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Abstract: Osteopontin (OPN) is a multi-functional protein that binds to integrin and calcium-binding
phosphoprotein. OPN is required for normal neuronal development and its axonal myelination.
We studied the combined effect of lead (Pb) and ascorbic acid treatment on OPN expression in
the developing cerebellum. We randomly divided pregnant female rats into three groups: control,
Pb (lead acetate, 0.3%, drinking water), and Pb plus ascorbic acid (PA; ascorbic acid, 100 mg/kg,
oral intubation) groups. The blood level of Pb was significantly increased, while ascorbic acid
reduced Pb levels in the dams and pups. At postnatal day (PND) 21, results from Nissl staining
and OPN immunohistochemistry demonstrated that OPN was detected in the Purkinje cell layer in
the cerebellum. Ascorbic acid treatment mitigated Pb exposure-induced reduction in the number of
intact Purkinje cells and OPN immunoreactive Purkinje cells in the cerebellum of pups. In addition,
Pb-induced reduction in the number of oligodendrocytes and myelin-associated glycoprotein is
associated with the malformation of the myelin sheath. Ascorbic acid provided protection from
Pb-induced impairments. Pb-induced structural deficits in the cerebellum resulted in functional
deterioration observed during locomotive tests (bar holding test and wire mesh ascending test),
while ascorbic acid ameliorated these harmful effects. Present results suggest that the change of OPN
is associated with myelination in the developing cerebellum. The results also demonstrated that
exposure to Pb is harmful, while ascorbic acid treatment is beneficial.
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1. Introduction

Osteopontin (OPN) is known as a glycosylated phosphoprotein with calcium- and
integrin-binding capabilities [1]. Alternative splicing generates various forms of OPN; these are
associated with numerous functions including inflammatory response [1,2], tissue mineralization [1,3],
cancer and metastatic proficiency [4], tissue repair [5], and development [6]. OPN is widely expressed
in the bone, kidney, breast, thymus, testis, immune system, spinal cord, and brain [1,7–10].

Until recently, research on OPN has focused on its pathophysiological role. In particular, OPN is
considered as an inflammatory mediator in various neurodegenerative diseases such as multiple
sclerosis [11,12], Alzheimer’s disease [13], and Parkinson’s disease [14]. However, importantly,
Jiang et al. [15] recently described the functional role of OPN in brain development. Specifically,
they focused on the fact that OPN is transferred from the mother to the offspring through the milk
produced by the mother, and that OPN is produced in the mammary glands and the brain [15].
When ingested, iodine-labeled OPN in milk can reach the offspring’s brain resulting in an increase
of OPN levels in the brain of the offspring [15]. The early postnatal period is critical for the rodent
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brain’s development and maturation, and we previously reported that lead (Pb) exposure impairs
the normal development of the hippocampus and cerebellum [16,17]. Pb can also be transferred from
dam to offspring via the placenta and milk produced by the dam [18]. Pb exposure is detrimental
to the myelination of fibers and Purkinje cell development in the cerebellum. OPN is one of the
possible mediators of myelination and neuronal differentiation in the brain [15,19,20]. Therefore,
we hypothesize that there may be an association between Pb-induced hypomyelination, a reduction in
neuron numbers, and OPN expression.

Ascorbic acid effectively attenuates the abnormal development of the brain induced by Pb
poisoning [16,17,20]. Ascorbic acid is also functionally important during developmental processes
including neuronal differentiation and synaptic maturation [21]. To observe the combined effects of
Pb and ascorbic acid treatment on cerebellar development in the offspring from exposed individuals,
we investigated neuronal development, oligodendrocytes, myelination, and OPN expression in
the cerebellum.

2. Materials and Methods

2.1. Experimental Design and Animals

Sprague Dawley (SD) rats purchased from Narabiotec Co., Ltd (Seoul, Republic of Korea) were
used in our present study. The experimental protocol was approved by the Institutional Animal Care
and Use Committee of the Konkuk University (approval number, KU18133). Female (n = 9) and
male (n = 3) rats (8 weeks old) were housed under a constant condition, with a temperature of 22 to
24◦C, humidity (60%), and illumination (12:12h light/dark cycle). The animals were acclimated to
a conventional state at the animal facility in the College of Veterinary Medicine and were then used
for the experiments. Female rats were confirmed to be pregnant when vaginal plugs were present or
when sperm was detected on vaginal smears. According to the previous our study [17], day 0 was
designated and pregnant female rats were singly caged until the end of the experiments. Animal
handling and caring followed the Guide for the Care and Use of Laboratory Animals, which was
issued by the Institute of Laboratory Animal Resources, National Institutes of Health, USA, 1996.

