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Abstract: The ortho-hydroxy aryl Schiff base 2-[(E)-(phenylimino)methyl]phenol and its deutero-
derivative have been studied by the inelastic incoherent neutron scattering (IINS), infrared (IR)
and Raman experimental methods, as well as by Density Functional Theory (DFT) and Density-
Functional Perturbation Theory (DFPT) simulations. The assignments of vibrational modes within
the 3500–50 cm−1 spectral region made it possible to state that the strong hydrogen bond in the
studied compound can be classified as the so-called quasi-aromatic bond. The isotopic substitu-
tion supplemented by the results of DFT calculations allowed us to identify vibrational bands
associated with all five major hydrogen bond vibrations. Quasi-isostructural polymorphism of
2-[(E)-(phenylimino)methyl]phenol (SA) and 2-[(E)-(phenyl-D5-imino)methyl]phenol (SA-C6D5) has
been studied by powder X-ray diffraction in the 20–320 K temperature range.

Keywords: Schiff bases; inelastic incoherent neutron scattering; hydrogen bond; isotopic effect

1. Introduction

This paper dwells on the studies of one of the most popular photo-thermochromic
compounds, 2-[(E)-(phenylimino)methyl]phenol (N-salicylideneaniline), from the group of
the ortho-hydroxy aryl Schiff bases. The first compounds of this type were synthesized in
1864 by Hugo Schiff [1] and have attracted attention ever since [2,3]. The ortho-hydroxy
aryl Schiff bases, and materials based on them, demonstrate a number of interesting and
useful characteristics. For example, they manifest polymorphic properties [4], ionic liq-
uids’ properties [5], elastic bending capability [6] and recognised anti-cancer properties [7].
The chiral aldimines possess the photochromic feature in the crystalline state, caused by
photoinduced proton transfer in the intramolecular OHN hydrogen bond [8,9]. The chirop-
tical and optical anisotropic properties of photomechanical Schiff bases were previously
studied under UV irradiation [10]. Such properties as ferroelectricity, piezoelectricity and
second-order optical non-linearity were reported [11,12].

Many of the abovementioned features are linked to the existence of an intramolecular
OHN hydrogen bond and to various conformational changes that ortho-hydroxy aryl Schiff
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bases could undergo. The conformational changes in the excited state were first studied
in the year 1962 [13] and continue to attract attention to date. The development of new
synthetic routes led to a significant increase in the number of available compounds and
allowed novel types of liquid crystals and photo-optical switches to be obtained [14]. Such
characteristics are usually conditioned by the isomerization of the imine fragment [15–18].
Besides, isomerization of an ortho-hydroxy aryl Schiff base attached to a BODIPY chro-
mophore was used to tune its UV absorption spectra [19].

A long discussion takes place in the literature [20–30] on what intramolecular changes
are responsible for the emergence and fine tuning of photo-thermochromic properties of
ortho-hydroxy aryl Schiff bases: isomerization of the hydroxyl- and imine- groups (Chart a,
Figure 1) or intramolecular proton transfer with the consequent isomerization of the amino
group (Chart b, Figure 1) or aniline ring rotation (Chart c, Figure 1).
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Figure 1. Conformational equilibria of 2-[(E)-(phenylimino)methyl]phenol. 

The recent comprehensive studies seem to indicate that the proton transfer in the 
intramolecular OHN hydrogen bond and the isomerization of the aldimine fragment 
(Chart b, Figure 1) is in charge of the appearance of photo-thermochromic properties in 
ortho-hydroxy aryl Schiff bases [28]. Notably, the strength of the hydrogen bond and tau-
tomeric equilibrium in it are linked to the observation of certain physical-chemical prop-
erties. In cases where the OH tautomeric form is prevailing, it is possible to observe OH 
isomerization, leading to the absence of photo-thermochromic properties, Chart a. Re-
cently, Mielke et al. [29,30] have discovered the existence of the trans-OH form in the spe-
cific condition of matrix isolation. However, the prevailing of the NH tautomeric form 
makes it possible to observe the isomerization of the amino group (Chart b) and, therefore, 
the emergence of photo-thermochromic properties. It is important to underline the contri-
bution by Ogawa et al. [24] who were the first to show the existence of trans-NH form in 
the solid state by X-ray method. The possibility of rotation of aldimine ring (Chart c) was 
first demonstrated by Cohen et al. [13,20], and later it was associated with the appearance 
of polymorphism of the studied compound. 

