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Abstract: High transmission efficiency metasurface unit cells have been designed based on surface
electric and magnetic impedances derived from Huygens’ principle. However, unit cells for low
transmission loss (<1 dB) over a wide transmission phase range require at least three metallic layers,
which complicates the unit cell design process. In this paper, we introduce high-efficiency Huygens’
metasurface unit cell topologies in double-layer FR4 printed circuit board (PCB) by implementing
surface electric and magnetic current using the top and bottom metallic patterns and via drills. Eleven
unit cells were optimized for wide phase coverage (−150◦ to 150◦) with a low average transmission
loss of −0.82 dB at 10 GHz. To demonstrate the high-efficiency of the designed unit cells, we designed
and fabricated two focusing lenses with dimensions of near 150× 150 mm (5λ× 5λ) to focus a spherical
beam radiated from short focal distances (f = 100 and 60 mm). The fabricated focusing lens showed
12.87 and 13.58 dB focusing gain for f = 100 and 60 mm at 10 GHz, respectively, with a 1 dB fractional
gain bandwidth of near 10%. We expect that the proposed focusing lens based on high-efficiency
double-layer metasurface unit cells can help realize compact and high-gain focusing lens-integrated
antenna systems.
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1. Introduction

Metasurface is a two-dimensional structure with subwavelength particles or unit cells for
manipulating propagation direction [1–5], polarization [6–11], and orbital angular momentum
(OAM) [12–15] of electromagnetic (EM) waves. The ground-breaking feature from the metasurface was
introduced from extensive review papers [16–20], and metasurface-based lenses [21–23], antennas [24–27],
and holographic imaging [28,29] have been actively studied. After the advent of a popular metasurface
design using the generalized Snell’s law [1], which deals with a phase gradient (scalar) on the surface,
Huygens’ principle was utilized to improve the efficiency of wave-refracting metasurfaces by introducing
surface electric and magnetic currents (vector quantities) [2]. Using Huygens’ principle, a metasurface
was modeled as a two-dimensional boundary and the required electric and magnetic surface impedances
to control the propagation direction of a transmitted wave were achieved [2]. Metasurface design based
on Huygens’ principle is theoretically sound; however, it is not straightforward to implement electric
and magnetic surface impedances that cover a wide transmission phase range with high transmission
efficiency in a planar 2D structure, e.g., printed circuit board (PCB). In [2], Pfeiffer et al. designed
electric and magnetic dipoles in two-layer PCB strips, but had to stack the strips between air space
to align the vector components of the incident electric and magnetic fields with the corresponding
surface impedance vectors. More fabrication-friendly unit cells with the required surface impedances
have been designed and laid out in two-layer PCBs, but the unit cells were not able to maintain
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low transmission loss (<1 dB) for all the required surface impedances, especially high electric and
magnetic resonance cases [30–37]. For better efficiency, a three-layer PCB capable of generating a loop
current from the first and third layers using two vias was implemented [38–40]. Recently, in the same
three-layer PCBs, symmetric and asymmetric unit cells with two magnetic dipoles (dogbone shape) on
the top and bottom layer and an electric dipole (capacitor-loaded dipole) in the middle layer have
been implemented [25,26,41,42]. Despite the higher transmission efficiency of these three-layer unit
cells, the drawbacks can be increased geometrical parameters that need to be tuned and interference by
waves propagating along the multiple layers, which require optimization.

