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Abstract: Microbial natural products (NPs) are an important source of drugs, however, their structural
diversity remains poorly understood. Here we used our recently reported MinHashed Atom Pair
fingerprint with diameter of four bonds (MAP4), a fingerprint suitable for molecules across very
different sizes, to analyze the Natural Products Atlas (NPAtlas), a database of 25,523 NPs of bacterial or
fungal origin. To visualize NPAtlas by MAP4 similarity, we used the dimensionality reduction method
tree map (TMAP). The resulting interactive map organizes molecules by physico-chemical properties
and compound families such as peptides and glycosides. Remarkably, the map separates bacterial and
fungal NPs from one another, revealing that these two compound families are intrinsically different
despite their related biosynthetic pathways. We used these differences to train a machine learning
model capable of distinguishing between NPs of bacterial or fungal origin.

Keywords: natural products; databases; cheminformatics; chemical space; visualization; molecular
fingerprints; machine learning; support vector machine; origin classification

1. Introduction

Natural products (NPs) of microbial origin are an important source of drugs. Numerous examples
of antibiotic, antifungal, immunosuppressive, anti-inflammatory, and anti-cancer agents on the market
originate from fungi or bacteria [1]. A notable effort has been made to explore the known and virtual
chemical space of microbial NPs and NPs in general [2–5]. Furthermore, machine learning (ML)
has been extensively applied to natural product structures, for example, to classify limonoids and
protolimonoids [6], to establish the structural class of a natural product with its NMR data [7], to learn
estimates of natural product conformational energies [8], to generate derivates of NPs or compounds
with natural product characteristics [9–11], to predict meridian in Chinese traditional medicine [12],
and to elucidate the biological effects of natural products [13]. The recently published Natural Products
Atlas (NPAtlas) is a collection of 25,523 NPs of fungal and bacterial origin [14]. Among other tools,
the NPAtlas website (https://www.npatlas.org/joomla/) provides a global view of the database in a
spherical representation. To generate this view, the NPAtlas entries are clustered by Dice similarity [15]
using the substructure fingerprint ECFP4 (an extended connectivity fingerprint with a diameter of four
bonds) [16]. The resulting clusters are grouped in nodes, which are arranged in a spherical plot where
the position of each node is determined by molecular formulas. While this representation provides
interesting insights into the composition of the NPAtlas, individual compounds cannot be visualized
in the global overview but only within clusters, therefore, comparing compounds across two different
clusters is not possible.

A defining feature of NPAtlas is that NPs featured in this database span across a broad range of
sizes, with the largest NPs reaching up to almost 3 kDa (Figure S1). We showed recently that the ECFP4
fingerprint, although well suited for small molecule drugs, performed poorly with larger molecules
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typically found in NP collections such as lipids, oligosaccharides, and peptides [17]. To address this
limitation, we recently investigated molecular fingerprints combining the concept of atom pairs [18],
which is well suited to analyze large molecules such as proteins and peptides [19–22], with extended
connectivity substructures and bit compression using MinHash as used in the substructure fingerprint
MHFP6 [23], and proposed the MinHashed atom pair fingerprint with a diameter of four bonds (MAP4)
as an optimal molecular fingerprint to analyze molecules of very different sizes [17].

Here we asked the question of whether analyzing NPAtlas using MAP4 might provide new
insights into the composition of this collection. To organize molecules according to their MAP4
similarity, we used TMAP, a recently reported dimensionality reduction method suitable to analyze
very large high-dimensional datasets [24]. TMAP performs better for the visualization of large
high-dimensional data sets than other dimensionality reduction methods such as t-SNE [25] or
UMAP [26]. Furthermore, TMAP is particularly well suited to analyze databases of molecules
associated with MinHashed fingerprints.

2. Materials and Methods

2.1. NPAtlas Dataset

The December 2019 version of the NPAtlas was used. This version of the database contains 25,523
entries, 15,759 of fungal origin, and 9764 entries of bacterial origin, with no entry sharing bacterial and
fungal origin. For each compound, a simplified molecular-input line-entry system (SMILES), molecular
weight (MW), origin (fungal or bacterial), and the DOI of the associated publication were downloaded.
For the MAP4 fingerprint calculation, the SMILES were canonicalized [27] and the stereochemistry
was removed using the RDKit toolkit [28]. After removing stereochemistry, the NPAtlas counts 23,928
unique SMILES and 76 entries common among both origins.

