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Reduced protein clearance, particularly of the autophagy-lysosome pathway (ALP),

leads to increased release of aggregated α-synuclein in synucleinopathies. A recent paper

(Oh et al., 2022) has suggested a new mechanism that may contribute to these processes.

We discuss here these new findings and their implications for our understanding of the

mechanisms of pathology spread in the brain of patients with synucleinopathies.

With advances in medical care and technology resulting in the extension of lifespan,

comes an increased risk for neurodegenerative diseases because age is a predominant

risk factor for development of many of these disorders. By 2030, 1 in 5 individuals is

predicted to be over the age of 65, increasing the projected incidence and prevalence

of neurodegenerative diseases (Hou et al., 2019). Synucleinopathies, such as Parkinson’s

disease (PD) and Lewy body dementia (LBD), are a group of neurodegenerative diseases

marked by extensive, abnormal accumulation of aggregated intracellular α-synuclein in

neurons. In PD and LBD, α-synuclein aggregates form Lewy bodies and Lewy neurites,

which are pathological hallmark of these diseases. Though α-synuclein is the main

component of Lewy bodies, they also contain other proteins. One of these proteins is

p62, a classical receptor of autophagy and a multifunctional protein located throughout

the cell and involved in many signal transduction pathways (Zatloukal et al., 2002).

Eukaryotic cells rely on two primary mechanisms for degradation and recycling of

proteins: the ubiquitin-proteasome system (UPS) and the ALP (Ciechanover and Kwon,

2015). Though both pathways help maintain proteostasis, only the ALP participates

in the clearance of insoluble protein aggregates. In PD and LBD, failure of the ALP

is a key component of the mechanisms leading to accumulation of Lewy bodies and

neurodegeneration (Kocaturk and Gozuacik, 2018). Under these conditions, distressed

cells attempt to remove the excess α-synuclein using several mechanisms (Hijaz and

Volpicelli-Daley, 2020; Bras andOuteiro, 2021), including secretion into the extracellular

space through exocytosis (Lee, 2005; Emmanouilidou and Vekrellis, 2016), secretion in

extracellular vesicles (EVs), such as exosomes (Emmanouilidou et al., 2010; Alvarez-

Erviti et al., 2011; Danzer et al., 2012), and possibly directly to neighboring cells through
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FIGURE 1

S-nitrosylation of p62 (SNO-p62) attenuates the

autophagy-lysosomal-pathway (ALP), increasing release of

α-synuclein in EVs.

nanotubes (Abounit et al., 2016; Dieriks et al., 2017), all of

which contribute to the spread of pathological α-synuclein in

the brain. Extracellular forms of α-synucleins propagate between

various types of cells, bind to cell surface receptors and transmit

signals, regulating numerous intracellular processes (Surguchev

et al., 2019). The increased transfer of α-synuclein in EVs in

particular may be a double-edged sword: on one hand, ridding

the affected cells of misfolded, dangerous proteins, yet on the

other, increasing the risk of transferring pathologic protein seeds

to neighboring cells, leading to neurodegeneration (Vargas et al.,

2019).

It is hypothesized that various mechanisms may trigger

and/or contribute to ALP dysfunction, including an increase in

reactive oxygen and nitrogen species (ROS/RNS) (Sarkar et al.,

2011) and reduction of glucocerebrosidase enzymatic function

(Mazzulli et al., 2011), leading to α-synuclein accumulation and

secretion. However, the precise molecular mechanisms linking

oxidative stress due to increased levels of ROS/RNS to ALP

dysfunction and α-synuclein accumulation and secretion have

yet to be elucidated.

Recently, Oh et al. (2022) addressed this knowledge gap by

testing the effect of S-nitrosylated p62 (SNO-p62) on autophagic

flux and subsequent α-synuclein secretion in cell-culture and

mouse models (Figure 1). This line of investigation was pursued

following their realization that p62 contains a motif that makes

it susceptible to S-nitrosylation. p62 is an important regulator of

autophagic flux, which among its many roles in the cell, helps

maintain α-synuclein homeostasis (Tanji et al., 2015). Thus, Oh

et al. tackled several questions, including whether SNO-p62: (1)

is found in the brain of patients with synucleinopathies and

synucleinopathy disease models; (2) modulates autophagic flux,

and (3) affects secretion and cell-to-cell spread of α-synuclein in

EV-dependent and EV-independent pathways.