The conformational changes, occurring in ortho-hydroxy aryl Schiff bases in different 
conditions and states, were investigated mostly by the methods of vibrational spectros-
copy in the middle spectral range [29–36], while the low- and high-frequency hydrogen 
bridge vibrations have never been in the focus of the spectroscopic studies before. There-
fore, in order to fill in the gap, we have synthesized 2-[(E)-(phenylimino)methyl]phenol 
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oms for the deuterium atoms in aldimine ring (NC6H5 → NC6D5) were performed to ad-
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used, which are defined for a given vibrational mode as the ratio of frequencies for non-
deuterated and deuterated species. The ISR values are well studied for high-frequency 
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The recent comprehensive studies seem to indicate that the proton transfer in the
intramolecular OHN hydrogen bond and the isomerization of the aldimine fragment
(Chart b, Figure 1) is in charge of the appearance of photo-thermochromic properties in
ortho-hydroxy aryl Schiff bases [28]. Notably, the strength of the hydrogen bond and
tautomeric equilibrium in it are linked to the observation of certain physical-chemical
properties. In cases where the OH tautomeric form is prevailing, it is possible to observe
OH isomerization, leading to the absence of photo-thermochromic properties, Chart a.
Recently, Mielke et al. [29,30] have discovered the existence of the trans-OH form in the
specific condition of matrix isolation. However, the prevailing of the NH tautomeric
form makes it possible to observe the isomerization of the amino group (Chart b) and,
therefore, the emergence of photo-thermochromic properties. It is important to underline
the contribution by Ogawa et al. [24] who were the first to show the existence of trans-
NH form in the solid state by X-ray method. The possibility of rotation of aldimine ring
(Chart c) was first demonstrated by Cohen et al. [13,20], and later it was associated with
the appearance of polymorphism of the studied compound.

The conformational changes, occurring in ortho-hydroxy aryl Schiff bases in different
conditions and states, were investigated mostly by the methods of vibrational spectroscopy
in the middle spectral range [29–36], while the low- and high-frequency hydrogen bridge
vibrations have never been in the focus of the spectroscopic studies before. Therefore,
in order to fill in the gap, we have synthesized 2-[(E)-(phenylimino)methyl]phenol (N-
salicylideneaniline, SA) and its deutero-derivatives (SA-OD and SA-C6D5, see Figure 2) to
analyse the vibrational spectra measured by IINS, Raman and IR methods. The quantum-
mechanical DFT and DFPT calculations, as well as Potential Energy Distribution (PED)
analysis, have been conducted to assign the spectral bands. The isotopic replacements of
the bridged hydrogen for deuterium (O-H···N→ O-D···N) and the hydrogen atoms for
the deuterium atoms in aldimine ring (NC6H5 → NC6D5) were performed to additionally
confirm the assignment. To that end, the Isotopic Spectral Ratios (ISRs) were used, which
are defined for a given vibrational mode as the ratio of frequencies for non-deuterated
and deuterated species. The ISR values are well studied for high-frequency stretching and
bending proton vibrations [37], but poorly studied for the low-frequency hydrogen bridge
vibrations.
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fact proves that the hydrogen bond in these compounds is strong. Moreover, the intensity 
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which indicates that the hydrogen bond in SA is a quasi-aromatic one, which is also re-
ferred to as resonance-assisted hydrogen bond (RAHB) [40–48]. 
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Moreover, this paper delves into the spectroscopic manifestations of polymorphism
of N-salicylideneaniline and its isotopologues in a wider temperature range in 20–320 K.
N-salicylideneaniline was studied earlier in papers [27,28] in the 100–320 K temperature
range.

2. Results and Discussion
2.1. Assignment of Hydrogen Bonding Vibrations

This part of the paper focuses on the assignments of the spectral bands to the vibra-
tions involving the hydroxyl group (ν(OH), δ(OH) and γ(OH))) and the hydrogen bridge
(νσ(ON) and νβ(ON)), Scheme 1, continuing and expanding our studies started in Ref. [38].
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Scheme 1. The OHN hydrogen bond vibrations of the studied 2-[(E)-(phenylimino)methyl]phenols.

