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Abstract. The present study aimed to classify gastric cancer 
(GC) into subtypes and to screen the subtype‑specific genes, 
their targeted microRNAs (miRNAs) and enriched pathways 
to explore the putative mechanism of each GC subtypes. 
The GSE13861 data set was downloaded from the Gene 
Expression Omnibus and used to screen differential expres-
sion genes (DEGs) in GC samples based on the detection of 
imbalanced differential signal algorithm. The specific genes 
in each subtype were identified with the cut‑off criterion of 
U>0.04, pathway enrichment analysis was performed and the 
subtype-specific subpaths of miRNA-target pathway were 
determined. A total of 1,263 DEGs were identified in the 
primary gastric adenocarcinoma (PGD) samples, which were 
subsequently divided into four subtypes, according to the hier-
archy cluster analysis. Identification of the subpaths of each 
subtype indicated that the subpath related to subtype 1 was 
miRNA (miR)-202/calcium voltage-gated channel subunit α1 
(CACNA1E)/type II diabetes mellitus. The nuclear factor-κB 
signaling pathway was the most significantly specific pathway 
and subpath identified for subtype 2, which was regulated 
by miR-338-targeted suppression of C-C motif chemokine 
ligand 21 (CCL21). For subtype 3, significant related pathways 
included ubiquitin-mediated proteolysis and proteasome, 
and the important subpath was miR-146B/proteasome 26S 
subunit, non-ATPase 3 (PSMD3)/proteasome; focal adhesion 
was the significant pathway indicated for subtype 4, and the 
subpaths were miR-34A/vinculin (VCL)/focal adhesion and 
miR-34C/VCL/focal adhesion. In addition, Helicobacter pylori 
infection was higher in GC subtype 1 than in other subtypes. 
Specific genes, such as CACNA1E, CCL21, PSMD3 and VCL, 
may be used as potential feature genes to identify different 

subtypes of GC, and their associated subpaths may partially 
explain the pathogenetic mechanism of each GC subtype.

Introduction

Gastric cancer (GC) is a common malignant neoplasm that 
is derived from gastric epithelial dysplasia and intestinal 
metaplasia (1); GC is the third leading cause of malignant 
neoplasm-related mortalities worldwide, with ~989,600 new 
cases and ~738,000 mortalities in 2008 (2). GC has high 
heterogeneity with histopathologic and epidemiologic char-
acteristics (3), and can be divided into several classifications, 
including proximal nondiffuse, diffuse and distal nondiffuse 
GC (4). A previous study identified DNA content heterogeneity 
in 12 (33%) patients with primary GC that were examined (5); 
however, DNA content heterogeneity was independent of 
histological heterogeneity. The incidence and mortality rates 
of GC are declining worldwide, owing to the notable progress 
made in diagnosis, prevention and treatment; however, as the 
rate of relapse is high and we do not completely understand the 
pathogenesis, additional long-term studies are required if GC 
is to be cured.

A number of previous studies have attempted to iden-
tify new potential therapeutic targets of GC. For example, 
the upregulated expression of the transcription factor 
hepatocyte nuclear factor 4α by AMP-activated protein 
kinase signaling is a main event in GC development (6). 
Vestigial-like family member 4 (VGLL4) was reported 
to be a promising therapeutic target for GC inhibition, as 
VGLL4 competes with yes-associated protein (YAP) for 
binding with TEA domain transcription factor 1, and YAP 
is involved in overgrowth and tumor formation of multiple 
cancers (7). microRNA (miRNA) miR-329 was also previ-
ously revealed to reduce the expression of T-lymphoma 
invasion and metastasis-inducing 1, and may be a potential 
therapeutic target for suppression of GC cell invasion and 
proliferation (8). In addition, miR-7 expression was reported 
to be significantly reduced in highly metastatic GC cells, 
and insulin-like growth factor-1 receptor (IGF1R) oncogene 
overexpression, as a direct target of miR-7, may attenuate 
the function of miR-7 in GC cells (9); thus, miR-7/IGF1R 
may be a therapeutic approach to inhibit GC metastasis. 
Furthermore, several signaling pathways have been revealed 
to be associated with GC. For example, the inactivation 
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of transforming growth factor-β and hedgehog signaling 
pathways have been reported as useful therapeutic pathways 
to prevent GC progression, by inhibiting the migration 
and invasion of GC cells (10,11). However, these previous 
reports did not identify the GC subtypes of the patients 
in their study and, thus, the subtype-specific subpaths 
of miRNAs, their targeted genes and related pathways 
remain unknown.

