimental evidence for the presence of photo-
induced HT, SBR, as well as the well-known sole DBI products.
We are now able to isolate all these different photoproducts at
ambient conditions and characterize them with high resolution
techniques (NMR spectroscopy and crystal structural analysis). At
the same time we are able to conveniently study the influences of
polarity and rigidity of the surrounding medium, as well as tem-
perature and give insights into how they affect the outcome of the
photoreactions. Our findings give quantitative (photoquantum
yields ¢ for each process) insights into the nature of photoinduced
intramolecular motions, establish the exact influences of the sur-
rounding medium, and clarify that light-induced HT, as well as
SBR are viable and prominent photoreactions. We further give
prospects of how these complex motions can be used for advanced
photoresponsive tools and molecular machinery.

Results

Ground state energy profile of 1. Photoresponsive compound 1
is based on the hemithioindigo (HTT) chromophore55‘57 and was
synthesized according to a protocol previously developed in our
group®®. HTI 1 is rendered asymmetric via the introduction of a
sulfoxide stereocenter and an adjacent chiral axis. This molecule
can therefore exist in four geometrically and energetically dif-
ferent ground states, which we term A, B, C, and D. The stereo
assignments of these states are given in Fig. 2a. We have obtained
exact molecular structures from the crystalline state (Fig. 2b) for
each isomer A, B, C, and D and could therefore unambiguously
assign the corresponding high-resolution 'H NMR solution
spectra to a particular geometry in each case (see Supplementary
Figs. 1-4). A and B share the same Z configuration of the double
bond but possess opposite axial chirality. Likewise C and D are
atropisomers of each other in the E isomeric state. The atropi-
somers are thermally very stable, which is manifested in their
extremely long solution half-lives of at least 1.7 years at 27 °C (see
Fig. 2¢, d for the kinetic measurements of their interconversion at
>80°C, see also Supplementary Figs. 5-8 and Supplementary
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Fig. 1 Complex light-induced motions in chromophores. a Proposed hula-twist (HT) motion for the photoisomerization of stilbene dyes or retinal in
rhodopsin. Population of high-energy intermediates after the photoreaction leads to fast thermal decay and hampers a precise elucidation of their structural
and electronic properties. b Chromophore 1 possesses only four possible, thermally highly stable, and geometrically distinct intermediate states and
therefore enables unambiguous assignment of the photoproducts at ambient conditions. Three different geometrical changes could directly be observed as
photoreactions: hula twist (HT), single-bond rotation (SBR), and double-bond isomerization (DBI)
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Table 1). The thermal double bond rotation was not observed for
any of the four isomers even after prolonged heating at 100 °C for
25 h, which gives a lower limit for the corresponding barrier to be
at least 30 kcal/mol high (Fig. 2e, see also Supplementary Fig. 9
and Supplementary Table 1).

Photochemistry of 1. The established high barriers for thermal
interconversion render the individual isomers A, B, C, and D
completely stable at ambient temperatures. It is therefore possible
to study their photochemistry individually and without the
complication of an intervening fast thermal decay after the
photoreaction (for molar absorption coefficients see Supple-
mentary Figs. 10-13). To this end we have irradiated solutions of
either pure A, B, C, or D in benzene-ds at 23 °C while counting
the number of photons that led to photoproducts. This experi-
ment established quantum yields (¢) for every photoconversion
individually (Fig. 3a, see also Supplementary Figs. 14-18 and
Supplementary Table 2). In a second independent experiment, the
changes in isomer composition of the solution were measured for
different time points during prolonged irradiation at 27 °C. To
disentangle the different photo processes at later stages of the
irradiation wholesome simulations of the different photokinetics
of A, B, C, and D were conducted (Fig. 3b, ¢, see also
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Supplementary Figs. 19-43). As we kept the irradiation condi-
tions constant in all experiments these latter kinetic measure-
ments could be used to obtain relative probabilities for the
individual photo-transformations (see Supplementary Fig. 44 and
Supplementary Table 2). Fitting the experimental data to a
Markov-matrix derived kinetic model provided excellent agree-
ment between measured quantum vyield ratios and the kinetic
experiments. For a further assignment of the photoproducts’
identities the starting points of the photoconversions were
examined more closely (Fig. 3d-g). At this time point the con-
centration of the different photoproducts is low enough to pre-
vent them from light absorption in the presence of a far higher
concentration of the starting material. As the photoconversions
progress photoproducts are accumulating and enter their
respective photoequilibria as well. All three approaches, deter-
mination of quantum yields for individual phototransformations
in benzene, fitting kinetic data of the whole photoconversion
process to a kinetic model, and independent identification of the
photoproducts at early stages of the irradiation provided the same
conclusions.