We start the discussion with the high-frequency region of vibrational spectra, which
are presented in Figure S1 in the supporting information for brevity. The broad band
located within the range of 2900–1500 cm−1 in the measured infrared spectrum is assigned
to the stretching vibrations ν(OH) as a result of the comparison of the spectra of the non-
deuterated and deuterated isopologues (ISR = 1.320). This band is characteristic for OH
form of Schiff bases (enol-imine) and not to NH form (keto-amine). The ν(OH) band is
rather wide and can be assigned to the so-called Zundel’s continuum absorption [39]. This
fact proves that the hydrogen bond in these compounds is strong. Moreover, the intensity of
the ν(OH) band is rather weak despite its noticeable shift towards lower frequencies, which
indicates that the hydrogen bond in SA is a quasi-aromatic one, which is also referred to as
resonance-assisted hydrogen bond (RAHB) [40–48].

The low-frequency region of the IR, Raman and IINS spectra of non-deuterated (SA)
and deuterated (SA-OD) compounds are shown in Figure 3. The experimental spectra
were interpreted using the calculated vibrational spectra (DFT) and the results of the PED
analysis (Tables S2–S4).
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When it comes to the in-plane deformational vibrations δ(OH), they are not character-
istic for ortho-hydroxy Schiff bases [33,35,38]. According to PED analysis, δ(OH) vibration
is mixed with the ν(CalkCalk) and γ(CH) vibrations. After the OH→ OD substitution the
bands located at 1571 and 1484 cm−1 (both IR and Raman active) decrease in intensity and
shift slightly, while the more characteristic δ(OD) bands appear at ca. 1130 cm−1 and ca.
1020 cm−1 both in IR and Raman spectra of SA-OD (Figure 3).

As for the out-of-plane deformational vibration γ(OH), in the IR spectrum of SA
the corresponding band is found in the range of 860–820 cm−1, but it strongly overlaps
with the bands of other vibrations and was identified with the help of DFT calculations.
However, in the IR spectra of SA-OD this band is clearly visible at 601 cm−1. The γ(OH)
vibration of SA is practically Raman-inactive, as in the 860–820 cm−1 region of the Raman
spectrum there are no clearly identifiable bands which would be sensitive to the OH→ OD
replacement. The band at 848 cm−1 in the IINS spectrum drops in intensity after the
deuteration and thus it was assigned to the γ(OH) vibration. Note, that for IINS method
the scattering cross-section for the deutron is much smaller than that of the proton and
thus the contribution of the vibrations involving deutrons in IINS spectra is weak. The
experimentally observed positions of γ(OH) bands and the H/D isotope effects on them
are consistent with the literature data [49–51].

The stretching vibration of the hydrogen bridge (νσ(OHN)) gives rise to the isotope-
sensitive bands at 449 cm−1 in the IINS spectrum and two bands at 448 and 434 cm−1 in
the Raman spectrum of SA (Figure 3). The intensity of these bands is greatly decreased
in the IINS and the Raman spectra of SA-OD, while a new band appears at 425 cm−1

in the Raman spectrum, assigned to the vibration of the ODN bridge, νσ(ODN). The
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IINS spectrum does not show the band of the deformational vibration νβ(OHN) due to
insignificant deformational motion of the bridged proton. This phenomenon was described
earlier in Ref. [38]. To make the interpretation of the hydrogen bridge vibrations more
accurate and reliable, the synthesis of SA-C6D5 isotopologue was performed (deuteration
in the aldimine ring, NC6H5 → NC6D5). In Figure 4 the IINS spectra of SA, SA-OD
and SA-C6D5 are compared. Upon deuteration in the hydrogen bridge site (SA-OD), the
intensity of the bands assigned to the γ(OH) and νσ(OHN) vibrations (848 cm−1 and
449 cm−1, respectively) is decreasing (Figure 4A), while the IINS spectrum of the SA-C6D5
derivative features a more complicated picture (Figure 4B). Firstly, the IINS spectrum of
SA-C6D5 is characterized by the disappearance of a number of bands assigned to γ(CH)
and τ(CH) vibrations, which were located at 1183, 1175, 1153, 1089, 703 and 521 cm−1