2.2. Chemical Treatment

Female SD rats were randomly divided into three groups: the control group (n = 3), Pb group
(n = 3), and Pb plus ascorbic acid (PA) group (n = 3). The design of the experiment and the administered
doses of Pb and ascorbic acid were prepared as reported in previous studies [16,17,22]. Lead acetate
(Pb(C2H3O2)2, 0.3% in distilled water; (Sigma-Aldrich, St. Louis, MO, USA)) was prepared with
glacial acetic acid (0.05%; Junsei Chemical Co., Tokyo, Japan) to prevent Pb precipitation. Ascorbic
acid (100 mg/kg; Sigma-Aldrich), which was freshly prepared in saline, was orally administered. To
account for the stress during oral intubation, female rats in the control and Pb groups only received the
same volume of saline. From one week prior to the mating day, Pb and ascorbic acid treatments started
and were carried out during gestation and delivery of pups until the end of the experiment. The body
weights of offspring were measured and averaged every week. To preclude any effect concerning litter
size during the experiment, eight rat pups per dam (total 24 pups per group) were selected for further
analysis and the remaining pups were sacrificed. Whenever possible, only male pups were used for
the experiment and female pups were used only to maintain equivalent litter sizes. The experimental
procedures were carefully conducted to minimize suffering and the number of animals used.

2.3. Locomotor Coordination Assay (Bar Holding Test and Wire Mesh Ascending Test) in Offspring

On postnatal day (PND) 19, 12 offspring per group were assessed for motor function using a
modified protocol described in a study by Perez-Polo et al. [23]. During the bar holding test, pups
were allowed to grasp a stainless-steel bar (0.7 cm diameter × 35 cm length) that was suspended 30 cm
over a soft surface. The duration of time spent with forelimbs grasping the bar was measured within
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60-s deadline. During the wire mesh ascending test, a 0.7-cm thick stainless-steel mesh (45 cm length×
30 cm width) was placed at an angle of 26◦ in a water bath containing water at 25 ◦C such that the
wire mesh was 30 cm above the water surface. The offspring was placed with its quarter hind and tail
dipped in the water. After three separate training trials, the achievement time, which is the time taken
for the pup to reach the top of the mesh, was recorded over a 30-s period.

2.4. Analysis of Pb Level in Blood Using Atomic Absorption Spectrometry and Measurement of Cerebellar Weight

On PND21, three dams per group, and 12 offspring per group, were anesthetized by the
intraperitoneal injection of urethane (1.5 g/kg; Sigma-Aldrich). Blood, for analysis of Pb levels,
was drawn from left ventricle separately from dams and pups by cardiac puncture and analyzed
using an atomic absorption spectrophotometer (Perkin Elmer Zeeman 5100; Norwalk, CT, USA) and
an HGA-600 graphite furnace with Zeeman background correction. The absorption wavelength was
283.3 nm and the r2 of the calibration curve exceeded 0.995. The weights of the cerebellum of offspring
were measured on PND21.

2.5. Tissue Processing and Histological Analysis

For histological evaluation, the procedures for Nissl staining and immunohistochemistry were
used, as described in our previous studies [22,24]. Briefly, the remaining 12 offspring (n = 12 per
group) were anesthetized by urethane on PND21 and perfused transcardially with heparinized
phosphate-buffered saline (PBS; 0.1 M, pH 7.4), followed by fixative (4% paraformaldehyde in 0.1 M
phosphate buffer, pH 7.4). The cerebella were dissected out and post-fixed in the same fixative
overnight at 4 ◦C. Cerebellar tissues were embedded in paraffin. Mid-sagittal sections (5-µm) of the
vermis were selected and a total of 36 paraffin sections per group (three sections per offspring) were
used. Deparaffinized sections were placed in citrate buffer (pH 6.0) for antigen retrieval. The sections
were then quenched with 0.3% hydrogen peroxide (H2O2) and incubated with 10% normal horse
serum for blocking. Afterward, the sections were kept overnight at 4 ◦C in goat anti-osteopontin
(OPN, 1:500; R&D systems, Minneapolis, MN, USA), goat anti-oligodendrocyte transcription factor 2
(Olig2, 1:500; R&D systems), or mouse anti-myelin associated glycoprotein (MAG, 1:1000; Millipore,
Billerica, MA, USA). Subsequently, sections were exposed to biotinylated immunoglobulin G (1:200;
Vector, Burlingame, CA, USA) and streptavidin peroxidase complex (1:200; Vector). Reactive sites were
visualized with 3,3′-diaminobenzidine tetrachloride (Sigma-Aldrich) in 0.1 M Tris-HCl buffer (pH 7.2).
Following dehydration, sections were mounted in a toluene-based mounting medium (Richard-Allan
Scientific, Thermo Scientific, Waltham, MA, USA).