As shown in Fig. 3 each isomer A, B, C, or D converts directly
into more than one photoproduct after irradiation. The
efficiencies of these transformations differ dramatically but it is

82°C
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>+30.0 4+29.8

>+30.0

Fig. 2 Ground state energy profile of HTI 1. a Molecular geometries of the four stable isomeric states A to D of 1. b Molecular structures of all four isomers of
1 obtained from crystal structural analysis and their slow thermal interconversions at high temperature (>80 °C). ¢ Experimental first order kinetics for
thermal interconversion of atropisomers A and B (82 °C) in (CDCl,), solution. d Experimental first order kinetics for thermal interconversion of atropisomers
C and D (100 °C) in (CDCl), solution. No thermal DBI occurs at elevated temperatures. The interconversion was quantified using 'H NMR spectroscopy. e
Ground-state energy profile for 1. Thermal conversion between the four different isomers at ambient temperature is prevented by very high kinetic barriers.
Values in black are derived from quantum chemical calculations (B3LYP/6-311G(d,p), PCM(DCM)), values in red were determined experimentally
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clearly evident that very different types of motions are generated
by light irradiation of different isomers.

Irradiation of A at 405 nm in benzene-dg at 27 °C leads to three
photoproducts with B and C being the main products formed in
¢ =9% and 31%, respectively (Fig. 3a). Isomer D is formed with
only 0.8% quantum yield and thus represents a minor channel of
the photoreaction. Irradiation of B leads to C (¢ = 8%) and D (¢
=9%) in almost the same efficiencies while formation of A
presents just a minor channel (¢ =0.9%). The photoreactions of
C and D are much less effective in comparison but are also
branching in each case. Irradiation of C leads to inefficient
transformation to A (¢ =0.09%), B (¢ =0.1%), and D (¢ =
0.07%). Photoconversion of D leads to slow population of A (¢ =
0.3%), B (¢ = 0.06%), and C (¢ = 0.01%).

With these measurements we could unambiguously show that
all three possibilities of light-induced bond rotations are actually
realized in 1. The simple DBI is most prominent in the light-
induced transition of A to C. Highly efficient is also the hitherto
elusive HT, which couples double bond and SBRs, as seen by the
transformation of B to C. Interestingly the HT for B is almost as
efficient as the DBI from B to D. For isomer D the HT leading to
A is actually the most prominent pathway. A sole SBR could also
directly be demonstrated as dominant photoreaction—exempli-
fied by the prolific photoconversion of atropisomer A into B.
With the term HT we emphasize the causal connection of double
and SBRs occurring after photoexcitation. This does however not
mean that both motions must occur in a concerted way as
originally proposed by Liu and Hammond®2. A sequential motion
as proposed by Saltiel®? is also a possibility as discussed below in
the Discussion section.
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Medium and temperature effects on the photoreactions of 1.
After quantifying the different photoconversion pathways between
A, B, C, and D in benzene-dy solution the influences of the sur-
rounding medium were of primary interest. With the experiments
described above it became already clear that even in a nonrestrictive
solution environment there is an intrinsic propensity to undergo
coupled motions as opposed to just simple DBI after photoexcita-
tion of 1. With the term coupled motions we again emphasize the
causal connection of double and single-bond rotations occurring
after photoexcitation without specific mechanistic implications. As
different motions appear concomitantly after photoexcitation of 1 it
is of utmost importance to understand the influence of the sur-
rounding environment on a particular motion. Only then these
motions can be used in a conscious way for advanced functions
such as complex light driven molecular machinery or smart
nanosystems. In the following we present possible ways in which
such selectivity for particular motions via the surrounding medium
can be achieved. We focus on the light-induced motions of A and B
(Fig. 4a) since they display the most efficient photoreactions and
experimental errors are therefore very small.