Oh et al. demonstrated first that both endogenous nitric

oxide (NO) and exogenous S-nitrosocysteine (SNOC) S-

nitrosylated p62 in SH-SY5Y cells and human induced

pluripotent stem-cell (hiPSC)-derived neurons. Importantly,

they also showed that SNO-p62 was increased in post-

mortem PD and LBD brains compared to non-diseased brains,

suggesting that this post-translational modification is clinically

relevant in synucleinopathies. They then found SNO-p62

to be increased in models of α-synucleinopathy, including

Thy1-promoter-driven α-syn-overexpressingmice (Rockenstein

et al., 2002; Chesselet et al., 2012) and hiPSCs expressing the

familial PD-linked A53T variant of α-synuclein, compared to

matched controls.

LC3 is a key protein orchestrating autophagosome

biogenesis, which interacts with multiple proteins, including

p62, via their LC3-interacting region (LIR) (Pankiv et al.,

2007; Kraft et al., 2010). Using SH-SY5Y cells and co-

immunoprecipitation, Oh et al. demonstrated that treatment

with SNOC increased interactions between p62 and LC3,

suggesting that S-nitrosylation was responsible for the increased

affinity. They asked then what the specific site of S-nitrosylation

might be. The LIR of p62 contains a single cysteine residue,

Cys331, which the authors suspected to be the primary site of S-

nitrosylation. To test this hypothesis, they created a C-terminal

fragment of p62, spanning residues 230–440, containing an

intact LIR motif. Upon substitution of Cys331 by Ala in this

fragment, co-immunoprecipitation data of the tagged p62

construct to LC3 revealed a 75% reduction in S-nitrosylated

p62 (230–440) after exposure to SNOC, suggesting that Cys331

indeed was the primary site for S-nitrosylation.

At this point, the investigation took an unexpected turn.

The findings described above motivated the authors to use

a full-length p62 (C331A) model in subsequent experiments,

presumably with the expectation that removal of the Cys side

chain, and hence the ability to nitrosylate this side chain,

would abolish the increased binding of SNO-p62 to LC3.

Surprisingly, though the methyl sidechain of Ala is distinct

in its size, electronic character, and charge distribution from

the nitrosylated methylenesulfhydryl sidechain of NO-Cys,

rather than eliminating the increased affinity of p62 for LC3,

p62 (C331A) phenotypically copied the increased interaction

between SNO-p62 and LC3 and the subsequent inhibition

of autophagic flux. Although the mechanism underlying this
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observed phenotypical similarity is not clear, this finding

suggested that p62 (C331A) could be used in place of SNO-p62,

eliminating the need to S-nitrosylate p62, which might generate

confounding effects due to nitrosylation of other targets. We

believe that further studies are needed to explore how the

removal of the S-NO group achieves the same end result—

increasing the strength of the interaction between the p62

LIR and LC3, despite the substantial structural and electronic

difference between Ala and NO-Cys.

Interestingly, Oh et al. showed that although 99.99% of the

secreted α-synuclein in the media of p62 (C331A)-expressing

SH-SY5Y cells was not associated with EVs, secretion of EVs

containing α-synuclein increased 3.3-fold in comparison to a

1.6-fold increase in EV-independent pathways, suggesting that

if increased cell-to-cell transfer is observed, a minute fraction,

0.01% of EV-associated α-synuclein, might be an important

contributor to this increase. To assess cell-to-cell spread, Oh

et al. used a dual-cell bimolecular fluorescence complementation

assay. This system uses structural complementation of two

Venus protein fragments conjugated to α-synuclein and

expressed separately, so only if α-synuclein linked to one

fragment is transferred from its parent cell to a recipient

cell containing α-synuclein conjugated to the other fragment,

Venus fluorescence is observed. Using this system, they detected

that cells expressing p62 (C331A) secreted C-terminal hemi-

Venus-α-synuclein to the extracellular space leading to uptake

in recipient cells expressing an N-terminal hemi-Venus-α-

synuclein conjugated protein, suggesting that increased EV-

mediated α-synuclein secretion facilitated cell-to-cell spread.

Although this mechanism has been supported by multiple

previous reports demonstrating that pathological α-synuclein

is transported preferentially via EVs and that EV-associated α-

synuclein is taken up by recipient cells, which in turn may

increase α-synuclein induced toxicity in the recipient cells

(Emmanouilidou et al., 2010; Danzer et al., 2012; Shi et al., 2014;

Fussi et al., 2018; Minakaki et al., 2018; Sepulveda et al., 2022),

Oh et al. did not show direct evidence for EV-associated α-

synuclein uptake in recipient cells and subsequent seeding. Thus,

the relationship between the observed increased secretion of EVs

containing α-synuclein and increased cell-to-cell transfer needs

to be further explored. Visualization of EV uptake in recipient

cells, e.g., through staining of EV membranes using a specific

fluorescent dye, such as PKH67 (Kim et al., 2006; Fitzner et al.,

2011), or by immunocytochemistry after fixing the cells using

EV-specific markers, could provide direct evidence correlating

the increased secretion of EV-associated α-synuclein, and uptake

followed by seeding in recipient cells.