The present study reanalyzed the data set GSE13861 
that was published by Cho et al (12). That study generated 
and analyzed microarray data from 65 patients with GC to 
identify feature genes related to relapse and subsequently 
predicted the relapse of patients who received gastrectomy. 
Conversely, the present study aimed to screen specific genes 
and to use those genes to divide the patients into different 
subtypes; as well as to identify the subtype‑specific subpaths 
of miRNA-target pathway for comprehensive understanding 
the mechanisms of GC through bioinformatical prediction 
methods.

Materials and methods

Data access and data preprocessing. The microarray raw 
data were downloaded from Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo; accession number 
GSE13861) database, which were based on the Illumina 
HumanWG-6 v3.0 Expression Beadchip platform. A total of 90 
samples were obtained, comprising 65 samples from primary 
gastric adenocarcinoma (PGD) tissues, 6 samples from 
gastrointestinal stromal tumor (GIST) tissues and 19 samples 
from normal gastric tissues. The probes were transformed to 
corresponding gene symbols and merged according to the 
application programing of Python. Mean expression values of 
the same gene were obtained and all expression values were 
revised using Z-score (13).

Differentially expressed genes (DEGs) analysis. Owing to 
high heterogeneity, the changes of expression in some impor-
tant genes that may induce GC only occur in heterogeneous 
populations. Thus, to capture those important genes within 
a group, a new method, detection of imbalanced differential 
signal (DIDS), was adopted to identify subgroup DEGs in 
heterogeneous populations (14). Based on the DIDS algorithm, 
the normal reference interval of each gene expression value 
was stipulated between the maximum and minimum value, 
and they were respectively calculated as the corresponding 
mean values in the normal group ±1.96 x standard deviation. 
Subsequently, random disturbance was conducted and multiple 
testing adjustments were performed by Benjamini-Hochberg 
method, which revised the raw P-value into the false discovery 
rate (FDR) (15). FDR <0.01 was used as the cut-off criterion 
to filter DEGs.

Hierarchical clustering. Cluster and TreeView are programs 
that offer computational and graphical analyses of the results 
from DNA microarray data (16). In the present study, hier-
archical clustering analysis was performed among the 90 
PGD samples, and the processing of expression profile data, 
including filtering the data and data normalization, were 
conducted by Cluster software (17-19). Based on the clusters 

of genes similarly expressed, the results of hierarchical clus-
tering were used to identify the different GC subtypes and 
were displayed as a heatmap (Version 1.2.0; http://www.bioc 
onductor.org/packages/release/bioc/html/heatmaps.html).

Identification of specific genes in each subtype. Following 
identification of the subtypes of GC that were based on hier-
archical clustering analysis, the specific gene expressions in 
each subtype was examined. First, the mean expression values 
of genes were distributed in each subtype. Second, to estimate 
whether an identified DEG was a specific gene for a certain 
subtype, the following formulas were used:

For each gene, score represented the deviation from normal 
range, and score >0 indicated that the DEG was upregulated 
in the PGD samples, and score <0 indicated that the DEG was 
downregulated in the PGD samples. The U distribution of 
genes related to GC is provided in Fig. 1. Specific genes were 
identified from the DEGs with the cut‑off criterion of U >0.04, 
otherwise the DEG was considered as common gene. For 
example, one gene was indicated as ‘g’ and the mean expres-
sion value of this gene in GC subtypes was indicated as ‘X1’, 
‘X2’… ‘Xi’ and ‘Xm’. ‘Max’ represented the maximum mean 
expression values in those GC subtypes, whereas ‘min’ repre-
sented the minimum mean expression values among those 
GC subtypes. ‘Xi’ represented the mean expression values of 
one gene in subtype i, and it was evaluated if this gene was 
specific to subtype i with the aforementioned formulas. If 
Xi>max‑γ x U, the gene was specific to subtype i. Where γ 
is the threshold value, and γ=1/m, in which m represents the 
number of GC subtypes.

Pathway enrichment analysis. The Molecular Signatures 
Database (MSigDB; ht tp://sof tware.broadinst itute 
.org/gsea/msigdb/index.jsp) is a collection of annotated gene 
sets used to perform gene set enrichment analysis (20). A total 
of 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways and their related gene sets data from MSigDB were 
downloaded. By combing the pathway data, specific genes 
were identified in PGD samples, and pathway enrichment 
analysis was performed on specific genes of each subtype 
using Fisher's exact test. Significant pathway terms were 
selected with the threshold of P<0.05.