Histopathological analyses were performed by investigators blinded to treatments. The numbers
of Olig2-positive cells in all groups were counted using an image analysis system equipped with
a computer-based CCD camera (Optimas 6.5 software, CyberMetrics, Scottsdale, AZ, USA). The
quantification method of Purkinje cells employed in the present study was modified from that used in
a previous study [22]. The Purkinje cells were counted in micrographs obtained at 100× magnification
per 5000 µm length of Purkinje cell layer using the arbitrary line probe of the DP2-BSW software
(Olympus, Tokyo, Japan). The observations were carried out in the 2nd, 5th, and 8th lobules of sagittal
sections of the cerebellar vermis [25]. Ten lobules of cerebellum disappeared from the midline sagittal
sections to lateral sagittal sections and we excluded the sections when the number of cerebellar lobules
is reduced from ten. Therefore, the number of Purkinje cells was demonstrated and compared as a
relative number of the control group.

Analysis of a region of interest in the cerebellum was performed by calibrating the image into an
array of 512 × 512 pixels corresponding to a tissue area of 140 × 140 µm (40 × primary magnification).
Each pixel resolution was 256 gray levels. The intensity of myelin-associated glycoprotein (MAG)
immunoreactivity was evaluated by means of a relative optical density (ROD), which was obtained
after the transformation of the mean gray level using the following formula: ROD = log (256/mean
gray level). Using NIH Image 1.59 software, ROD of the background was determined in unlabeled
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portions, and the value was subtracted for correction, yielding high ROD values in the presence of
preserved structures and low values after a structural loss. A ratio of the ROD was calibrated as
a percentage.

2.6. Statistical Analysis

Data for each group are expressed as means ± standard errors of the mean, and the significance
of the differences was determined using one-way analysis of variance followed by Bonferroni’s post
hoc test for multiple comparisons. Data were analyzed by GraphPad Prism 5.01 software (GraphPad
Software, Inc., La Jolla, CA, USA). The significance in differences were set at P-values <0.05.

3. Results

3.1. Body Weight, Cerebellar Weight, and Blood Pb Levels

At the end of the experiment, the body weights of dams and offspring reduced by long-term
exposure to Pb with no statistical significance (p > 0.05). However, ascorbic acid co-treatment with Pb
attenuated the Pb-induced decrease in body weight. Pb exposure during pregnancy and lactation also
prominently reduced the weight of cerebellum (p < 0.01), while ascorbic acid co-treatment ameliorated
Pb-induced weight changes at PND21 (p < 0.05). Atomic absorption spectrometry confirmed that
blood Pb levels in dams and offspring were increased by long-term Pb exposure(dam 313.513 µg/dL,
p < 0.01; offspring 233.25 µg/dL, p < 0.01),while ascorbic acid co-administration reduces the Pb levels
(dam 161.929 µg/dL, p < 0.05; offspring 115.084 µg/dL, p > 0.05)(Figure 1).
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Figure 1. Body weights of dams (n = 3 per group) during gestation and offspring (n = 12 per group) on
postnatal days (PND) 0, 7, 14, and 21 in control (CTL), lead (Pb), and Pb+ ascorbic acid (PA) groups
(A). Cerebellar weights of offspring on PND21 (B). Blood Pb levels in the dams and offspring on day
21 after delivery (C) (a p < 0.05, indicating a significant difference compared with the control group,
b p < 0.05, indicating a significant difference compared with the Pb group). The bars indicate means ±
standard errors of mean.