Photoirradiation of A in benzene-ds solution results mainly in
DBI to C and SBR to B. The relative ratio of these processes is
roughly 80%:20% (Fig. 4a). Increasing the polarity of the solvent
changes this ratio to a value of 60%:40% in MeOH-d,, thus
enhancing the SBR considerably (Fig. 4b). If the polarity of the
solvent is kept constant but the viscosity is increased drastically
(MeOH-d, to ethylene glycol (EG)) the DBI is becoming more
pronounced again and a decrease of the SBR is observed. The
inefficient HT motion from A to D is increased slightly at high
viscosity conditions (see also Supplementary Figs. 19-44).
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Fig. 3 Photochemistry of 1 in benzene-dg solution. a Individual photoconversions between the four isomers of 1 in benzene-dg under 405 nm irradiation
experimentally determined by quantum yield measurements. b Fitting of experimental data obtained at 27 °C in benzene-dg (dots) to a global kinetic model
(lines) for the photoconversion of individual isomers starting from pure A. ¢ Markov matrix describing the phototransition probability between individual
isomers (starting isomer to product isomer) within one minute of irradiation in benzene-ds. Numeric values were obtained from the best global fit to the
experimental data. The ratios between off-diagonal elements mirror the ratios of the measured quantum yields for individual phototransitions. The diagonal
elements describe the percentage of remaining starting isomer after one minute of irradiation. d-g Indicative sections of 'TH NMR spectra (400 MHz, 27 °C,
benzene-dg) recorded during irradiation of each pure isomer A (d), B (e), C (f), and D (g) at 23 °C. Different photoproducts are generated at different
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The light-induced motions of B are also very sensitive to the
solvent nature. In benzene-ds the SBR and HT motions are
similarly efficient. An increase of solvent polarity induces the
most pronounced changes and clearly favors the HT motion. In
the most polar MeOH-d; a 70%:30% ratio is observed for the
relative propensities to undergo HT versus DBI. Viscosity
changes produce smaller, yet discernible trends showing an
increase in the propensity for simple DBI with increasing

viscosity (Fig. 4b, see also Supplementary Figs. 19-44 and
Supplementary Table 2).

Additionally we have tested the influence of temperature in
liquid and in solid media on the different photoinduced motions
of A and B (Fig. 4c-e, see also Supplementary Figs. 45-53 and
Supplementary Table 3). Irradiation of A in toluene-dy and
CD,Cl, showed no significant changes in the photoreactions at