In this paper, we introduce double-layer metasurface unit cells with high transmission efficiency
and wide phase coverage at 10 GHz by constructing electric and magnetic dipole structures based on
Huygens’ principle. In the unit cells, electric and magnetic dipoles were implemented in 1.6 mm-thick
(≈λ/18.8) double-layer FR4 PCB and via drills were used to form antisymmetric conducting loops for
magnetic dipole resonance by connecting top and bottom metallic traces. Vias were also implemented
in the electric dipole structure and the desired capacitance of the unit cell was achieved. Overall, we
designed 11 unit cells to cover transmission phases from −150◦ to 150◦ and achieved a low average
transmission loss of −0.82 dB at 10 GHz. To assess the practical performance of the unit cells, we
designed two compact lenses with near 5λ × 5λ (152.1 × 156 mm) size to focus a spherical beam to
specific focal points of 100 mm (f/D = 0.65) and 60 mm (f/D = 0.39). The lenses were designed for such
low f/D values to be used for a compact and low profile transmitarray [43,44]. From the fabricated
devices, radiated power from the half-wave dipole located at the focal distances was enhanced by 12.87
and 13.58 dB at 10 GHz for f/D = 0.65 and 0.39 cases, respectively, and a wide 1 dB gain bandwidth
near 10% was demonstrated.

2. Huygens’ Metasurface Unit Cell Design

2.1. Unit Cell Design Method

The generalized sheet transition condition (GSTC) models a metasurface as electric and magnetic
polarizability densities (αES and αMS) and relates those to the transmission coefficient (T) and reflection
coefficients (R) of the metasurface [45]. Then, using Equations (1) and (2), αES and αMS can be
converted to the electric surface admittance (Yes) and magnetic surface impedance (Zms), which are
familiar concepts from Huygens’ principle. Here, we assume isotropic surface electric admittance and
magnetic impedance.

Yes = jωεαES (1)

Zes = jωµαMS (2)

By the simple conversion, the normalized values of Yesη00 and Zms/η0 are given in terms of T and
R in Equations (3) and (4). It is important to note that these simple equations can be derived when the
propagation directions of the incident and transmitted waves are normal to the boundary [45]. More
general equations with the arbitrary incident and transmitted angles were also derived in [46].

Yesη0 = 2
1− T−R
1 + T + R

(3)

Zms/η0 = 2
1− T + R
1 + T−R

(4)

Here, η0 is the intrinsic impedance of free space. Equations (3) and (4) indicate that a reflectionless
(R = 0) metasurface requires the same values of Yesη0 and Zms/η0. To maintain almost perfect
transmission (T = 1) with wide transmission phase variation, only the imaginary part of Yes and
Zms should be utilized. Figure 1 shows that the simultaneous change of Im{Yesη0} and Im{Zms/η0}
from −15 to 15 covers transmission phases from −165◦ to 165◦. Here, Yesη0 and Zms/η0 are purely
imaginary numbers.
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Figure 1. Transmission phases versus the imaginary part of the normalized surface electric admittance
Im{Yesη0} and the normalized surface magnetic impedance Im{Zms/η0}.

2.2. Unit Cell Topology Design and Analysis

We designed unit cells to provide desired normalized Yes and Zms values to cover a wide range
of transmission phases (−150◦ ~ 150◦) with low transmission loss (<1 dB) at 10 GHz. Instead of
using one topology for all the phases, we designed three optimum unit cell topologies for specific
transmission phase ranges. First, we designed a unit cell with a high positive Yes and Zms to realize
the −150◦ transmission phase with low transmission loss. Generally, electric dipole resonance can be
implemented easily with capacitor-like structures and is stronger than magnetic resonance. To increase
magnetic resonance strength, which should match the electric resonance strength, we implemented
two magnetic dipoles on the sides and one electric dipole at the center using vias, as shown in Figure 2.
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Figure 2. Electric and magnetic dipole in topology 1 from the (a) side–side view and (b) top view.

