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Abstract
Background: Parasites causing severe malaria in non-immune patients express a restricted subset of
variant surface antigens (VSA), which are better recognized by immune sera than VSA expressed during
non-severe disease in semi-immune individuals. The most prominent VSA are the var gene-encoded
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface
of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be
caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration in
immunologically naïve individuals and high effective multiplication rates.

Methods: var gene transcription was analysed using real time PCR and PfEMP1 expression by western
blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers
shortly after infection with NF54 sporozoites.

Results: In cultures representing the first generation of parasites after hepatic release, all var genes were
transcribed, but GroupA var genes were transcribed at the lowest levels. In cultures established from
second or third generation blood stage parasites of volunteers with high in vivo parasite multiplication
rates, the var gene transcription pattern differed markedly from the transcription pattern of the cultures
representing first generation parasites. This indicated that parasites expressing specific var genes, mainly
belonging to group A and B, had expanded more effectively in vivo compared to parasites expressing other
var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis.
In addition, serological typing showed that immune sera more often recognized second and third
generation parasites than first generation parasites.

Conclusion: In conclusion, the results presented here support the hypothesis that parasites causing
severe malaria express a subset of PfEMP1, which bestows high parasite growth rates in individuals with
limited pre-existing immunity.
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Background
Plasmodium falciparum-encoded variant surface antigens
(VSA) are expressed on the surface of infected erythrocytes
(IE) and mediate binding to a range of endothelial cell
receptors [1]. Endothelial adhesion contributes to the par-
ticular virulence of the P. falciparum and most likely has
evolved as a mechanism to avoid parasite clearance in the
spleen [2-4]. Individuals living in areas of intense parasite
transmission develop immunity towards severe malaria
early in life [5]. Parasites causing severe malaria in young
children with limited pre-existing immunity tend to
express a limited, relatively conserved subset of VSA
(VSASM) that is more often and better recognized by anti-
bodies from most parasite-exposed individuals than the
larger and more diverse VSAUM subset expressed by para-
sites causing uncomplicated malaria [6-8]. It thus appears
that expression of VSASM confers a selective advantage in
non-immune individuals, perhaps by allowing particu-
larly efficacious endothelial sequestration and conse-
quently high effective growth rates. The best characterized
VSA are the var gene-encoded P. falciparum erythrocyte
membrane protein 1 (PfEMP1) family [9-11]. Each hap-
loid parasite genome contains 50–60 var genes, of which
the 59 var genes annotated in the fully sequenced P. falci-
parum clone 3D7 can be divided into three major groups,
A, B and C, based on sequence analysis [12,13]. The func-
tional relevance of this grouping is supported by the par-
allel differences in CD36-binding characteristics of
PfEMP1 CIDR1α domains. Thus, GroupA CIDR1α
domains do not bind CD36, whereas CIDR1α domains
encoded by GroupB and GroupC var genes do [14]. The
3D7 PfEMP1 repertoire may well represent the VSAUM -
VSASM spectrum observed in field isolates, and recent find-
ings point to GroupA as encoding VSASM-type PfEMP1
molecules in patient isolates [13,15-17]. Unfortunately,
little is known about var gene expression in vivo, and stud-
ies have been frustrated by the difficulties in detecting and
quantifying expression in parasites with unknown var
gene repertoires. This difficulty has been overcome by tak-
ing advantage of the knowledge of the var gene repertoire
in 3D7 and analyzing var gene expression in NF54 para-
sites (the parental line of 3D7) isolated from non-
immune individuals experimentally infected by mosquito
challenge. Immediately upon release from the liver, the
parasites appeared to transcribe all var genes, with
GroupA genes being the least transcribed. However,
within one or two parasite generations this pattern
changed, in particular in those parasites exhibiting the
fastest in vivo growth rates. Here, only a few genes domi-
nated the var transcript population. The data indicate that
PfEMP1-determined differences in growth rates shape the
expressed PfEMP1 repertoire, and that some PfEMP1 var-
iants confer high effective parasite multiplication rates in
non-immune individuals.

Materials and methods
Malaria parasites
Parasites were isolated from Dutch volunteers exposed to
mosquitoes infected with P. falciparum isolate NF54[18]
as part of ongoing studies of experimental P. falciparum
infections. On day 0, ten non-immune volunteers were
subjected to two or five infectious bites. Chloroquine
treatment was initiated on the first day a thick smear was
positive. Parasite cultures were established from 400
microlitres of packed blood cells drawn on days 8, 9, and
10 and parasites were cultured in vitro for 27 or 33 days
(Figure 1) to obtain sufficient parasite material for DNA,
RNA and protein analysis. The parasites were cultured in
0 Rh+ erythrocytes as described [19], with the addition of
2% non-immune human serum to the culture media.
Long-term in vitro 3D7 cultures expressing VSAUM-type
antigens or selected in vitro to express VSASM-type antigens
were used as controls[20].