3.2. Effects of Pb Exposure and Ascorbic Acid Treatment on Cerebellar Development

Nissl staining was conducted to evaluate the effect of Pb exposure and ascorbic acid treatment
on the developing cerebellum. On PND21, three layers of the cerebellar cortex were examined in all
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groups. In the cerebellum at PND21, long-term Pb exposure caused a significant reduction in the
number of intact Purkinje cells (rim of cytoplasm surrounding nucleus with cytoplasmic extension to
dendrites) to 70.33% of that in the control group (p < 0.01), while increasing the number of degenerating
Purkinje cells (pyknotic or vacuolated changes in Purkinje cell layer). Among degenerating changes,
pyknotic cells were observed in the Pb group. Ascorbic acid co-treatment ameliorated Pb-induced
reduction in the number of intact Purkinje cells to 88.52% of that in the control group (p < 0.05). The
mean number of intact Purkinje cells in the PA group was less than that observed in the control group
(p > 0.05). However, no significant changes were observed in the granule cell layer in the cerebellum
(Figure 2).
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Figure 2. Nissl staining of cerebellum (A–C) of offspring from CTL, Pb, and PA groups. GCL, granule
cell layer; ML, molecular layer; PL, Purkinje cell layer. Bar = 25 µm. (D) The numbers of intact Purkinje
cells in the cerebellum are expressed as percentages of the value in the CTL group. The number of
intact Purkinje cells in three sections per offspring in non-overlapping fields, 12 rats were included in
each group (n = 12 offspring per group; a p < 0.05, indicating a significant difference compared with the
control group, b p < 0.05, indicating a significant difference compared with the Pb group). The bars
indicate the means ± standard errors of the mean.

3.3. Effects of Pb Exposure and Ascorbic Acid Treatment on OPN and Brain-Derived Neurotrophic Factor
(BDNF)Expression in the Developing Cerebellum

OPN was mainly detected in the Purkinje cell layer in the cerebellar cortex. Additionally, OPN
was observed in some cells in the deep nucleus of the cerebellum in the offspring. After long-term
exposure to Pb, the OPN-immunoreactive Purkinje cells were significantly reduced to 67.96% of
that in the control group (p < 0.01). However, the co-administration of ascorbic acid attenuated the
Pb-induced reduction in the OPN-immunoreactive Purkinje cells in the PA groupas91.01% of that
in the control group (p < 0.05) and the mean number of these cells was similar to the control group
(p > 0.05) (Figure 3). OPN was also detected in neuronal cells in the deep cerebellar nucleus, while
OPN was not detected in the white matter of the cerebellum. The difference in the OPN expression,
shape alteration, and degeneration in neuronal cells in the deep cerebellar nucleus was not observed
among different groups (Figure S1). BDNF is animportant neurotrophic factor in brain development.
To investigate the correlation between OPN and BDNF, Western blot analysis of OPN and BDNF in the
whole cerebellum was conducted (Supplementary Method). The results showed a similar pattern of
change; Pb-induced reduction of OPN (74.75% of that in the control group, p < 0.01) and BDNF (65.90%
of that in the control group, p < 0.01) and ascorbic acid-mediated attenuation of the reduction (OPN,
94.64% of that in the control group; BDNF, 91.52% of that in the control group, p < 0.05) (Figure S2).
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(D) The numbers of OPN-positive Purkinje cells in the cerebellar cortex are expressed as percentages of
the value in the CTL group (n = 12 offspringper group; a p < 0.05, indicating a significant difference
compared with the control group, b p < 0.05, indicating a significant difference compared with the Pb
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3.4. Effects of Pb Exposure and Ascorbic Acid Treatment on Olig2 Expression in the Developing Cerebellum