Here, the alignment of both dipoles was based on a y-polarized TEM wave propagating along
the z-axis. The unit cells were simulated using Ansys high frequency structure simulator (HFSS) and
the excitation and boundary conditions were used with wave ports and perfect electric conductor
(PEC)/perfect magnetic conductor (PMC) boundaries, respectively. In the design, we used a 1.6 mm-thick
double-layer FR4 substrate with a relative permittivity (εr) of 4.3 and loss tangent (tan δ) of 0.008.
The unit cell area was fixed to a length (l) of 6 mm and width (w) of 3.9 mm. We used the
rectangular-shaped unit cell to support long asymmetric current flow and a close space between the
two magnetic dipoles to achieve a high Zms value and a low discretization error along the x-axis.
Geometrical parameters of the unit cell included ml (the length for the magnetic dipole), g (the gap
between the capacitively coupled electric dipoles), and ew (the width of the capacitor of the electric
dipoles). Last, el indicates the electric dipole length, which is dependent on g. Therefore, we varied ml
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for the desired Yes values and g and ew for the Yes tuning. One benefit of this unit cell topology is that
electric and magnetic resonance can be controlled independently because both electric and magnetic
structures are implemented perpendicularly by the intuition of Huygens’ surface electric and magnetic
currents. Finally, a unit cell with ml = 3.64 mm, g = 3.68 mm, and ew = 1.7 mm achieved high Yes

and Zms values of 7.55 and 5.87, respectively, with an S21 of −0.96 dB and −150◦ transmission phase.
To balance Yes and Zms, Yes resonance where the peak of Yes occurs has to be located near 12.4 GHz,
which was implemented with lower capacitance by using a wide gap distance (g = 3.68 mm) between
the two electric dipoles, as shown in Figure 3b. However, the Zms resonance should be near 10 GHz
to achieve a sufficiently high Zms value to match the Yes value at 10 GHz. Figure 3c shows a high
magnetic field excited along the x-axis due to current flows on the magnetic dipoles.
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along the x-y plane in the middle of the unit cell at 10 GHz.

Next, we reduced the Yes and Zms resonance frequencies to achieve balanced negative values
for both Yes and Zms at 10 GHz for the +150◦ transmission phase, as shown in Figure 4a. Based on
the unit cell with a transmission phase of –150◦, the gap (g) of the electric dipole was lowered up to
1.30 mm and the magnetic dipole length (ml) was decreased to 3.61 mm. This structure moved the Yes

and Zms resonance frequencies to 8.2 and 9.8 GHz, respectively, and achieved balanced Yes (−7.19)
and Zms (−7.15) at 10 GHz, providing −1.1 dB S21 with +150◦ phase. Figure 4b,c shows the unit cell
structure for the +150◦ phase and Ey and Hx on the x–y plane in the middle of the structure. Ey was
confined near the gap of the electric dipole’s capacitor structure, which was responsible for the lower
resonance frequency of Yes compared to the unit cell for the −150◦ phase. Figure 4c shows that the
strong x components of the magnetic field were distributed in the middle of the magnetic dipoles,
lowering the resonance frequency of Zms and yielding a negative Zms value at 10 GHz.
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x-y plane in the middle of the unit cell at 10 GHz.

We realized the unit cells for the other positive phases from +120◦ to 0◦ by lowering negative Yes

and Zms values at 10 GHz. To do that, we lowered the resonance frequency of Yes and Zms by reducing
the gap of the electric dipole (g) and tuning the electric dipole width (ew), and increasing the length
of the magnetic dipole (ml), respectively. Figure 5a shows the normalized Yes and Zms values from
the unit cell for +120◦ with g = 0.37 mm, ew = 1.0 mm, and ml = 3.70 mm. The balanced Yes and Zms

values of −3.5 and −3.3 at 10 GHz are shown; this condition provided a low S21 of −1.1 dB. As shown
in Figure 5b,c, Ey and Hx from the unit cell with +120◦ had a similar confined Ey field near a smaller
gap of the electric dipole and stronger magnetic field due to a longer ml compared to the unit cell for
the +150◦ phase. This phenomenon corresponded to lower Yes and Zms resonance frequencies in the
+120◦ phase structure. We decreased the Yes and Zms resonance frequencies by using a more confined
Ey and higher Hx, and finally covered phases from +90◦ to 0◦. Detailed geometries and Yes and Zms

values are shown in Table 1.
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Table 1. Geometric parameters, simulated electric surface admittance (Yes), magnetic surface impedance
(Zms), transmission phases, and transmission loss of the 11 metasurface unit cells with topologies 1, 2,
or 3.