Previous studies have shown that increased oxidative

stress and autophagy dysfunction lead to increased secretion

of α-synuclein, possibly in EVs (Danzer et al., 2012) as a

compensatory mechanism to the inhibition of autophagic flux.

EVs containing α-synuclein have been shown to transport from

the brain to the periphery, facilitating their use as a source of

biomarkers using a minimally invasive blood draw (Shi et al.,

2014; Hornung et al., 2020). As S-nitrosylation of p62 leads

to a 3.3-fold increase in EV-mediated α-synuclein secretion,

one might expect the concentration of α-synuclein in central

nervous system (CNS)-originating blood EVs to be higher in

patients with synucleinopathies than in controls. Indeed, recent

studies have confirmed that this is the case in patients with

PD and multiple system atrophy (MSA) (Shi et al., 2014; Dutta

et al., 2021; Jiang et al., 2021) as opposed to direct measurement

of α-synuclein in the blood, in which little differences were

found between patients and healthy controls. The latter studies

showed that α-synuclein concentrations in CNS-originating

EVs could distinguish between PD and MSA (Dutta et al.,

2021; Jiang et al., 2021), yet whether this is due to different

levels of SNO-p62 in these diseases or to other factors is not

yet known.

Oxidative stress occurs in a whole organ (or a whole

organism) and is expected to affect the whole brain. However,

neurodegenerative diseases often affect certain brain areas

and/or particular cell types, e.g., the nigrostriatal tract in PD,

oligodendrocytes in MSA. In view of the findings of Oh et al.,

we are curious to whether a correlation can be found between

levels of p62 S-nitrosylation and the regions or cell types

that are most vulnerable in each disease. For example, early-

stage PD is associated with Lewy-body pathology primarily

in the brainstem, gradually spreading to the midbrain and

affecting dopaminergic neurons in the substantia nigra pars

compacta (Braak et al., 2003) whereas in LBD, Lewy body

accumulation and neurodegeneration are more prominent in

cortical structures (Kalaitzakis et al., 2009). Does S-nitrosylation

of p62 occur differentially in these brain regions in PD

and LBD?

Similar to the deposition of α-synuclein primarily as glial

cytoplasmic inclusions in the oligodendrocytes of patients

with MSA (Lee et al., 2019), in parkinsonian tauopathies, such

as supranuclear palsy (PSP) and corticobasal degeneration

(CBD), aggregated, hyperphosphorylated tau inclusions

are found not only in in neurons, but also prominently

in astrocytes and oligodendrocytes (Ferrer et al., 2014).

Oxidative stress generating SNO-p62 would be expected

to impair clearance of tau aggregates, similar to the effect

in synucleinopathies, and possibly also lead to increased

release of pathological forms of tau in EV-dependent and/or

independent mechanisms. Are levels of SNO-p62 in the glial

cells in these diseases increased compared to those that affect

primarily neurons?

In summary, Oh et al. found that nitrosylation of p62

leads to inhibition of autophagy, which in turn increases the

extracellular release of α-synuclein, helping to elucidate a new

component of the mechanism underlying synucleinopathies and

potentially other neurodegenerative diseases. In support of the

proposed mechanism, they report higher levels of SNO-p62 in

post-mortem human brains, mouse models of synucleinopathy,
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and human iPSC-derived neurons compared to the appropriate

controls. SNO-p62 and its surprising phenotypical analog p62

(C331A) were found to bind LC3 with higher affinity than the

unmodified protein. The study’s results raise several interesting

questions, such as how SNO-p62 affects different brain

regions, different cell types and different amyloidogenic proteins

in PD, parkinsonian disorders, and more generally, other

proteinopathies. It is also interesting to explore what makes p62

(C331A) behave similarly to SNO-p62 despite the distinct steric

and hydropathic nature of the side chain at position 331 of these

protein isoforms. It is hoped that the study will inspire follow-up

investigations that will address these questions and take us a step

closer to understanding the processes that cause and propagate

neurodegenerative diseases.
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