DNA, RNA, cDNA and quantitative real-time PCR
The development of parasitaemia was monitored by
quantitative real-time PCR as described [21]. DNA, RNA
and cDNA for var gene transcription analysis were pre-
pared from synchronized parasite cultures as described
[17]. Quantitative real-time PCR was performed using a
Rotorgene thermal cycler system (Corbett Research, Mot-
lake, Australia). Real-time PCR-optimized and gene-spe-
cific primers for each of all full-length var genes and a
pseudogene in the 3D7 isogenic NF54 P. falciparum
genome were those described in [22], except for PFI1830c.
Real time primers for this gene were forward
5'ACAACAATTTCGCAAGCAAG 3', reverse 5'TTCCTCT-
GCCTCCTCTTCAT 3'. Standard curves for the estimation
of product-related fluorescent bias and amplification effi-
ciencies were generated for all primer pairs. For 15 primer
sets, standard curves were generated both from dilution
series of genomic DNA and from cloned gene fragments
[17]. As the two approaches led to identical standard
curves (not shown), standard curves for the remaining
genes were determined from genomic DNA only. The
standard curves were linear across a range of seven logs of
DNA concentrations (R = 0.9779 to 0.9995) with amplifi-
cation efficiencies between 90 and 101%. Standard curves
were used for primer bias corrections in calculations of
absolute transcript levels. The detection limit of the sys-
tem was ≥ 20 copies. The housekeeping genes seryl-tRNA
synthetase and fructose-bisphosphate aldolase have uniform
transcription profiles throughout the parasite life
cycle[22], and were used as endogenous controls. Differ-
ences in var transcript distribution between samples were
calculated by the ∆∆ CT method using the endogenous
controls for normalization.
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Immunoblot analysis and flow cytometry
Immunoblot analysis was performed as previously
described [17]. Flow cytometryand plasma from malaria-

exposed children and adults were used to classify the VSA
expressed by parasites isolated on days 8, 9 and 10 as pre-
viously described[7,20,23]

A: Parasite densities in the six volunteers from whom parasite isolates were establishedFigure 1
A: Parasite densities in the six volunteers from whom parasite isolates were established. Note that parasitaemia scales are dif-
ferent. Closed circles indicate time points where parasite density was determined by PCR. Time points where blood samples 
were cultured successfully are underlined. A cross indicates time of chloroquine treatment. B: Representation of parasite gen-
eration and stage composition of a P. falciparum infection after liver release. Parasites were first detected on day 6,33. Estimates 
of parasite release from the liver (~24 hours, over all volunteers), duration of circulating stages (1,18 days) and adhesive stages 
(0,64 days) were taken from reference 24. Time of blood sampling is framed. When sampling blood the early circulating stages 
are isolated, i.e. blood drawn on day 8 predominantly contains first-generation parasites after liver release.
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Results
Experimental infections and establishment of parasite 
culture lines
Successful infections were established in eight of the 10
volunteers. Despite low parasitaemias, a total of 13 para-
site culture lines from blood collected from six of the vol-
unteers at three time points after infection were
established (Figure 1A). The highest parasite growth rates
were observed in volunteers 1 and 2 with peak parasitae-
mias of 13,832 parasites/ml and 4,637 parasites/ml,
respectively, whereas peak parasitaemias in all other vol-
unteers were below 1,400 parasites/ml. As recognized
from previous similar human vaccination trials [21], par-
asitaemias fluctuated in a distinct manner, probably
reflecting liver release, sequestration of trophozoite/sch-
izonts and release of new generations of merozoites from
schizonts. Parasites obtained on day 8 were predomi-
nantly first-generation blood parasites, assuming that par-
asites were released from the liver between days 6,33 and
7,33[24] (Figure 1B). Similarly, day9 parasites were
assumed to represent second-generation parasites, and
day10 parasites a mixture of second and third generation
parasites.

Uniform transcription of var genes in first-generation 
asexual parasites
The pattern of var gene transcription was surprisingly con-
sistent in all the six parasite lines obtained on day8 from
six of the volunteers (Figure 2). Transcripts of all var genes
could be detected in ring-stage cultures, and most were
transcribed at roughly similar levels. Interestingly, nine of
the 10 lowest transcribed genes belonged to var subgroup
A or B/A, which have previously been associated with
severe malaria [13]. In agreement with previous studies
[17] all var genes were transcribed at markedly lower lev-
els in thetrophozoite/schizont-stage compared to ring-
stage parasites (data not shown). The pseudo-gene
PFE1640w (var1) behaved differently and was expressed at
similar levels by late stage parasites, comprising approxi-
mately 20% of the total number of var gene transcripts in
trophozoite-stage parasites (data not shown).