Cell Topology g
(mm)

g1
(mm)

g2
(mm)

ml
(mm)

ew
(mm)

Im
(Yes)

Im
(Zms)

Trans.
Phase (◦)

Trans.
Loss (dB)

1 1 0.20 4.60 1.7 0 0 0 −0.4
2 1 0.20 4.15 1.7 −1.1 −0.2 30 −1.1
3 1 0.20 3.72 2.1 −1.5 −0.9 60 −1.0
4 1 0.20 3.76 1.0 −2.4 −1.7 90 −1.0
5 1 0.37 3.70 1.0 −3.5 −3.3 120 −1.1
6 1 1.30 3.61 1.7 −7.19 −7.15 150 −1.1
7 1 3.68 3.64 1.7 7.55 5.87 −150 −0.96
8 1 4.60 3.61 1.7 3.9 2.8 −120 −0.72
9 2 3.47 2.0 2.8 1.4 −90 −0.72
10 3 0.5 0.8 3.6 1.4 0.88 −60 −0.59
11 3 1 0.6 2.8 0.7 0.4 −30 −0.34

For negative transmission phases, we used the unit cell for−150◦ and achieved−120◦ by increasing
the Yes and Zms resonance frequencies. For lower effective capacitance and inductance of the unit cell,
the gap (g) between the electric dipole was increased from 3.68 to 4.60 mm and the magnetic dipole
length (ml) was shortened from 3.64 to 3.61 mm. Finally, lower positive Yes (3.9) and Zms (2.8) values at
10 GHz were achieved with a low S21 of −0.72 dB. Figure 6a shows the Yes and Zms values according to
frequency for the unit cells for the −150◦ and −120◦ phases. Lower Yes and Zms values were observed
for the −120◦ case at 10 GHz due to the higher Yes resonance frequency near 14.8 GHz. The lower Zms

value in the −120◦ case was due to a resonance frequency shift to a higher frequency near 10.2 GHz.
Figure 6b shows that Ey for the unit cell with the −120◦ phase was distributed over a larger area than
observed for the −150◦ case (Figure 3a). Figure 6c for Hx also shows lower magnetic fields between
two magnetic dipoles. Both trends correspond to higher resonance frequencies for both Yes and Zms

and lower values at 10 GHz for the −120◦ case.
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For the −90◦ transmission phase, lower positive Yes and Zms are needed; however, the gap of
the electric dipole (g) cannot be further increased due to fabrication limits. Therefore, we used one
electric dipole structure to provide a lower Yes at 10 GHz and two magnetic dipoles were maintained,
as shown in Figure 7a. The geometrical parameters are shown in Figure 7b; an ew of 2 mm and ml of
3.47 mm provided a normalized Yes of 2.8 and Zms of 1.4, resulting in the achievement of a −90◦ phase
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with a low S21 of −0.72 dB. Figure 7c shows that Yes and Zms values became lower at 10 GHz due to
Zms and Yes resonance frequencies higher than 10 GHz. Figure 7d,e shows that Ey was distributed
over a larger area and Hx was weaker in the −90◦ case than the −120◦ case.
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To further reduce Yes and Zms to cover the −60◦ and −30◦ transmission phases, we used one
magnetic dipole in the center of the unit cell and located the electric dipoles around the boundary of
the unit cell on the top and bottom layers, as shown in Figure 8a. Figure 8b shows the geometrical
parameters of topology 3. The length of g3 was fixed at 0.5 mm and horizontal gaps (g1 and g2) between
the magnetic and the electric dipole structures, and magnetic dipole length (ml) were mainly tuned to
control the near-zero Yes and Zms accurately such that Yes and Zms became 0.7 and 0.4 for the −30◦