2.2. MAP4 Fingerprint

The MAP4 fingerprint combines the circular substructure and atom pair fingerprints concepts.
MAP4 encodes each atom pair in a molecule as the SMILES of the circular substructure of radii 1 and
2 around both atoms and the distance in bonds that separates them. The resulting set of strings is
hashed to integers using the SHA-1 algorithm [29] and MinHash scheme [30]. The obtained MAP4
fingerprint is an array of unsorted numbers, where each feature is characterized by its value and
its position in the array (index). MAP4 perceives substructure details while maintaining a global
overview; therefore, it is suitable to describe molecular structures across different sizes. The similarity
between two MAP4 fingerprints a and b was calculated: (1) counting of elements with the same value
and the same index across a and b, and (2) dividing the obtained value by the number of elements of
fingerprint a. The similarity between two MinHashed MAP4 fingerprints calculated as described above
is an estimation of the Jaccard Similarity between the two non-MinHashed objects [30]. For a detailed
explanation if the MAP4 implementation and benchmark, please refer to our recent publication [17].
The 1024-dimensions MAP4 fingerprint of all NPAtlas entries was calculated using canonical SMILES
without stereochemistry information.

2.3. TMAP Layout

The TMAP layout was calculated from the MAP4 fingerprint dataset using the open-source
implementation of TMAP [24]. In short, the indices generated by the MinHash procedure of the MAP4
calculation were used to create a locality-sensitive hashing (LSH) forest [31] of n trees. For each NPAtlas
entry, the k approximate nearest neighbors (NNs) in the MAP4 feature space are then extracted from
the LSH forest to form a graph in which nodes are the structures and edges are the NN relationships
weighted by the fingerprint distance. The Kruskal’s algorithm was then applied to remove cycles
and to find the path with the lowest total distance between all molecules in the graph [32]. Finally,
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Fearun [33] was used to interactively display the obtained minimum spanning tree. In this study, we
set n = 32 and k = 20.

2.4. Properties Calculation

For all NPAtlas entries, the number of hydrogen bond acceptors (HBA) and hydrogen bond
donors (HBD), logP following Crippens approach (AlogP) [34], topological polar surface area (TPSA),
and fraction of sp3 carbon (fsp3C) were calculated with RDKit. The boiling point was calculated using
the open-source code of the JRgui [35] as the Joback boiling temperature [TJob, Equation (1)] [36],

TJob = 198.2 +
∑

i

Nitbi (1)

where Ni is the occurrence of a functional group in the molecule, and tbi is its empirically
obtained contribution value. Molecules that violated more than one Lipinski rules [37] were
labeled as non-Lipinski. To identify glycosylated and/or peptidic structures, Daylight [38]
SMARTS language was used. SMILES arbitrary target specification (SMARTS) were used
with RDKit to identify NPAtlas entries containing a dipeptide substructure, defined as
“[NX3,NX4+][CH1,CH2][CX3](=[OX1])[NX3,NX4+][CH1,CH2][CX3](=[OX1])[O,N]”, or a glycoside
substructure, defined as “[CR][OR][CHR]([OR0,NR0])[CR]”.

2.5. TMAP Color Gradients

The calculated properties were used to color the generated TMAP. For a clearer color gradient,
some of the highest and lowest displayed values of the non-ranked properties have been adjusted.
All MW values ≥1000 Da are displayed as 1,000 Da, all boiling point values ≥2000 K are displayed as
2000 K, all HBD count values ≥10 are displayed as 10, all AlogP values ≥8 are displayed as 8, all AlogP
values ≤−2 are displayed as −2, and all TPSA values ≥500 are displayed as 500. The color-codes of the
ranked property values were obtained by average ranking them using SciPy [39]. In average ranking,
if two or more values have the same rank, the average rank of the tied values is assigned to each of
them. For details on TMAP please refer to the related publication [24].