elevated (60 °C in toluene-dg), ambient (20 or 27 °C), and low
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Fig. 4 Photoreactions of A and B under different conditions. a The different photo processes are color coded: SBR in purple, DBl in gray, and HT in orange. b
Dependence of the photoinduced motions on solvent polarity and viscosity. The relative efficiencies of different processes are derived from a Markov-
matrix analysis of the corresponding 'H NMR data. ¢ Ultraviolet/vis absorption changes (arrows) observed during irradiation of A at —183 °C within an EPA
matrix. No significant spectral changes are observed after warming the sample to —80 °C and recooling to —183 °C (red spectrum). d Ultraviolet/vis
absorption changes observed during irradiation of B at —183 °C within an EPA matrix. No significant spectral changes are observed after warming the
sample to —80 °C and recooling to —183 °C (red spectrum). e Dependence of the photoinduced motions on temperature and rigidity of the medium. The
relative efficiencies of different processes are derived from a Markov-matrix analysis of the corresponding 'TH NMR data. f Approximated volume changes
of A during DBI (top) and SBR (bottom). Two different views are shown. The required volumes for individual motions are emphasized by color coded
circles, perspectives are at the same scale. g Approximated volume changes of B during DBI (top) and HT motion (bottom)
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(=78 or —80°C) temperatures (Fig. 4e, see also Supplementary
Figs. 49 and 50). The situation is quite different for B for which
temperature effects are very pronounced. At 60 °C in toluene-dg
solution DBI is clearly the favored photoreaction (56% versus
36% HT) and also 7% of the SBR is observed. At 20 °C DBI is still
favored with 54% but the HT motion is now more pronounced
with 43% at the expense of the SBR. This selectivity changes
dramatically at —78°C, where the HT photoreaction is now
strongly favored with 71% versus 29% DBI. In CD,Cl, the
changes are similarly dramatic. At 27°C HT is slightly favored
with 55% over DBI with 45%. At —80°C the HT is strongly
favored with 76% (see also Supplementary Figs. 45-46).

When freezing toluene-dg or CD,Cl, solutions of A and B to
ice at —196 °C irradiation still leads to photoreactions. Irradiation
of A in toluene-dg ice results in strongly preferred formation of
the DBI product C (83%) and almost complete suppression of the
SBR product B (1%). Instead the HT pathway clearly gains in
efficiency with 16%. In CD,Cl, the trend is even more
pronounced with almost exclusive selectivity for the DBI product
C (99%). Irradiation of B in toluene-dg ice also leads to preference
of the DBI, however in this case the HT is still very pronounced
with 32%. The situation is different in CD,Cl, where almost
exclusive DBI is observed. Therefore, in CD,Cl, it is possible to
strongly favor either HT (76% of all photoreactions) at low
temperature in liquid solution or DBI (93%) at even lower
temperature in solvent glass, which is a remarkable control over
photoreactions (see also Supplementary Figs. 45-53). Photo-
isomerization experiments were also conducted during irradiation
with different wavelengths. Only marginal changes in photo-
product composition could be observed by varying the
wavelength from 305 to 405nm (see also Supplementary
Figs. 54-55 and Supplementary Table 4).

We also conducted low temperature irradiation experiments of
A and B in diethyl ether/iso-pentane/ethanol (EPA) glass at
—183 °C and followed the photoreactions with ultraviolet/visible
absorption spectroscopy (see also Supplementary Figs. 13, 56-59).
Isomers C and D were found not to undergo photoreactions
under these conditions (i.e., within 2 h of irradiation). Irradiation
of A in EPA glass proceeds with clear isosbestic points leading to
the absorption spectrum of C. After 30min of 405nm
illumination the sample was allowed to warm to —80°C and
then recooled to —183°C. Only marginal spectral changes are
observed after the warming and cooling procedure indicating no
thermally labile intermediates being formed during irradiation in
the EPA matrix (Fig. 4c, see also Supplementary Fig. 56). The
isomer composition obtained from irradiation of A in the EPA
matrix at low temperature was determined directly afterwards by
NMR spectroscopy and showed only formation of C. An
independent Markov analysis of the isomer composition changes
occurring during photoirradiation of A in EPA glass at —196 °C
showed almost exclusive formation of the DBI product C.
Irradiation of B in the EPA glass at —183°C leads to clear
isosbestic points during the irradiation, and no significant
changes upon warming and re-cooling (Fig. 4d, see also
Supplementary Fig. 57). Again, the isomer composition obtained
from irradiation of B in the EPA matrix at —183°C was
determined directly afterwards by NMR spectroscopy and
showed formation of C and D in almost equal amounts.
Photoirradiation of B in EPA glass at —196 °C was scrutinized
by Markov analysis revealing almost exclusive formation of the
DBI product and about 13% of the HT product at these
conditions. There seems to be a significant temperature effect also
in rigid matrix surroundings. Overall, at —196 °C the propensities
for a particular photoreaction in EPA are similar to the ones
found in CD,Cl, ice, i.e., strongly favoring DBI. For comparison
we tested also the corresponding photoreactions of A and B in