Identification of subtype‑specific subpaths of miRNA‑target 
pathway. Significant drugs to diseases were predicted using 
causal inference as previously described (21); this method 
was used to construct CauseNet for the identification of 
subtype‑specific subpath of miRNA‑target pathways. A layered 
network from miRNAs to specific pathways is presented in 
Fig. 2. Relationships between miRNAs, their targets genes, 
specific genes, target‑related pathways and specific KEGG 
pathways were calculated. If a miRNA regulated several 
specific genes that were enriched in several significant KEGG 
pathways, those subpaths of miRNA-target pathway may be 
important subpaths for explaining the development of different 
subtypes of GC.
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To identify those important subpaths, the following 
algorithms were used:

Where weight1 is the weight of miRNA of each subpath, 
P|G*| is the whole number of specific genes and P|G| is the 
number of specific genes regulated by the miRNA. Weight2 
represents the weight of a target gene, in which P|G*| is the 
total KEGG pathways number in which all targets participated 
and P|G| is the KEGG pathways number that was this target 
participated. Weight3 is the weight of a pathway, in which 
P|G*| is total gene number enriched in this pathway and P|G| 
represents the number of specific genes. In addition, the scores 
of all the subpaths in each subtype were repeatedly calculated 
following the course of 1,000 times random disturbance, 
and the subpath with the max score in a certain subtype was 
chosen as the specific subpath of this subtype with the cut‑off 
criteria of P<0.05. Furthermore, subpath analysis among the 
specific genes was conducted to identify the subtype‑specific 
regulation relationship of miRNA-target pathway.

Helicobacter pylori infection rate in each GC subtype. H. pylori 
infection is a known risk factor for GC progression (22); 
however, whether H. pylori infection is a subtype-specific 

pathway for our predicted GC subtype is unknown. Thus, a 
series of bioinformatics methods and clinic information of GC 
samples with H. pylori infection were combined to calculate the 
H. pylori rate in each of the predicted GC subtypes. The iden-
tified specific genes in each subtype were used as characters to 
build a neural network (NN) model using the neuralnet package 
in R (Version 1.5.0; https://cran.r-project.org/web/pack-
ages/NeuralNetTools/index.html). The input layer was 24 
neurons (also designated 24 gene feature) and the output layer 
was 1 neuron, which was used to decide which subtype a 
certain neuron belonged. The hidden layer was set as two layers 
that included eight and five neurons, respectively. Sigmoid 
neural activation function was adopted for feed-forward 
neural network and backward propagation was used for weight 
optimization. The maximum number of iterations to conver-
gence to its stationary distribution. was 1,000. In addition, 
logistic regression (LR) model was performed to compare 
with NN model. Through building a NN model and training 
the NN with analysis data, the prediction for the four GC 
subtypes may be achieved. Following forecast classification of 
independent test data in The Cancer Genome Atlas (TCGA; 
https://cancergenome.nih.gov/), four testing-set subtypes 
were obtained. Subsequently, 100 GC samples (including 46 
H. pylori infection samples and 54 without H. pylori infec-
tion samples) were downloaded from the PMID:24816253 
data set (23). According to the clinical information regarding 
H. pylori infection rate in TCGA and the distribution of 
H. pylori infection samples in the four subtypes, the H. pylori 
infection rate in each subtype was calculated.

Results

DEG screening and hierarchical clustering. Based on the 
aforementioned criteria, a total of 1,263 DEGs that were related 
to GC were identified, including 392 downregulated genes 
and 871 upregulated genes in the PGD samples. Additionally, 
hierarchy cluster analysis indicated that the 1,263 DEGs could 
be used to divide the 65 PGD samples into four subtypes 
with correlated expression profiles. The four subtypes of GC 
were: i) Subtype 1 in blue with 11 samples; ii) subtype 2 in 
red with 29 samples; iii) subtype 3 in pink with 13 samples; 
and iv) subtype 4 in purple with 12 samples. Although three 
of the normal samples were wrongly identified as subtype 1, 
the other PGD, GIST and normal samples were placed among 
different clusters and were classified correctly. In addition, 
the results indicated that there was no heterogeneity of gene 
expression within subtypes, but there was high heterogeneity 
between different subtypes (Fig. 3).

Identification of specific genes in each subtype. According to 
the formulas described in the Methods section, specific genes 
of the four subtypes and common genes were identified. A 
total of 33 specific genes were identified in subtype 1, 318 in 
subtype 2, 161 in subtype 3 and 157 in subtype 4. In addition, a 
total of 631 common genes were detected, which were signifi-
cantly different between the GC group and normal group, but 
exhibited no notable difference within the four subtypes.