in the spectrum of SA (see blue arrows in Figure 4). Secondly, the bands visible at 208,
264, 359 and 495 cm−1 in the spectrum of SA (see red arrows in Figure 4B) shift to lower
frequencies, namely, to 202, 255, 345 and 491 cm−1, respectively. The intensity of the first
three bands is decreasing, while that of the fourth one is increasing slightly. Judging from
Tables S2 and S4, these bands stem from the skeleton vibrations of the aldimine ring, where
the deuteration occurs.
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(panel (B), blue trace). Blue arrows: bands of γ(CH) and τ(CH) vibrations, which disappear after
deuteration. Red arrows: bands of various vibrations, which shift after the deuteration. See text for
more details.

The band at 449 cm−1, which is assigned to νσ(OHN) vibration (also marked by
the red arrow in Figure 4B), is also sensitive to deuteration in the aldimine ring: the
band broadens and its peak intensity decreases. Such a long-range H/D isotope effect
on hydrogen bond vibrations is reported here for the first time. Below in Section 2.3 it is
shown that SA exists as a mixture of two quasi-isostructural polymorphs and the shift
of the νσ(OHN) band might be associated with the change of the mole fractions of these
polymorphs upon SA→ SA-C6D5 deuteration, though this question requires additional
consideration which is beyond the scope of this work.
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2.2. Spectral Manifestations of Polymorphism

The SA could crystallize in three polymorphic states—called α1, α2 and β—the
crystal structures and cell packing of which were earlier published by F. Arod in pa-
pers [27,28]; for a visual representation of the cell packing see Figure 2 (polymorph β)
and Figure 8 (polymorphs α1 and α2) in [27]. All three polymorphs exhibit enol-imine
form with intramolecular OH···N hydrogen bond. These polymorphs differ only slightly
in molecular positions and conformations, representing “very close points in the crystal
structure landscape” [52–54]; one of the larger differences between α and β states is the
rotational conformation of the aldimine ring (Chart c, Figure 1). The polymorphs α1 and
α2 are called quasi-isostructural. The structural mobility and polymorphism of different
compounds [55–59], and Schiff bases in that number [60,61], was investigated by various
methods. In this part of the paper our goal was to determine if vibrational spectra could be
used to unambiguously identify the particular polymorphic state and which vibrational
marker modes would be most informative. For that purpose, the crystallographic structures
of polymorphs α2 and β were optimized with CRYSTAL software, the IR spectra were
calculated by DFPT method and compared with the experimental one. The result of the
comparison is shown in Figure 5. There is a reasonably good agreement—both in bands
positions and their relative intensities—between the experimental spectrum (Figure 5A)
obtained at 295 K in which polymorph α2 prevails and the calculated spectrum of poly-
morph α2 (Figure 5B), while the agreement with that of polymorph β is significantly worse
(Figure 5C). The most informative bands are marked by asterisks in Figure 5A,B. These
bands are assigned to the following vibrations: ν(C=N), ν(CarCar), γ(CH), τ(CH) and
τ(CC).
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The abovementioned observations support the applicability of DFPT computational
method for the research of polymorphic states.

2.3. X-ray Powder Diffraction (XPD) Study of Polymorphism in SA

X-ray Powder Diffraction measurements of SA and SA-C6D5 were carried out in the
20–320 K temperature range. The X-ray diffraction pattern for SA-OD is not discussed here,
because the results closely match those for SA. The experiments revealed that both SA
and SA-C6D5 crystallize in a triclinic form, which is in agreement with the single crystal
X-ray data for polymorph α1 obtained earlier [27]. For SA, several reflexes are observed as
dual signals in the 20–295 K temperature range. As an example, in Figure 6 the reflexes,
002 and 0-11, for SA and SA-C6D5 are shown. The positions and relative intensities of
components of the dual signals are temperature dependent. Similar observations are valid
for the deuterated derivative SA-C6D5 (Figure 6C,D). Such behaviour is often attributed
to the co-existence of two quasi-isostructural polymorphs, preserving the same crystal
symmetry [52–56]. In case of SA, following the results of Refs. [27,28] we assign these
polymorphs to α1 and α2 forms.
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For a better understanding of this phenomenon we performed DFT calculations (in
the gas phase) of the potential curves for the rotation of the aldimine fragment of SA in
the enol-imine and keto-amine forms. The calculation confirmed that the structure of the
keto-amine form is evidently flat and the twist of the aldimine fragment by up to 20◦