case. Here, ml and g2 determine the vertical length of the electric dipole. Finally, we achieved almost
zero transmission loss for the −30◦ and −60◦ cases (−0.34 and −0.59 dB, respectively). This topology
achieved near-zero Yes values at 10 GHz because maximum Yes resonance frequencies were located
under 8 GHz and the zero-crossing Yes frequency was near 10 GHz, as shown in Figure 9a,b. Similar
to the other negative phase cases, Zms resonance frequencies were higher than 10 GHz, resulting in
near-zero Zms values at 10 GHz. Figure 9c,d shows that Ey was distributed along the entire area of
the unit cells for transmission phases of −60◦ and −30◦, in contrast to the other negative phase cases.
We attributed the wide distribution of Ey to the near-zero Yes at 10 GHz for both cases. Compared to
the −60◦ case, the −30◦ case showed a more distributed Ey; therefore a slightly higher Yes value was
achieved in the −60◦ case. Figure 9e,f shows that the −60◦ case had higher magnetic fields along the
x-axis, resulting in a higher Zms value at 10 GHz.
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maximum transmission loss of −2.5 dB, while that of the proposed unit cells was −1.1 dB. These 
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Figure 10 provides a top view of all the unit cells with topologies 1, 2, or 3. Yes and Zms values of
the corresponding unit cells and their transmission parameters are presented in Table 1. The highest and
lowest transmission loss levels were −1.1 and −0.34 dB, respectively, and the average loss was −0.82 dB,
which was lower than the average S21 of −1.04 dB reported for a similar double-layer PCB-based unit
cell operating at 10 GHz [32]. Moreover, previously reported structures had a maximum transmission
loss of −2.5 dB, while that of the proposed unit cells was −1.1 dB. These findings demonstrate that unit
cell topologies optimized for specific transmission phases significantly reduce transmission loss of the
overall unit cells.
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2.3. Focusing Lens Design

Based on the high transmission efficiency of the 11 unit cells covering the −150◦ to 150◦ phases,
we designed two focusing lens structures to collimate incident spherical waves radiated from short
distances. Because the designed unit cells had subwavelength dimensions of w = 3.9 mm (λ/7.7) and
l = 6 mm (λ/5), we were able to design a compact-sized (5λ × 5λ) array with short focal points (f) of 100
and 60 mm. Both 100 and 60 mm focal points means low f/D numbers of 0.65 and 0.39, respectively, that
would be needed for a compact focusing lens-integrated system. The required transmission phases
(φi) to collimate the spherical waves from both focal points were determined from Equation (5), as
shown in Figure 11a,b, and the corresponding unit cells were arranged accordingly. The target phases,
drawn in Figure 11a,b, were discretized using 30◦ steps.

φi = k0(Ri − f) +φ0 (5)

In Equation (5), Ri is the distance between the center of the unit cell element and the focal point
and f is the focal distance. We used the wavenumber (k0) from the 10 GHz frequency and set φ0 to
−150◦ as the default phase at the center of the array where Ri and f are equal. One thing to note is that
due to the unit cells’ compact size, steeper phase changes required for short focal distances could be
realized with a low discretization error. Finally, we arranged different numbers of rectangular-shaped
(3.9 × 6 mm) unit cells along the x-axis (39 cells) and y-axis (26 cells) to realize a near 5λ × 5λ-sized
(152.1 × 156 mm) focusing lens. Figure 11c,d shows the implemented phase distribution of both
focusing lenses. Because the calculated phases near the center of the focusing lenses were located in
the middle of the 30◦ phase gap of the unit cells, a slight phase difference between Figure 11a,b and
Figure 11c,d near the center area was allowed in the design process.
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the first quadrant was used with symmetric boundaries in the simulation tool (see Figure 12). A 
spherical wave as the incident wave was implemented by a half-wave dipole antenna operating at 10 
GHz at a focal distance from the focusing lens. The focusing gain, defined as the gain from the 
focusing lens–combined dipole antenna minus the gain of the dipole antenna at the boresight [47–49] 
was calculated as 13.47 and 14.09 dB at 10 GHz for f = 100 and 60 mm, respectively. Gain patterns 
from the simulations were compared with those obtained experimentally (see below). 