liquid EPA solution at 22 °C, as well as —80 °C. The same trends
are seen as for the other liquid solvents: no temperature effects on
the photoreactions of A but significant effects for B. For the latter
at ambient temperature the HT is slightly favored and becomes
strongly favored (82%) at lower temperature in solution. For
comparison of all relative quantum yields at different temperature
in different solvents see Fig. 4e and Supplementary Fig. 60.

Discussion

From our experiments it becomes clear that more polar solvents
and the capacity for hydrogen bonding favor the unusual SBR
and coupled HT motions against the well-known simple DBI.
Decreasing the temperature in solution leads to no significant
changes for the SBR compared to DBI in A. However, for B
dramatic changes are observed when lowering the temperature. A
significant increase of the HT product is detected in this case
regardless of the solvent, but most dramatically in CD,Cl, and
EPA where 76% and 82% HT is observed at —80 and —78°C,
respectively. Irradiation in low temperature solvent ices or glasses
strongly emphasizes the trends observed when increasing solvent
viscosities. In these rigid media almost exclusive DBI is observed
for A and likewise also a very strong preference for DBI of B. In
the latter case HT is nevertheless still present to appreciable
degree. The decrease of the SBR for A in more viscous solvents
can be explained by the more space-demanding nature of this
motion compared to the DBI in 1 (Fig. 4f). It was previously
suggested that external volume restrictions and high viscosity
evoke the HT motion, but we clearly did not observe such an
influence in our experiments with B. On the contrary, we found
the DBI is actually strongly favored at higher viscosity and
rigidity of the surrounding medium. Our explanation for these
seemingly contradictory findings is rooted in the special setup of
HTI 1. When tracing the geometry changes of DBI versus HT
motion in a simple bond-rotation model (as we do not know the
exact light-induced motions the simple bond-rotation model
should however be regarded as just a crude visualization) the
latter seems to be even more space-demanding than the com-
peting DBI (Fig. 4g). Because in rigid glasses viscosity effects are
strongly amplified it is possible to almost exclusively favor DBI
for A and B e.g., in CD,Cl, ice.

The clear influence of temperature, polarity, hydrogen bonding
capacity, as well as viscosity/rigidity of the environment hints at
main factors governing complex and unusual light-induced
motions in molecules. With the herein presented molecular
setup these different influences could be quantified directly and
allowed us to either strongly favor the HT motion or the simple
DBI against competing photoreactions. Likewise the propensity to
undergo SBR could be increased by simple changes in the nature
of the solvent at ambient temperatures.

From the data obtained in this work some indications with
regard to the mechanism of HT photoproduct formation could be
obtained. First, the energy barriers between all four isomeric states
A-D are very high and thermal equilibration occurs both, slowly
even at temperatures >80 °C and selectively between A and B and
separated between C and D. The observed HT photoproducts
therefore cannot be formed by first DBI in the excited state,
relaxation to the ground state minima and subsequent thermal
SBRs. A high-energy ground state intermediate that is populated
after the photoreaction and from which a branching towards HT
and DBI products occurs is also highly unlikely. The strongest
evidence against the presence of such an intermediate is found in
the temperature dependence of the photoreaction selectivity in
toluene-dg solution. At high and ambient temperatures a clear
selectivity favoring DBI is observed. This selectivity is turned upside
down at low temperatures where HT products are formed with
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high preference. Such temperature sensitivity cannot be the result
of thermal branching from a common intermediate state, because
in such a case the initial trend should be augmented at lower
temperature where energy-barrier differences are more important.
The only other option for a common ground-state intermediate
process—thermodynamic product formation at high and ambient
temperatures and kinetic product formation at low temperatures—
can also be ruled out, since at ambient temperature there is no
thermal equilibrium between the isomers A-D established.