Olig2 was mainly detected in the white matter in the cerebellar cortex of offspring. Long-term
exposure to Pb led to a significantly lower number of Olig2-immunoreactive oligodendrocytes than in
the control group (74.72% of that in the control group, p < 0.05). Additionally, ascorbic acid treatment
prevented the Pb-induced reduction in the number of Olig2-immunoreactive oligodendrocytes in the
PA group (94.88% of that in the control group, p < 0.05). The mean number of Olig2-immunoreactive
oligodendrocytes in the PA group was not significantly different from that in the control group (p > 0.05)
(Figure 4).Int. J. Environ. Res. Public Health 2019, 16, x  7 of 13 
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Figure 4. Immunohistochemistry for oligodendrocytes (brown) in the cerebellum (A–C) of offspring
from CTL, Pb, and PA groups. Note that the numbers of Olig2-positive oligodendrocytes in the
cerebellum are reduced in the Pb group, and ascorbic acid treatment ameliorated these reductions in
the PA group. GM-GCL (blue), granule cell layer in gray matter; WM, white matter. Bar = 25 µm. (D)
The numbers of OPN-positive Purkinje cells in the cerebellar cortex are expressed as percentages of
the value in the CTL group (n = 12 offspring per group; a p < 0.05, indicating asignificant difference
compared with the control group, b p < 0.05, indicating a significant difference compared with the Pb
group). The bars indicate the means ± standard errors of the mean.
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3.5. Effect of Pb Exposure and Ascorbic Acid Treatment on MAG Expression in the Developing Cerebellum

MAG is transmembrane protein and is functionally classified as the protein component in the
myelin sheath of nerve fibers [26]. In the cerebellum, MAG was commonly observed in the myelinated
fibers of white matter tracts in all groups. The MAG immunoreactivity was reduced in the cerebellum
of pups by prenatal and postnatal Pb exposure (57.66% of that in the control group, p < 0.01). However,
ascorbic acid co-treatment with Pb ameliorated the Pb-induced reduction in the MAG immunoreactivity
(88.35% of that in the control group, p < 0.05) to near the control level (p > 0.05) (Figure 5).
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Figure 5.Immunohistochemistry for myelin-associated glycoprotein (MAG, brown) in the 
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Figure 5. Immunohistochemistry for myelin-associated glycoprotein (MAG, brown) in the cerebellum
(A–C) of offspring from CTL, Pb, and PA groups. Note that the MAG-immunoreactivity in the WM in
the cerebellum are reduced in the Pb group, and ascorbic acid treatment ameliorated this reduction in
the PA group. GM-GCL (blue), granule cell layer in gray matter. (D) The MAG-immunoreactivity in
the WM in the cerebellum is expressed as percentages of the value in the CTL group (n = 12 offspring
per group; a p < 0.05, indicating a significant difference compared with the control group, b p < 0.05,
indicating a significant difference compared with the Pb group). The bars indicate the means ±
standard errors of the mean.

3.6. Effect of Pb Exposure and Ascorbic Acid Treatment on Locomotive Function (Bar Holding Test and Wire
Mesh Ascending Test)

The time spent grasping the bar was significantly reduced in pups of Pb-exposed dams than in
those of the control group (control 19.13s; Pb 6.70 s) (p < 0.05), while ascorbic acid treatment slightly
increased the time spent on the bar in the PA group (PA 10.00 s) (p > 0.05). The time of achievement
of ascending the wire mesh was also delayed in the Pb-exposed offspring (control 3.10s; Pb 7.13 s)
(p < 0.01) while ascorbic acid shortened the time of achievement with statistical significance in the PA
group (PA 5.33 s) (p < 0.05). However, the time of achievement was still longer than the control group
(p < 0.01) (Figure 6).
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Figure 6. Effect of Pb exposure and ascorbic acid treatment in the bar holding test (A) and wire mesh
ascending test (B) among offspring from CTL, Pb, and PA groups. (A) The times during which the
animal stayed on the bar in the bar holding test. (B) The amount of time the animal spent to reach the
top of the wire mesh in the wire mesh ascending test (n = 12 offspring per group; a p < 0.05, indicating
a significant difference compared with the control group, b p < 0.05, indicating a significant difference
compared with the Pb group).

4. Discussion

The brain is susceptible to exogenous toxicants during the critical time window of development
between the fetal period and the early postnatal period [27]. Specifically, Pb is highly toxic to the
developing brain due to its ability to cross the blood–brain barrier [28]. OPN has been shown to be
implicated during apoptosis, inflammation, degeneration, and cancer [2,4,9,29–31]. The pathological
induction of OPN was observed among glial cells. However, the physiological expression of OPN in
neurons has not been thoroughly studied [32,33]. The involvement of OPN in brain development was
reported in a recent study by the Lönnerdal group [15]. Therefore, in the present study, we focused on
the OPN expression in the developing cerebellum following Pb exposure.