Marked changes in the var gene transcription patterns 
from the first to the second and third generations of 
asexual parasites
The var gene transcription patterns of the five isolates
obtained on day9 and the two obtained at day10 were dif-
ferent from those of the day8 isolates, in particular in the
isolates obtained from volunteers 1 and 2 in whom high
parasite growth was observed (Figure 1 and 3). Ring-stage
parasites from volunteer 1 showed remarkably large tran-
scriptional changes for five var genes. Four (PF11_0008,
PFD1235w, MAL6P1.1, MAL7P1.55) were transcribed at
much higher (>20-fold) and one gene (PFA0015c) at
markedly lower levels (12-fold) in the day10 isolate

Var gene transcription profile of NF54 ring-stage parasite cul-tures established on day 8 from six volunteersFigure 2
Var gene transcription profile of NF54 ring-stage parasite cul-
tures established on day 8 from six volunteers. The mean 
transcription levels ± 1 SD of primer bias-corrected and nor-
malized values of the six cultures are shown relative to the 
overall mean var transcription level. Var gene name and group 
are indicated.

1/16 1/8 1/4 81 4 16
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compared to the day8 isolate. The estimation of absolute
copy numbers (not shown) revealed that PF11_0008,
MAL6P1.1 and MAL7P1.55 were the three highest tran-
scribed var genes in the day10 isolate, comprising approx-
imately 22%, 40% and 8% of all var transcripts,
respectively. The abovementioned five genes also showed
the most pronounced changes in gene transcription (10–
20 fold) when trophozoite stage parasites from days 8 and
10 were compared. The most prominent change among
ring-stage parasites from volunteer 2 was the 15-fold
increased transcription of PFD0020c, which was the high-
est (~8%) transcribed var gene in the day 9 isolate (Figure
3). Only minor changes in var gene transcription patterns
between days 8 and 9/10 were observed in the parasites
isolated from volunteer 4, 6 and 10.

Overall, none of the var genes had a consistently altered
transcript proportion in all volunteers. However, tran-
scription of seven genes (PFD0005w, PFD0020c,
PFD1235w, MAL6P1.1, PF10_0406, PF11_0007 and

PFL0005w) increased in more than one volunteer,
whereas transcription of three genes (PFA0015c,
MAL6P1.4 and PFE1640w) decreased in more than one
volunteer (Figure 3). In general, analysis of ring-stage and
trophozoite/schizont-stage parasites yielded similar
results.

Expected changes in PfEMP1 expression between first, 
second and third generation asexual parasites were 
confirmed by western blot analysis
To investigate PfEMP1 translation in the 13 isolates, west-
ern blot analysis were performed on protein extractions of
trophozoite/schizont-stage cultures using rabbit and
murine antisera raised against the conserved acidic termi-
nal segment (ATS) and against DBL5δ of PFD1235w,
respectively (Figure 4). The analysis of parasites from vol-
unteer 1 revealed differential expression from day8 to
day10 (Figure 4A). Thus, a high molecular weight band of
around 400 kDa was seen only in the day 10 culture when
using the ATS-specific antibody (Figure 4A). This band

Fold difference in var gene transcription between NF54 ring-stage parasites isolated from the same volunteer on different daysFigure 3
Fold difference in var gene transcription between NF54 ring-stage parasites isolated from the same volunteer on different days. 
Genes are sorted by gene groups as defined in [13]. Note that the fold-change scale for volunteer 1 is different from the other 
panels. Vertical dashed lines mark an arbitrarily defined two-fold cut off value for biologically significant changes in var gene 
transcription. Experiments with volunteer 1 were repeated three times and results are shown as means ± SD.
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size corresponds to the expected size of PFD1235w, which
also exhibited a large increase in transcription from day8
to day10 among parasites from this donor, and its identity
was confirmed using the PFD1235w DBL5δ antibody
(Figure 4B). PFD1235w could not be detected in any of
the other cultures, although small increases in transcrip-
tion were found in several of the cultures (not shown).
Two bands of 350 kDa and 260 kDa were particularly
intense in the day10 culture of volunteer 1 (Figure 4A).
This finding correlates with the expected sizes and ele-
vated transcription of PF11_0008 (345 kDa), MAL6P1.1
and MAL7P1.55 (both ~258 kDa). Transient bands at
around 230 kDa and 310 kDa appeared to emerge on day
9 and disappear on day 10 in the cultures of volunteer 1.
No obvious identity could be assigned to these proteins.
In the remaining cultures, differential PfEMP1 expression
detected by the ATS antibody was found in volunteers 6
and 10. In both cases a band of 310 kDa was observed in
day10 and 9 parasites, respectively. The best candidate
gene for this band is PFD0005c, which is predicted to have
the observed size and was found to be more highly tran-
scribed in the these cultures. All day 8 cultures were very
similar and all appeared to dominantly express PfEMP1s
around 260 kDa, which corresponds to the expected sizes

of the highest transcribed genes in these cultures (figure
2).