The absence of any discernible fluorescence in solution also
disfavors an adiabatic mechanism. To distinguish between the
remaining possibilities, a mechanism involving hot-ground states
or a diabatic photoreaction requires more detailed studies and
time-resolved measurements, which we will pursue in the near
future. To speculate, the observed strong temperature dependence
of the photoreactions of B could be interpreted in terms of a hot-
ground state mechanism>. On the other hand, a diabatic process
where the product distribution is determined earlier by a conical
intersection®0-52 is also possible. In line with this interpretation is
the observed formation of all three possible photoproducts
(although in varying efficiencies) after irradiation of A, B, C, and
D, which is indicative for a kinked conical intersection®%-61:63:64,
As solvent polarity increase favors the HT product in our case, a
polar ionic conical intersection leading to sole DBI (usually
observed in permanently charged systems®>®) is likely to be
absent in our system. Here the found solvent dependence could
be explained by the involvement of an ionic charge-transfer state
perturbing the photochemically active state and its decay to the
ground state®®, Other options involving further reaction
coordinates, and thus more complex conical intersections®”’, or
the existence of an extended crossing space are also possible®®,
The insensitivity of the photoreactions of A towards temperature
disfavors a hot ground state in this case and instead hint at a
photoreaction directly via conical intersections.

In summary, hitherto ephemeral light-induced motions were
directly and unambiguously proven to exist. The exact influences
of the surrounding medium and temperature were quantified
directly and enabled us to favor unusual photoreactions and
complex motions against the long known simple DBI. Just by
changing temperature and rigidity of the outside medium we
were able to favor HT photoproducts with up to 82% or the
simple DBI products by up to 99%. Using the herein presented
molecular setup it is now possible to rationally design HTI
photoswitches with unusual motions, complex molecular
machines, or responsive and functional materials and nanosys-
tems. Likewise molecular engineers will be able to test for the
presence of hula-twist photoreactions in other classes of chro-
mophores by applying the herein established design principles:
reduction of conformational space, introduction of asymmetry
into the molecule via stable stereogenic centers in conjunction
with chiral axes, and inhibition of thermal single bond rotation by
increased sterical hindrance. It did not escape our attention that
the combination of all the different photoinduced motions for
A-1 to D-1 under constant illumination are very likely to lead to
a netto-directional motion around a virtual axis. Therefore, HTI 1
could actually constitute a completely different type of light-
driven molecular motor with unique rotation mechanism. Our
future efforts are inter alia aimed in this exciting new direction.

Methods

General experimental. The synthesis and spectroscopic characterization of A-1,
B-1, C-1, and D-1 is given in the Supplementary Methods. Reagents and solvents
were obtained from abcr, Acros, Fluka, Merck, Sigma-Aldrich, or TCI in the
qualities puriss., p.a., or purum and used as recieved. Technical solvents were
distilled before use for column chromatography and extraction on a rotary eva-
porator (Heidolph Hei-VAP Value, vacuubrand CVC 3000). Reactions were
monitored on Merck Silica 60 F254 TLC plates. Detection was done by irradiation

with UV light (254 nm or 366 nm). Column chromatography was performed with
silica gel 60 (Merck, particle size 0.063-0.200 mm) and distilled technical solvents.
'H NMR and 13C NMR spectra were measured on a Varian Mercury 200 VX,
Varian 300, Inova 400, Varian 600 NMR, or Bruker Avance III HD 800 MHz
spectrometer at 23 °C. Chemical shifts (§) are given relative to tetramethylsilane as
external standard. Residual solvent signals in the 'H and '3C NMR spectra were
used as internal reference. Deuterated solvents were obtained from Cambridge
Isotope Laboratories or Eurisotop and used without further purification. For 'H
NMR: CDCl; = 7.26 p.p.m., CD,Cl, = 5.32 p.p.m., benzene-