 
Figure 12. Simulation setup for the focusing lens with a half-wave dipole antenna as a feeding source 
in symmetry boundaries. 

3. Fabrication and Measurement 

For experimental verification, both focusing lenses with the same PCB size (156 × 160 mm) for f 
= 100 and 60 mm were fabricated, as shown in Figure 13a,b. Extra spaces on the boundary were added 
for stable patterns and via fabrication based on the designed size of 152.1 × 156 mm. Figure 13c shows 
the measurement setup; a focusing lens was fed by a half-wave dipole operating at 10 GHz at a 
specified focal distance and the focused beam from the array was captured by a standard horn 
antenna. The transmission coefficient (S21) between the two antennas was measured using a vector 
network analyzer (Anritsu MS46122B, Anritsu Company, Morgan Hill, USA), and S21 values with 
and without the focusing lens were used to assess the focusing gain of the lens. For gain pattern 
measurements, the dipole antenna and the focusing lens were rotated horizontally in the same 
platform with a 1° step size and the measured pattern was compared with the simulation result. 

Figure 11. Required phase distributions calculated from Equation (5) of the focusing lens with
(a) 100 mm and (b) 60 mm focal distances. Implemented phase distributions of the focusing lens with
(c) 100 mm and (d) 60 mm focal distances.

In simulations, both focusing lenses with 3D unit cell structures were implemented in HFSS
and the focusing gain was calculated. For the simulation load reduction, a quarter of the focusing
lens in the first quadrant was used with symmetric boundaries in the simulation tool (see Figure 12).
A spherical wave as the incident wave was implemented by a half-wave dipole antenna operating
at 10 GHz at a focal distance from the focusing lens. The focusing gain, defined as the gain from the
focusing lens–combined dipole antenna minus the gain of the dipole antenna at the boresight [47–49]
was calculated as 13.47 and 14.09 dB at 10 GHz for f = 100 and 60 mm, respectively. Gain patterns from
the simulations were compared with those obtained experimentally (see below).
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Figure 12. Simulation setup for the focusing lens with a half-wave dipole antenna as a feeding source
in symmetry boundaries.

3. Fabrication and Measurement

For experimental verification, both focusing lenses with the same PCB size (156 × 160 mm) for
f = 100 and 60 mm were fabricated, as shown in Figure 13a,b. Extra spaces on the boundary were
added for stable patterns and via fabrication based on the designed size of 152.1 × 156 mm. Figure 13c
shows the measurement setup; a focusing lens was fed by a half-wave dipole operating at 10 GHz at
a specified focal distance and the focused beam from the array was captured by a standard horn antenna.
The transmission coefficient (S21) between the two antennas was measured using a vector network
analyzer (Anritsu MS46122B, Anritsu Company, Morgan Hill, USA), and S21 values with and without
the focusing lens were used to assess the focusing gain of the lens. For gain pattern measurements,
the dipole antenna and the focusing lens were rotated horizontally in the same platform with a 1◦ step
size and the measured pattern was compared with the simulation result. Distances between the dipole
antenna and the focusing lens were maintained at the designed focal distances (100 and 60 mm).
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Figure 13. Top view of the fabricated focusing lenses with (a) 100 mm focal distance and (b) 60 mm 
focal distance. (c) Setup for measuring the focusing gain of the focusing lens using a half-wave dipole 
antenna as the feeding source and a standard horn antenna. Both antennas were connected to a vector 
network analyzer. 