Second and third generation parasites express VSA that 
are recognized more frequently by immune plasma than 
first generation parasites
The VSA phenotype of parasites can be classified relative
to each other and in the spectrum between VSASM and
VSAUM, depending on the proportion of individuals from
an endemic area that possess antibodies to the expressed
VSA [7,20]. To establish their VSA phenotype, the serolog-
ical recognition of the isolated NF54 parasites was tested
using a panel of plasma obtained from children and
adults living in Coastal Ghana (Figure 5). All day 8 para-
site isolates, representing the first generation of asexual
blood-stage parasites, expressed VSA that were recognized
by IgG in plasma samples from only a minority of the
children and from about half of the adults (Figure 5).
These parasites were also less well recognized than the
standard 3D7 VSAUM line, which dominantly expresses
PfEMP1 encoded by GroupC var genes. The seven lines
isolated on days 9 or 10 all expressed VSA that were more
frequently recognized than the corresponding day8 line
(P = 0.01, Wilcoxon signed-ranked test). This trend was

PfEMP1 expression in trophozoite-stage cultures of unselected 3D7 (3D7UM), 3D7 selected for expression of VSASM-type IE surface antigens (3D7SM) and of NF54 established from six volunteers on different days after infectionFigure 4
PfEMP1 expression in trophozoite-stage cultures of unselected 3D7 (3D7UM), 3D7 selected for expression of VSASM-type IE 
surface antigens (3D7SM) and of NF54 established from six volunteers on different days after infection. A: Western blot using 
antibodies (αATS) targeting the acidic terminal segment (ATS), which is conserved between most PfEMP1 types. Black arrows 
indicate changes in protein expression between isolates of the same volunteer. B: Western blot identifying the αATS-detected 
400 kDa band in the day 10 culture of volunteer 1 as PFD1235w/VAR4 using an αDBL5δ antibody. VAR4 is expressed on the 
surface of the 3D7SM line selected for high immune serum recognition [17].
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particularly clear for the day9/10 lines from volunteers 1,
2 and 10, which were recognized by all of the plasma sam-
ples from adults and from the majority of the children,
similarly to the recognition of 3D7 selected for expression
of VSASM-type IE surface antigens (Figure 5). However,
quantitatively the serum recognition of all isolates was
lower than that of the 3D7SM line (data not shown). The
3D7 VSASM line has been selected for VSASM expression
using IgG from semi-immune children and dominantly
expresses the product of PFD1235w (VAR4) on the surface
on infected erythrocytes. Interestingly, parasites from vol-
unteers 1, 2 and 10 had an increased transcription of a

particular var gene (PFD1235w; var4) (Figure 2) as does
3D7 in response to selection for VSASM expression[17].

Discussion
The inter- and intra-clonal variability of the var genes have
frustrated attempts to investigate the roles of the encoded
PfEMP1 proteins in pathogenesis and protection. The
most common strategy has been to quantify var transcrip-
tion by counting the frequency of unique sequence tags,
amplified by degenerate primers targeting semi-conserved
blocks of DBL domains. This has been used to study phe-
notypically distinct laboratory lines [10,25-29]and para-
site strains isolated from patients with defined clinical
outcomes [16,30-32] The only previous study of var gene
transcription in experimentally infected humans also
applied this strategy [33]. However, it requires the
sequencing of a large number of clones for statistical sig-
nificance and is inherently susceptible to primer bias.
Together, this makes data interpretation difficult. To over-
come these difficulties, sensitive and gene-specific tools
were used to analyse in detail the pattern and dynamics of
var gene expression in non-immune volunteers infected
with a parasite with a known var gene repertoire. The
necessity for in vitro expansion of parasites from blood
samples with submicroscopic parasitaemias makes this
approach susceptible to two separate types of bias. Firstly,
cultures were established from a relatively small number
of parasites and the transcription profiles of these para-
sites may not represent the profile of the entire in vivo pop-
ulation. However, in most cultures the founder
population was between 100 and 4,000 parasites, and
only two cultures, which did not exhibit biased transcrip-
tion patterns (day 8 culture of volunteers 1 and 4) were
established from less than 100 parasites. Secondly, P. fal-
ciparum has been reported to switch var gene expression at
variable rates in vitro [34,35]. Hence, the var gene expres-
sion in the cultures at the time of transcription analysis
may not reflect the expression profile in vivo at the time of
blood collection. The transcription profiles of the cultures
isolated on day 8 were similar and different to the profiles
of the parasites isolated on days 9 and 10. This, and the
fact that the differential var gene transcription, translation
and serological recognition of PfEMP1 correlated with
parasite growth, however, indicates that in vitro switching
did not invalidate the analyses.