ds=7.16 p.p.m., toluene-dg = 2.08 p.p.m., (CDCl,), =6.00 p.p.m., cyclohexane-
dy; =1.38 p.p.m., (CD;),SO = 2.50 p.p.m., THF-dg = 1.72, 3.58 p.p.m., MeOH-d,
=3.31 p.p.m. For '3C NMR: CDCl; = 77.16 p.p.m., CD,Cl, = 53.84 p.p.m.,
benzene-ds = 128.06 p.p.m., toluene-dg = 20.43, cyclohexane-d;, =26.43 p.p.m.,,
THF-dg = 67.57, 23.37 p.p.m., MeOH-d, = 49.00 p.p.m. The resonance multiplicity
is indicated as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). The
chemical shifts are given in parts per million (p.p.m.) on the delta scale (). The
coupling constant values (J) are given in hertz (Hz). Electron Impact (EI) mass
spectra were measured on a Finnigan MAT95Q or on a Finnigan MAT90 mass
spectrometer. Electronspray ionization (ESI) mass spectra were measured on a
Thermo Finnigan LTQ-FT. The most important signals are reported in #1/z units
with M as the molecular ion. Elemental analysis were performed in the micro
analytical laboratory of the LMU department of chemistry on an Elementar Vario
EL apparatus. Infrared spectra were recorded on a Perkin Elmer Spectrum BX-FT-
IR instrument equipped with a Smith DuraSamplIR II ATR-device. Transmittance
values are qualitatively described by wavenumber (cm™!) as very strong (vs),
strong (s), medium (m), and weak (w). UV/Vis spectra were measured on a Varian
Cary 5000 spectrophotometer. The spectra were recorded in a quartz cuvette (1
cm). Solvents for spectroscopy were obtained from VWR and Merck. Absorption
wavelength (1) are reported in nm and the molar absorption coefficients (¢) in L
mol~! em~!. Low temperature UV/vis spectra in EPA glass (diethylether/iso-
pentane/ethanol 5:5:2) at 90 K (—183 °C) were measured on a Varian Cary®

50 spectrophotometer with an Oxford DN 1704 optical cryostat controlled by an
Oxford ITC 4 device. Low temperatures were reached by cooling slowly with liquid
nitrogen. The spectra were recorded in a quartz cuvette (1 cm). Solvents for
spectroscopy were obtained from VWR, Merck and Sigma Aldrich and were dried,
degassed and filtrated prior use. For irradiation studies a Mightex FCS-0405-200
LED (405 nm) was used as light source. Absorption wavelength (1) are reported in
nm and the molar absorption coefficients () in L-mol lem™L. Melting points (M.
p.) were measured on a Stuart SMP10 melting point apparatus in open capillaries
and are not corrected.

Photoisomerization experiments. Continuous irradiations of the solutions were
conducted in NMR tubes in different solvents (CD,Cl,, (CDCl,),, benzene-dg,
toluene-dg, MeOH-d,; DMSO-d,, EPA, EG). Irradiations were conducted using
LEDs from Roithner Lasertechnik GmbH (305 nm, 365 nm, 405 nm). For low
temperature studies a Mightex FCS-0405-200 LED (405 nm) was used as light
source and the light beam was guided by a fiber-optic cable (0.39 NA, one SMA,
one blank end) and pointed directly into the NMR tube during NMR measure-
ments. For quantum yield measurements see Supplementary Methods.

Data availability. All data that support the findings of this study are available from
the corresponding author upon reasonable request. The X-ray crystallographic
coordinates for the structures A-1 to D-1 reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under CCDC
numbers 1586011 (A-1), 1586012 (B-1), 1586013 (C-1), 1586014 (D-1). These
data can be obtained free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
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