2.6. Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) Classifiers

The k-nearest neighbor (k-NN) algorithm is a simple ML method that predicts the query to belong
to the class most found amongst its k nearest neighbors. A support vector machine (SVM) represents a
more complex ML approach; an SVM maps its input into a high-dimensional feature space and tries to
find the best separation between two classes, such as they entirely lay on the opposite side a hyperplane.
To do so, the SVM maximizes the margin between the closest points, known as support vectors, and the
hyperplane. Mapping features explicitly into a higher dimensional space is computationally expensive
and not feasible even for small datasets. To avoid it the SVM uses the so-called “kernel trick”, which
essentially uses a similarity matrix of the input data instead of the input itself; this allows the SVM to
define the hyperplane and the support vectors in a less expensive manner [40]. In cheminformatics,
both k-NN and SVM inputs can range from SMILES to various molecular descriptors. For this work,
three classifiers were implemented: a MAP4 based k-NN (MAP4 k-NN), a MAP4 based SVM (MAP4
SVM), and an SVM based on physico-chemical properties (physchem SVM).

The MAP4 SVM and MAP4 k-NN classifiers were implemented as follows. The canonicalized
SMILES without stereochemistry information used to generate the TMAP were made unique, and they
were assigned to training or test set with a 50% random split. The 35 unique SMILES of the 76 entries
common between both origins were randomly assigned to one origin. Both classifiers were trained
using MAP4 fingerprints. In both cases, the class weights were inversely proportional to the class
frequency, and their hyperparameter was optimized using a 5-fold cross-validation. During the 5-fold
cross-validation, 20% of the training set was left out as a validation set, and the final set of parameters



Biomolecules 2020, 10, 1385 4 of 13

maximized the ROC AUC on the validation set. For the SVM classifier, the hyperparameter C was
optimized among the values 0.1, 1, 10, 100, and 1000, resulting in C = 10. The SVM utilized a custom
kernel that calculated the similarity matrix between two MAP4 fingerprints. Platt scaling [41] was
used to obtain probabilistic prediction values. For the k-NN model, the number of nearest neighbors k
was optimized among the values 5, 7, 9, and 11, resulting in k = 7. As a distance metric between two
MAP4 fingerprints, the k-NN classifier used one minus the similarity between the two fingerprints.

The physchem SVM model was trained with the same training/test split, but using the MW, fsp3C,
HBA, HBD, AlogP, TPSA, and calculated boiling point as input. The properties were scaled to zero
mean and unit variance. A radial basis function (RBF) kernel [42] was used, and the hyperparameters
C and γ were optimized with a grid search. C was optimized considering the values 0.1,1, 10, 100,
and 1000, resulting in C= 10, and γ was optimized considering the values 0.01, 0.1, 1, 10, and 100,
resulting in γ = 1.

For the evaluation of the classifiers, we considered the class “bacterium” to be the positive class
and the class “fungus” to be the negative one. All SVM and the k-NN classifiers were implemented
using scikit-learn [43], and all not mentioned hyperparameters were used in their default values.
The source code for all classifiers can be found at https://github.com/reymond-group/MAP4-Chemical-
Space-of-NPAtlas.

2.7. Classifiers Evaluation Metrics

ROC AUC is the area under the ROC curve, and the ROC curve is obtained by plotting the true
positive rate (TPR) against the false positive rate (FPR):

TPR =
TP

TP + FP
(2)

FPR =
FP

TP + FP
(3)

where TP stands for true positives, TN for true negatives, FP for false positives, and FN for false
negatives predicted by the classifier.

The F1 score is defined as the harmonic mean of precision and recall:

Precision = TPR (4)

Recall =
TP

TP + FN
(5)

F1 score = 2×
(Precision×Recall)
(Precision + Recall)

(6)

The balanced accuracy is defined as:

Balanced accuracy =
TPR + TN

TN+FN

2
(7)

The Matthews correlation coefficient (MCC) is a correlation between the observed and the predicted
class and it is defined as:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)

In all metrics, the probabilistic prediction values were converted into binary classification values using
a threshold of 0.5.

https://github.com/reymond-group/MAP4-Chemical-Space-of-NPAtlas
https://github.com/reymond-group/MAP4-Chemical-Space-of-NPAtlas
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3. Results and Discussion

3.1. The TMAP of NPAtlas

The 25,523 structures in NPAtlas were downloaded and encoded using the MAP4 fingerprint,
which is well suited to analyze molecules across different sizes such as those in NPAtlas ranging
between 70 and 2900 Da in MW (Table 1, Figure S1, method Sections 2.1 and 2.2). The generated dataset
was then visualized using TMAP, which represents the minimum spanning tree connecting nearest
neighbors, here according to the MAP4 similarity measured as Jaccard distance (Figure S2, see method
Section 2.3 for details). To understand how the NPs in NPAtlas are organized on the MAP4 TMAP,
we generated color codes based on various physico-chemical descriptors, as well as on categorical
classification by compound type and observed or predicted origin (Table 1, method Sections 2.4 and 2.5,
Figures S3–S5, https://tm.gdb.tools/map4/).