Figure 14a,b demonstrates that the measured focusing gain at the boresight and sidelobe levels 
of both focusing lens correlated well with the simulation results at 10 GHz. The main beams at the 
boresight provided a focusing gain of 12.87 dB for f = 100 mm and 13.58 dB for f = 60 mm, which are 
approximately 0.5 ~ 0.7 dB lower than the simulated results of 13.47 and 14.09 dB, respectively. We 
attributed this difference to fabrication uncertainty, e.g., substrate property deviation in the focusing 
lens and the nonideal spherical wave radiation from the half-wave dipole antenna. However, a near 
13 dB focusing gain level from a lossy FR4-based compact focusing lens (5.1λ × 5.2λ) with a low f/D 
value of 0.39 is noteworthy. In Figure 14a, the discrepancy between both data in terms of the dip of 
the main lobe is noticeable and the reason should be slightly perturbed current distributions on the 
fabricated lens due to the aforementioned manufacture-related factors. Focusing gain at the boresight 
according to frequency was also measured and compared with the simulation results, as shown in 
Figure 14c,d. The measured data showed a slightly broader bandwidth compared to the simulated 
one with a wide 1-dB gain fractional bandwidth of near 10%. 

Figure 13. Top view of the fabricated focusing lenses with (a) 100 mm focal distance and (b) 60 mm
focal distance. (c) Setup for measuring the focusing gain of the focusing lens using a half-wave dipole
antenna as the feeding source and a standard horn antenna. Both antennas were connected to a vector
network analyzer.

Figure 14a,b demonstrates that the measured focusing gain at the boresight and sidelobe levels
of both focusing lens correlated well with the simulation results at 10 GHz. The main beams at the
boresight provided a focusing gain of 12.87 dB for f = 100 mm and 13.58 dB for f = 60 mm, which
are approximately 0.5 ~ 0.7 dB lower than the simulated results of 13.47 and 14.09 dB, respectively.
We attributed this difference to fabrication uncertainty, e.g., substrate property deviation in the focusing
lens and the nonideal spherical wave radiation from the half-wave dipole antenna. However, a near
13 dB focusing gain level from a lossy FR4-based compact focusing lens (5.1λ × 5.2λ) with a low f/D
value of 0.39 is noteworthy. In Figure 14a, the discrepancy between both data in terms of the dip of
the main lobe is noticeable and the reason should be slightly perturbed current distributions on the
fabricated lens due to the aforementioned manufacture-related factors. Focusing gain at the boresight
according to frequency was also measured and compared with the simulation results, as shown in
Figure 14c,d. The measured data showed a slightly broader bandwidth compared to the simulated one
with a wide 1-dB gain fractional bandwidth of near 10%.
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We designed high transmission efficiency metasurface unit cells operating at 10 GHz in a 
double-layer FR4 with a thickness of 1.6 mm (λ/18.8) for wide transmission phase coverage. The unit 
cells’ physical structures were devised to implement perpendicularly directed surface electric and 
magnetic currents using the top and bottom metallic patterns and via drills. The proposed unit cells 
had three different topologies to control surface electric admittance (Yes) and surface magnetic 
impedance (Zms) independently, providing compact (3.9 × 6.0 mm) 11 unit cells with an averaged 
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4. Discussion and Conclusions

We designed high transmission efficiency metasurface unit cells operating at 10 GHz in
a double-layer FR4 with a thickness of 1.6 mm (λ/18.8) for wide transmission phase coverage.
The unit cells’ physical structures were devised to implement perpendicularly directed surface electric
and magnetic currents using the top and bottom metallic patterns and via drills. The proposed unit
cells had three different topologies to control surface electric admittance (Yes) and surface magnetic
impedance (Zms) independently, providing compact (3.9 × 6.0 mm) 11 unit cells with an averaged
−0.82 dB transmission loss and −150◦ ~ 150◦ transmission phases. Performance comparison with the
referenced designs is shown in Table 2 and it is important to note that the designed unit cells achieved
the lowest transmission loss even in a lossy FR4 (tan δ = 0.008) substrate compared to the recently
reported double-layer unit cells from Table 2.
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Table 2. Performance comparison of the proposed focusing lenses with the referenced designs.