We confirmed that long-term Pb treatment negatively affects normal development by significantly
reducing cerebellar weight. Combined treatment of ascorbic acid with Pb attenuated the Pb-induced
reduction in the weight of the cerebellum. The blood Pb level also showed a similar pattern of change.
There was an increase in the blood Pb level and ascorbic acid administration attenuated the increase
of Pb levels. The present findings are consistent with results of previous studies, in that ascorbic
acid administration is conversely related to the blood Pb level after gestational Pb exposure [17,20].
However, the reduction of cerebellar weight was insignificant by gestational Pb exposure [17]. Exposure
to Pb during the prenatal and postnatal periods, in the present study, was more detrimental than Pb
exposure during the gestational period since it significantly affected these physiological parameters.
While ascorbic acid treatment effectively reduced the negative effects of Pb on these parameters, it was
unable to restore the Pb level to the control level.

Nissl staining revealed that gestational and lactational Pb exposure prominently impaired the
development of the cerebellum. In the cerebellum, the number of intact Purkinje cells was significantly
reduced by Pb exposure. Additionally, degenerating pyknotic cells and vacuolation in the Purkinje
cell layer were easily detected in the Pb group. Similarly, previous studies reported that Pb exposure
during cerebellar development significantly decreased the number of Purkinje cells and ascorbic
acid treatment mitigated Pb-induced impairments in the PA group [17,20,34–36]. Our results are
consistently similar with previous studies, which observed that ascorbic acid prevents the harmful
effects of other heavy metals including mercury and cadmium on brain development [37,38].

We further evaluated the effect of Pb and ascorbic acid on OPN expression during cerebellar
development. OPN was widely expressed in the developing brain in areas including the cerebellum,
cortex, hippocampus, and pontine nucleus. Purkinje cells in the cortex and neurons in the deep
nucleus in the developing cerebellum were OPN-immunoreactive cells. To investigate the association
treatment of Pb and ascorbic acid with OPN expression during the developmental period, we compared
cerebellar OPN expression among different experimental groups. The OPN immunoreactive Purkinje
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cells and OPN protein expression in the cerebellum were significantly reduced by long-term Pb
exposure and ascorbic acid treatment attenuated this Pb-induced reduction. The morphology of OPN
immunoreactive cells in the deep nucleus of the cerebellum was not different among the experimental
groups. Additionally, the OPN immunoreactive cells in the pontine nucleus did not differ among
the different experimental groups. Therefore, reduced cerebellar OPN protein is correlated with
the reduction of OPN-immunoreactive Purkinje cells. The results presented here suggest that these
Pb-induced developmental impairments and the ascorbic acid-mediated attenuation of cerebellar
developmental impairments are associated with the change in OPN expression. Ascorbic acid-mediated
increase in OPN in the cerebellum are linked with the positive effects of OPN in other studies which
reported OPN-induced promotion of survival, proliferation, migration of neural stem cells and
proliferation, and differentiation of glial cells into oligodendrocytes [15,39]. Additionally, OPN is
required for normal retinal development, and OPN deficiency induces premature aging effects in the
retina [40].