Table 1. Calculated properties of NPAtlas molecules available as TMAP color-codes.

Property Min. Value Max. Value 25% Quantile 50% Quantile 75% Quantile

Molecular weight A 70.1 2901.3 (1000 F) 292 408.9 562.6
Sp3 C fraction A 0.0 1.0 0.4 0.6 0.7
HBA count A,B 0 68 (20 F) 4 6 9
HBD count A,C 0 47 (10 F) 3 2 4

AlogP A,D
−28.9 (−2 G) 33.8 (8 F) 1.2 2.5 4.1

TPSA A,E 0.0 1135.81 (500 F) 69.64 99.66 152.8
Boiling point A,H 311.5 7806.5 (2000 F) 890.8 1141.6 1518.5

Is Lipinski Categorical: yes/no

Substructures I Categorical: contains dipeptide moiety/contains glycoside moiety/contains dipeptide and
glycoside moieties

Origin Categorical: Bacterial/Fungal
MAP4 SVM J prediction Categorical: Bacterial/Fungal

MAP4 SVM J performances Categorical: correct/wrong
A Continuous properties; shown also as rank in the map. B Hydrogen bond acceptors (HBA). C Hydrogen bond
donors (HBD). D LogP Calculated following Crippen’s approach (AlogP). E topological polar surface area (TPSA).
F The maximum value shown in the map, all values above are represented with the same color code. G The minimum
value shown in the map, all values below are represented with the same color code. H Joback calculated boiling
point. I SMARTS matched substructures. J Support vector machine (SVM).

Inspecting the colored TMAPs reveals that molecules are organized by structural features.
For example, inspecting the TMAP colored by MW shows that most of the high MW compounds (MW
≥1000 Da, 6.8% of NPAtlas) belong to three structural families, namely peptides type compounds
(minimal substructure: dipeptide), glycosides (minimal substructure: cyclic N- or O-acetal) and
glycopeptides (both substructures present) (Table 2, Figure 1A and Figure S1). Typical examples of such
large NPs are shown in Figure 2, featuring the cyclic peptides jizanpeptin A (NPA022688, bacterial) [44]
and arbumelin (NPA020152, fungal) [45], the glycosides butirosin A (NPA009292, bacterial) [46] and
quinofuracin A (NPA005440, fungal) [47], and the glycopeptides cycloaspeptide F (NPA000712, the only
fungal glycopeptide in NPAtlas) [48] and orienticin D (NPA021348, bacterial) [49].

Table 2. NPAtlas entries and unique publications number according to the origin and molecular weight.

Fungal A Bacterial A

NPAtlas entries (≥1000 Da) 15,759 (347) 9764 (1392)
Unique publications B 6110 (145) 4653 (711)
Peptides (≥1000 Da) C 722 (311) 2144 (901)
Glycosides (≥1000 Da) D 814 (12) 1616 (421)
Glycopeptides (≥1000 Da) E 1 (0) 112 (89)
Aromatic NPs (≥1000 Da) F 1322 (0) 800 (31)
Aliphatic NPs (≥1000 Da) G 2184 (59) 1366 (220)

A Natural product origin. B Number of unique publications used for the extraction of all NPAtlas entries C

Containing a dipeptide moiety. D Containing a glycoside moiety. E both glycoside and dipeptide moiety. F fsp3C <
0.2. G fsp3C > 0.8.

https://tm.gdb.tools/map4/
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Figure 1. (A) NPAtlas MAP4 TMAP colored by MW, with a rainbow scale where the lowest values are
purple, and the highest values are red. Two areas of the map are zoomed and colored by SMARTS
substructure match: compounds containing a dipeptide moiety are highlighted in green, compounds
containing a glycoside moiety are highlighted in magenta, compounds containing both moieties are
highlighted in yellow; six examples of NPAtlas entries are reported with the same color code. (B) The
NPAtlas MAP4 TMAP colored by fsp3C with a rainbow scale where the lowest values are purple,
and the highest values are red. A low and a high fsp3C area of the map are zoomed, and two examples
of polyphenols and of terpenoids are reported. (C) The NPAtlas MAP4 TMAP colored by a microbial
origin classification, the compounds originated from fungi are colored in magenta, the compounds
produced by bacteria are colored in green.