No var gene was dominantly transcribed in the day 8 cul-
tures. Instead, a relatively large group of genes belonging
to var groups B and C were expressed at almost similar lev-
els and interestingly, nine of the 10 lowest transcribed
genes belonged to group A or B/A. These data imply that
the PfEMP1 expression pattern at the beginning of the
infection is broad and anticipatory. In addition, the con-
sistent increase in recognition by immune sera with time
of infection and the apparent association between high

Plasma recognition profiles of trophozoite-stage cultures of NF54 established from six volunteers on different days after infectionFigure 5
Plasma recognition profiles of trophozoite-stage cultures of 
NF54 established from six volunteers on different days after 
infection. Profiles of unselected 3D7 (UM) and 3D7 selected 
in vitro for expression of VSASM-type IE surface antigens (SM) 
are shown for comparison. Recognition was measured by 
flow cytometry using IgG from Ghanaian adults and children 
(see Materials and Methods). Filled boxes indicate mean 
FITC-fluorescenceindex (MFI)abovea cut-off defined by the 
mean + 2 standard deviations of 8 Danish control plasma.
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growth rates and differential expression of a few group A
and B genes from first to second and third generation
imply that it is the host environment that modulates the
PfEMP1 expression. This is a plausible scenario because of
the large and immediate differences in survival fitness that
are likely to be imposed on the asexual parasites by the
physiology and pre-existing immunity of the host. While
most – or all – of the PfEMP1 variants that can be
expressed by a given parasite will be exposed to the
immune system according to this model, the majority of
the variants are likely to be present too briefly to induce a
significant immune response. Crucially, survival fitness
differences depend on which PfEMP1 variants are being
expressed and necessitate a parasite response much faster
than which can be achieved by switching to advantageous
var genes. Although differences in switching rates can con-
tribute to the pattern of var gene expression [35] and may
well be responsible for the differences in transcription
observed on day 8 (Figure 2), differences in survival rates
may be far more important in focusing and ordering
PfEMP1 expression in vivo. In non-immune individuals
this process would be expected to focus expression on the
restricted and relatively conserved subset of VSA (VSASM)
associated with severe disease in patients with little pre-
existing immunity [13,17] It has previously been docu-
mented that in vitro selection of 3D7 for acquisition of the
VSASM phenotype is associated with expression of a subset
of var genes [[15]. Strikingly, four of the five marked dif-
ferentially transcribed genes (PF11_0008, PFD1235w,
MAL7P1.55 and PFA0015c) in the volunteer 1 cultures,
were among the few genes differentially transcribed genes
upon selection for the 3D7SM phenotype, in which there
was selection for expression of PF11_0008, PFD1235w
and MAL7P1.55 and against expression of PFA0015.

In the study of Peters et al [33] the clone frequency strat-
egy was used to investigate var transcription profiles of
parasites isolated from two volunteers on day 12 and 13
after infection with 3D7 by eight or nine infectious mos-
quito bites. One transcript, PF11_0007, belonging to var
group B, comprised half of the 39 and 41 sequences
cloned from the two volunteers respectively. In total 10
and nine different var tags were found and only one
belonged to var group A. The parasites were predicted to
be 3rd or 4th generation and the parasitaemias in the two
volunteers were 18,000 and 212,000 parasites/ml. Thus,
these profiles are best compared with that of the day 10
isolate of volunteer 1 presented in this study. Taking into
account the potential ambiguities in the interpretation of
the results presented by Peters et al, we believe that the
two data sets could reflect similar dynamics in the human
host.

Conclusion
In conclusion, the data – in combination with earlier find-
ings – suggest that PfEMP1 expression is determined and
ordered mainly by host physiology and immunity, and
that this will cause infections in non-immune individuals
to be dominated by VSASM-type variants such as those
encoded by Group A and B var genes.

Abbreviations
PfEMP1 Plasmodium falciparum erythrocyte membrane
protein 1
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