In a preliminary study on the neurotoxicity of Pb, Toews et al. [41] reported that myelin deficits
in the developing rat brain were exacerbated in a Pb dose-dependent manner. Our previous study
also demonstrated that gestational Pb exposure impaired the normal development of myelin sheaths
by reducing the myelin basic protein (MBP) in the cerebellum [20,22]. Due to the role of OPN in
neuronal axon myelination [15], we conducted further experiments to clearly demonstrate the effect
of Pb on the myelination of neurons in the developing brain. We first investigated the changes
in oligodendrocytes which are important for neuronal axon development and subsequent synapse
formation. In the cerebellum, the number of Olig2-immunoreactive oligodendrocytes is reduced
by Pb, and ascorbic acid co-treatment prevented this reduction. MAG is one of the main protein
components of the myelin sheath and is required for the formation and stabilization of the myelin
sheath [26]. Similar to MBP, MAG in the cerebellum was also affected by Pb exposure. Ultrastructurally,
MAG is observed in oligodendrocyte processes at the axoglial junctions of the myelin sheath [26].
MAG immunochemistry revealed that Pb exposure-induced impairments in myelinated fibers in
the developing cerebellum were attenuated by ascorbic acid co-administration. Along with the
Pb-induced reduction of myelin-sheath forming oligodendrocytes and MAG, OPN may be directly
associated with myelination process in the developing cerebellum. Although, the direct role of OPN
in the axonal myelination was not demonstrated in the present study, Lönnerdal group’s recent
study supports a correlation between OPN and axonal myelination by observing that milk OPN
increased oligodendrocytes in the brain of OPN knockout mice while OPN-deprived milk reduced
oligodendrocytes in the brain of OPN wild-type mice [15]. Selvaraju el al. also supports OPN’s role
by reporting that OPN is upregulated during cuprizone-induced demyelination and remyelinating
process, and that OPN treatment to cortical cultures increased the synthesis of MBP and formation of
myelin sheath [42]. Besides the well-known pro-inflammatory role of OPN in adults, supplemented
OPN to human infants has been shown to reduce pro-inflammatory cytokines, compared to the
standard formula-fed infants [43]. Full-length OPN, the main type in milk, is different from forms of
OPN in a pathological situation [44]. These recent studies, including our own, warrant the need for
further studies to more thoroughly investigate OPN’s role in development and the possibility of OPN
as biomarker molecule in the brain mal-development. Secondarily, Pb-induced myelin deficits may be
linked with the change of OPN-immunoreactive Purkinje cells and the subsequent reduction of axonal
fibers extended from soma of the Purkinje cells to the white matter in the cerebellum. Additionally,
myelin sheath-associated structural changes have also been shown to be an important cause of multiple
sclerosis, and these changes lead to functional deterioration [45]. Moreover, the down-regulation of
MAG in the brain is associated with schizophrenia [46]. In Long Evans Shaker rats, the demyelination
of Purkinje cells caused a reduction in gamma aminobutyric acid (GABA) released from Purkinje
terminals, which resulted in the hyper-excitability of neurons in the deep cerebellar nucleus [47]. In the
developing cortex of suckling rats, postnatal Pb consumption via diet also caused hypomyelination of
neurons [48]. Similar to our results, ascorbic acid treatment promoted myelination in animal models
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and in cell cultures [20,49,50]. Based on these results, the present changes in the numbers of neurons
and oligodendrocytes in the cerebellum are linked with differences in the MAG immunoreactive
myelinated fibers in the Pb and PA groups.

As a mechanism of OPN expression related change in the developmental cerebellum, we focused
on the BDNF for its role in processes including neurogenesis, synaptogenesis, axogenesis,
and myelination [51,52]. Physiologically, OPN promotes the expression of pro-survival genes via
nuclear factor kappa-b (NF-KB) [53]. BDNF is the target gene of NF-KB. Pb-induced reduction of
BDNF was observed in our present and previous studies, and ascorbic acid was shown to increase the
expression of BDNF [20,24].Along with the positive effect of ascorbic acid on BDNF expression,
ascorbic acid is vital for neuronal differentiation and development, and myelin formation [54].
As vitamin B has a similar effect, such as the promotion of myelination and reduction of oxidative
stress, co-administration of ascorbic acid with vitamin B as a multi-vitamin will help to protect the
developing brain from Pb-induced neurotoxicity [55]. Additionally, the fact that remyelination of
the nervous system is the goal of both the researcher and clinician [56], the mechanism of direct or
indirect involvement of OPN in myelination will provide critical clues for development, regeneration,
and therapy to demyelinating diseases.

Furthermore, we evaluated the locomotive function of the cerebellum via behavioral tests such as
the wire mesh ascending test and bar holding test. The Pb-induced impairments in the developing
cerebellum resulted in functional deterioration in the test. Pups of Pb-exposed dams demonstrated a
longer latency to reach the top during the ascending wire mesh test. They were also unable to remain
longer on the bar in the bar holding test compared to the control group. However, ascorbic acid
treatment attenuated the Pb-induced functional impairment in these pups in the two behavioral tests.
These improvements in the Pb-induced functional impairment may be due to ascorbic acid-mediated
structural protection from Pb-induced alterations during the critical developmental period.

5. Conclusions

Overall, the present study demonstrated that Pb exposure is toxic to the developing cerebellum.
It causes neuronal damage and reduces OPN expression in rat offspring. Ascorbic acid treatment
reduced neuronal impairment and prevented Pb-induced changes. These results highlight the potential
for Pb-induced developmental neurotoxicity and the protective effect of ascorbic acid co-administration
in the cerebellum of the pups from mothers at high risk for Pb exposure during pregnancy and lactation.
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