Another striking insight is provided by inspecting the TMAP colored by the fraction of sp3 carbons
(fsp3C, Figure 1B), which allows the identification of areas rich in aromatic polyphenols with very
low fsp3C, such as nocatrione A (NPA014210, bacterial) [50] and sydowiol E (NPA001030, fungal) [51],
as well as areas populated by terpenoids with very high fsp3C such as neoverrucosane diterpenoids
(e.g., neoverrucosan-5β,9β,18β-triol, NPA001820, bacterial) [52] and the anti-influenza virus diterpene
wickerol B (NPA008911, fungal) [53]. The structures of these compounds are shown in Figure 2.

The TMAP not only organizes molecules by structural features, but also separates molecules
according to their origin, with fungal and bacterial NPs forming well-defined groups across the
TMAP (Figure 1C). This separation is striking because biosynthetic pathways in bacteria and fungi
are generally similar, and because the different compound families contain NPs of both bacterial and
fungal origin (Table 2).
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Figure 2. The structural formula of natural product examples selected from the TMAPs in Figure 1.

3.2. Distinguishing Between Bacterial and Fungal NPs

The separation between bacterial and fungal NPs on the MAP4 TMAP and the fact that the map
also separates NPs by physico-chemical descriptor values suggested to us that ML models trained either
with the MAP4 fingerprint or simply with physico-chemical descriptors might be able to distinguish
between NPs of bacterial or fungal origin. We investigated SVM and k-NN models since this type of
ML models are generally well suited for classifying bioactive molecules [54]. We considered both an
SVM and a k-NN model with MAP4, and only an SVM model with physico-chemical descriptors, and
we evaluated their performance on the test set (see method Section 2.6).

The MAP4 SVM was the best performing model with an area under the receiver operating
characteristic curve (ROC AUC) of 0.97, an F1 score of 0.91, a balanced accuracy of 0.93, and a Matthews
correlation coefficient (MCC) of 0.86 (Table 3). The MAP4 k-NN classifier also had excellent evaluation
metrics with an accuracy of 0.90 and an MCC of 0.8, suggesting the high performance of the MAP4
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SVM classifier might depend on a nearest neighbor effect. On the other hand, the physchem SVM
performed significantly worse than the MAP4 based classifiers and was only partially capable of
distinguishing between bacterial and fungal NPs (F1 score and a balanced accuracy above 0.7). This
suggests that successful classification requires a model distinguishing between specific substructures
and not only overall molecular properties. For closer inspection, the prediction (fungal or bacterial
origin) and the performance (correct or wrong) of the best performing classifier (MAP4 SVM) are
color-coded on the MAP4 TMAP of NPAtlas (Figure S5).

Table 3. SVM and k-NN classifier’s performance on the test set.

Classifier ROC AUC A F1 Score A Balanced Accuracy A MCC A

MAP4 SVM B 0.97 0.91 0.93 0.86
MAP4 k-NN C 0.96 0.88 0.90 0.81

Physchem SVM D 0.86 0.73 0.78 0.56
A Area under the receiver operating characteristic curve (ROC AUC), F1 score, balanced accuracy, and MCC are
metrices used to evaluate a machine learning model. MCC can assume values from –1 to 1, all other parameters
can assume values from 0 to 1, and in all cases 1 is a perfect classification. Refer to Section 2 for details. B SVM
classifier trained with the MAP4 fingerprint. C k-NN classifier trained with the MAP4 fingerprint. D SVM trained
with physiochemical properties.