virtually does not change the potential energy (Figure 7, top). In contrast, the optimized
geometry of the enol-imine form is not flat: torsional angle Θ(C=N-C=C) = 40◦ (Figure 7,
bottom) and crossing of the phenol ring plane requires to overcome a 1 kcal/mol barrier.
According to the postulate of Benstein et al. [62], such a barrier in a non-homogeneous
environment of a crystal lattice could make it possible to obtain two polymorphic forms.
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Though the keto-amine form is less stable than the enol-imine form by ca. 4.6 kcal/mol and
unlikely to be present at room temperature, one could speculate see that the flat structure
of the keto-amine form would not be prone to polymorphism.

The keto-amine if the keto-amine form would be,
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Upon further heating, a significant change of diffractograms of SA and SA-C6D5 is
observed at ca. 310 K (see the set of diffractograms in Figures S2 and S3). Based on the
available XPD data, it is difficult to speculate which structural changes are responsible
for this, but it is unlikely to be the α↔ β transition, because the melting temperature of
studied crystal was 325 K, coinciding with that previously reported for α1 in Ref. [27].

3. Materials and Methods
3.1. Compounds and Deuteration

2-[(E)-(phenylimino)methyl]phenol (SA) and 2-[(E)-(phenyl-D5-imino)methyl]phenol
(SA-C6D5) were synthesized from stoichiometric mixtures of the salicylaldehyde with
aniline or aniline-D5 in refluxing methanol, respectively. The solvents were purchased from
Sigma-Aldrich and used without further purification. For the deuteration in the mobile
proton site, the solution of 2-[(E)-(phenylimino)methyl]phenol in methanol-OD was heated
to 60 ◦C and refluxed during 30 min, then the methanol was removed by evaporation,
leaving SA-OD. The deuteration degree was estimated to be ca. 90%.

3.2. Infrared, Raman and IINS Measurements

The infrared measurements were performed using a Bruker Vertex 70v spectrometer.
The spectra were collected with a resolution of 2 cm−1. The FT-FIR spectra (500–50 cm−1)
were collected for sample suspended in Apiezon N grease and placed on a polyethylene
(PE) disc. The FT-MIR spectra were collected for sample in a KBr pellet. The Raman spectra
of the analysed samples were obtained using an FT-Nicolet Magma 860 spectrophotometer.
The In:Ga:Ar laser excitation at 1064 nm was employed for the Raman measurements.
The spectra were recorded at the room temperature with the spectral resolution 4 cm−1

and with 512 scans. Neutron scattering data were collected at the pulsed IBR-2 reactor in
the Joint Institute of Nuclear Research (Dubna, Russia) using the time-of-flight inverted
geometry spectrometer NERA at 10 K temperature. The experimental features are described
in Ref. [50].
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3.3. X-ray Powder Diffraction

The powder X-ray measurements were performed using EMPYREAN equipped with
the water-cooled X-ray tube with Cu anode with the wavelengths of characteristic radiation
λCuKα1 = 1.54056 Å and λCuKα2 = 1.54443 Å. In order to suppress the Kβ radiation the
Ni filter was used. The central part of the data acquisition system was the silicon strip
detector PIXcel. The low temperature measurements were made using the closed cycle
helium cryostat Phenix—Oxford Cryosystems.