Ref. Layer
#

Freq.
(GHz)

Loss
Tangent

Max. Loss
of Unit

Cell (dB)

Lens Size
(mm ×mm)

Thickness
(mm)

Bandwidth
(3 dB/1 dB) f/D

Focusing
Gain
(dB)

[35] 2 20 0.0014 −1.75 338 × 338
(22.5λ × 22.5λ)

1.575
(λ/9.5) -/5.9 1.24 14.9 1

[37] 2 28 0.0027 −1.63 165 × 165
(15.4λ × 15.4λ)

1.524
(λ/7.0) 13.3/- 0.95 16.4

[33] 2 26.2 0.001 −1.56 171.6 × 171.6
(15λ × 15λ)

1.5
(λ/7.6) 15.7/- 0.99 15.7 1

[32] 2 13 0.0037 −2.5 328 × 328
(14.2λ × 14.2λ)

0.762
(λ/30) 3/- 0.8 11.5

[34] 2 10 0.005 −3 360 × 500
(12λ × 16.6λ)

2
(λ/15) 6/- 0.3 7.65

[50] 3 10.2 0.004 −2.75 376.5 × 376.5
(12.8λ × 12.8λ)

1.1
(λ/26.7) 9.8/- 0.8 14.4

[36] 2 6 - −1.4 210 × 210
(4.2λ × 4.2λ)

2
(λ/25) 15/- 0.8 9

[31] 2 10 0.001 −1.4 104 × 104
(3.46λ × 3.46λ)

3
(λ/10) -/- 0.29 8.2

This
Work 2 10 0.008 −1.1 156 × 160

(5.1λ × 5.2λ)
1.6

(λ/18.8) 20/10 0.65/
0.39

12.87/
13.58

1 Focusing gain was calculated using the simulated gain from the feeding antenna.

To assess the efficiency of the proposed unit cells experimentally, we designed two focusing lenses
with a size of 156 × 160 mm (5.1λ × 5.2λ) to focus a radiated spherical beam in short focal distances
(f = 100 and 60 mm). We expected the compact unit cell to maintain a low discretization error with
low f/D numbers (f/D = 0.65 and 0.39), which required steep phase variation in the focusing lens
design. The fabricated focusing lenses boosted the half-wave dipole’s gain more than 13 dB despite the
short focal distances and achieved a wide 1-dB gain bandwidth of near 10%. Moreover, the focusing
gain was increased by 0.7 dB with a focal distance change from 100 to 60 mm, demonstrating the low
discretization error of the designed unit cells. From Table 2, the focusing gain levels of this work were
lower within 3 dB compared to at least four times larger lenses in terms of center wavelength (λ),
proving the higher focusing efficiency. Two slightly smaller lenses also showed 4 ~ 5 dB lower focusing
gain values, and specifically, in [31], a compact (3.5λ × 3.5λ) and double-layer focusing lens with a low
f/D of 0.29 showed focusing gain of 8.2 dB at 10 GHz. For a fair comparison, the aperture efficiencies
using the measured focusing gain were calculated and a higher value of 6.88% from this work compared
to 4.37% from [31] was shown. The higher efficiency from the designed lenses corresponds to the
lower transmission loss from the proposed unit cells and manifests that higher spillover loss due to the
broad radiation from the dipole antenna compared to the high gain patch antenna from [31] was also
recovered. Moreover, the lens from [31] utilized narrow lateral dimensions for the phase coverage;
it is thus subject to the narrow bandwidth (it was not reported). Finally, we expect that the high gain
focusing lens with a low f/D based on the FR4-based high-efficiency double-layer unit cells can be
utilized for low-profile beam-forming antenna systems in 5G and millimeter-wave communications.
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