3.3. Predicting the Origin of Newly Discovered NPs

Discussion with natural product chemists informed us that assigning NPs to their origin only
from its chemical structure is not trivial, and can be problematic when isolating a new NP due to
the occurrence of endosymbiosis, i.e., the fact that bacteria often live as symbionts within larger
organisms [51,55]. We therefore asked the question whether our MAP4 SVM classifier would correctly
predict the origin of NPs newly reported in 2020 and which are not part of NPAtlas (Table 4). To our
delight, the classifier correctly predicted the fungal origin for the newly reported epicospirocins 1 [56],
penicimeroterpenoid A [57], and rhizolutin [58], as well as the bacterial origin of the recently reported
bosamycin A [59]. The correct origin assignment is probably related to the presence of structurally
similar NPs within the NPAtlas training set, illustrated here by the MAP4 nearest-neighbor NPs
aspermicrone A [60], isocitreohybridone H [61], Monacolin K [62], and AIP I [63] (Figure 3).

Table 4. MAP4 SVM classification of new microbial natural products and of Phakefustatin A.

Natural Product MAP4 SVM A

Fungal, Bacterial
Training Set

Nearest Neighbor (NN) JD from NN B

Epicospirocin 1 0.99, 0.01 Aspermicrone A (NPA024935) 0.66
Penicimeroterpenoid A 1.0, 0.0 Isocitreohybridone H (NPA016454) 0.63

Rhizolutin 0.83, 0.17 Monacolin K (NPA009354) 0.80
Bosamycin A 0.04, 0.96 AIP I (NPA010987) 0.77

Phakefustatin A 0.12, 0.88 Samoamide A (NPA022212) 0.68
A Predicted origin: fungal or bacterial. B Approximated Jaccard distance (JD), see Section 2 for details from the
training set NN.

When challenged with the recently reported NP phakefustatin A, isolated from the marine sponge
Phakellia fusca [64] (Figure 3), the MAP4 SVM classifier predicted a bacterial origin (Table 4). Indeed, the
NPAtlas training set contained closely related NPs of bacterial origin, such as the MAP4 NN Samoamide
A [65] (Figure 3). Although phakefustatin A was isolated from a marine sponge, our prediction is
probably correct because many marine sponges contain endosymbiotic bacteria, which can make up
to 60% of the sponge biomass and are often responsible for the production of metabolites [66]. More
specifically, it is known that Phakellia fusca coexists with diverse actinobacteria which have been held
responsible for the production of many bioactive NPs found in the sponge [67].

While the example above might be a case of endosymbiosis and potential origin misclassification,
it must be noted that our MAP4 SVM classifier can only label NPs as of bacterial or fungal origin.
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In fact, our classifier mistakenly assigns such classification to well-known non-microbial NPs (Table S1,
Figure S6). An extension of our analysis to non-microbial natural products could be of interest,
however, the task cannot be completed due to a lack of annotated public datasets for NPs of diverse
origins [68,69].

Figure 3. Examples of natural products reported in 2020, absent from NPAtlas, annotated with their
predicted origin, and connected to its MAP4 NN in the training set.

4. Conclusions

In summary, we showed that mapping the 25,523 NPs reported in NPAtlas as a MAP4 TMAP
organizes molecules by physico-chemical properties and by substructures and thereby provides an
unprecedented insight into the composition of this collection. Most strikingly, the map separates
the different NPs according to their bacterial or fungal origin. Furthermore, a SVM model trained
with the MAP4 fingerprint dataset performs remarkably well in distinguishing between fungal and
bacterial NPs. The classifier can be of aid where the origin of a natural product is unknown, especially
when the molecule is isolated from a symbiotic complex. The MAP4 TMAP of NPAtlas is accessible
at https://tm.gdb.tools/map4/, and the source code is available at https://github.com/reymond-group/

MAP4-Chemical-Space-of-NPAtlas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/10/1385/s1,
Figure S1: Physico-chemical properties distribution across the NPAtlas entries. Figure S2: Approximated Jaccard

https://tm.gdb.tools/map4/
https://github.com/reymond-group/MAP4-Chemical-Space-of-NPAtlas
https://github.com/reymond-group/MAP4-Chemical-Space-of-NPAtlas
http://www.mdpi.com/2218-273X/10/10/1385/s1
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distance from the top 20 NNs of all NPAtlas entries. Figure S3: MAP4 TMAP of NPAtlas colored with the available
continuous properties. Figure S4: MAP4 TMAP of NPAtlas colored with the ranked continuous properties. Figure
S5: MAP4 TMAP of NPAtlas colored with the available categorical properties. Table S1, Figure S6: MAP4 SVMN
classification of known non-microbial natural products and their structures.
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