3.4. Calculations

Quantum-mechanical calculations using the B3LYP functional (DFT, the
three-parameter exchange hybrid functional of Becke [63], and gradient-corrected cor-
relation functional of Lee, Yang and Parr) [64] with the 6-311++G(d,p) basis set [65–67]
were performed for full geometry optimizations with the Gaussian 16 Rev. C01 suite
of program [68]. The structures were visualized by the MOLDEN program [69]. The
potential energy distribution (PED) of the normal modes was calculated in terms of nat-
ural internal coordinates using the Gar2ped program [70]. Static periodic (solid-state)
DFT calculations (DFPT Density-Functional Perturbation Theory) were performed in the
CRYSTAL09 [71,72] software package using the B3LYP functional with the Grimme D2
dispersion correction [73] and 6-31G** basis set [67]. The space groups and unit cell pa-
rameters of the considered crystals obtained in the experimental studies [27,28] were fixed
and structural relaxations were limited to the position of atoms. Such approximation
gives a reasonable description of the structure and spectroscopic features of intra- and
intermolecular H-bonds of different types and strengths in molecular crystals [74–76].
The experimental atomic positions were used as the starting point in the periodic DFT
computations. Periodic DFT computations were conducted for polymorphs α2 and β. The
disordered α1-polymorph [27] is not suitable for periodic calculations. Since α1 and α2
polymorphs are quasi-isostructural, we assumed that their IR spectra are very close to
each other. Therefore, only the IR spectrum of the second polymorph was considered in
the present study. Periodic DFT computations of α2-polymorph led to the appearance of
imaginary frequencies. This problem is usually solved by reducing the space symmetry
of a crystal [77,78]. Reducing the space symmetry group to P1 allowed us to get rid of
imaginary frequencies of α2-polymorph. An accurate interpretation of the experimental
spectrum assumes knowledge of the relative stability of polymorphs α2 and β. This re-
quires the calculation of the sublimation enthalpy, which is very cumbersome in the case
of conformationally mobile molecules [79]. In addition, the error in the calculated values
can reach 15 kJ/mol [80]. Such an accuracy of calculations is hardly suitable for describing
“very close points in the crystal structure landscape” of crystals with conformationally
mobile molecules, e.g., see [81].

4. Conclusions

The paper presents the synthesis of 2-[(E)-(phenylimino)methyl]phenol (SA) and its
two deutero-derivatives (SA-OD and SA-C6D5). The bands corresponding to hydrogen
bond vibrational modes (see Scheme 1) were assigned in experimental IR, IINS and Raman
spectra. The analysis of the obtained spectral results proved that in a crystal state, SA exists
in enol-imine form with a so-called quasi-aromatic intramolecular OH···N hydrogen bond
of medium strength. The measured IINS spectra SA and SA-C6D5 made it possible to show
the influence of deuteron replacement in the remote group (aldimine ring) on the hydrogen
bridge stretching vibrations νσ(OHN). The calculations of structure and vibrational spectra
of two polymorphs (earlier studied by X-ray method [27]) performed by static periodic
(solid state) DFT method showed a good agreement between the measured and calculated
spectra, allowing for spectroscopic distinction between polymorphs α2 and β, as well as
confirming the applicability of DFPT calculations for characterization of polymorphic states.
Based on analysis of IR spectra, the SA in the studied samples was shown to exist in α-form.
However, the XPD measurements carried out for SA and SA-C6D5 showed dual signals
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for several reflexes and did not show a phase transition in the temperature range from
20 to 295 K. On the basis of these measurements two quasi-isostructural polymorphs of
SA (most probably, so-called α1 and α2 forms) were assumed to co-exist in the mentioned
temperature range.

Supplementary Materials: The following are available online, Figure S1: Normalized experimental
Raman and IR spectra of SA and its deuterated derivative SA-OD. Figure S2: Temperature behaviour
of XRD patterns for SA and SA-C6D5. Figure S3: Temperature dependence of X-ray powder diffrac-
tion patterns of SA and SA-C6D5. Table S1: Definitions of the internal coordinates used in the
potential energy distribution (PED) analysis for the assignments of the vibrational spectra, Table S2:
Experimental IR, Raman, IINS and calculated (B3LYP/6-311+G(d,p)) spectral data of SA, Table S3:
Experimental IR, Raman and calculated (B3LYP/6-311+G(d,p)) spectral data of SA-OD, Table S4:
Experimental IINS and calculated (B3LYP/6-311+G(d,p)) spectral data of SA-C6D5 for the region
0–1200 cm–1.
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