KEGG pathway enrichment analysis. To explore the significant 
differences among the four GC subtypes at the molecular 

Figure 1. U distribution of gastric cancer-related genes. The horizontal axis 
represents the gastric cancer related genes, and the vertical axis shows the U 
value of the corresponding gene. Thu blue curve is the U distribution of all 
the genes.

Figure 2. The network model for identifying the subtype‑specific subpath of 
miRNA-target pathway in each subtype.
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level, four subtype‑specific pathway analyses were conducted. 
Five specific pathways, such as renin-angiotensin system 
and H. pylori infection, were associated with GC subtype 1 
(Table I); two specific pathways were identified in subtype 2, 
including nuclear factor (NF)-κB signaling pathway and tight 
junction. The specific genes related to GC subtype 3 were 
enriched in six specific pathways that were mainly associated 
with metabolic process, such as fatty acid metabolism, protea-
some and ubiquitin-mediated proteolysis; the data indicated 
that carbohydrate metabolism may serve an important role in 
the progression of GC subtype 3. The specific genes of GC 
subtype 4 were enriched in 14 specific pathways, including 
phosphoinositide 3 kinase/Akt signaling pathway, focal adhe-
sion, vascular smooth muscle contraction and cardiac muscle 
contraction.

Identification of subtype‑specific subpath of miRNA‑target 
pathway. According to the aforementioned Methods and 

criteria, specific subpaths of each subtype were identified. 
Four or five specific subpaths were identified for each subtype 
(Table II). In subtype 1, ARF GTPase-activating protein 
GIT1 was indicated to be regulated by miR-199B, miR-122A 
and miR-199A through the H. pylori infection pathway, and 
calcium voltage-gated channel subunit α1 E (CACNA1E) was 
indicated as regulated by miR-202 through the type II diabetes 
mellitus pathway. For subtype 2, protein inhibitor of acti-
vated STAT 4 may be regulated by miR-198, and C-C motif 
chemokine ligand 21 (CCL21) may be regulated by miR-338 
and miR-370 by participating in NF-κB signaling pathway; in 
addition, miR-508 may regulate VAMP-associated protein A 
through tight junction pathway. In GC subtype 3, miR-146B 
and miR-146A were indicated to regulate proteasome 26S 
subunit, non-ATPase 3 (PSMD3) through the proteasome 
pathway. Five important subpaths of subtype 3 were identi-
fied, including miR-429 and miR-205 regulation of LDL 
receptor-related 1 through the Salmonella infection pathway, 
and miR-34A, miR-34C and miR-449 regulation of vinculin 
(VCL) through the focal adhesion pathway.

H. pylori infection rate in each GC subtype. H. pylori infection 
rate in each GC subtype was analyzed as aforementioned. The 
NN model was a more accurate method to distinguish the four 
GC subtypes compared with the LR model (Fig. 4A and B, 
respectively); the NN model was therefore used to predict 
the GC subtypes for all samples (Table III), and all the GC 
samples were divided into the four testing-set. Subsequently, 
the four testing-set was used to predict the subtype of the 
100 GC samples in the PMID:24816253 data set. Notably, the 
H. pylori infection rate in subtype 1 was higher than in other 
subtypes (Table IV), indicating that there was an increased 
susceptibility to H. pylori infection in subtype 1 compared 
with other subtypes. This outcome was consistent with the 
aforementioned analysis, which indicated that H. pylori 
infection may be a specific pathway for GC subtype 1.

Discussion

In the present study, a total of 1,263 DEGs in the 65 PGD 
samples were identified, which allowed the samples to be 
divided into four subtypes based on hierarchy cluster analysis. In 
addition, a total of 33 specific genes were screened in subtype 1, 
318 in subtype 2, 161 in subtype 3 and 157 in subtype 4. 
The subpaths miR-202/CACNA1E/type II diabetes mellitus, 
miR-338/CCL21/NF-κB signaling, miR-146B/PSMD3/protea-
some, miR-34A/VCL/focal adhesion and miR-34C/VCL/focal 
adhesion were identified more than once and therefore may be 
important specific subpaths of the four GC subtypes, respectively.

That H. pylori infection may serve a role in the progres-
sion of GC is widely accepted (24). Notably, results from 
the present study demonstrated that several specific genes of 
subtype 1 were significantly enriched in H. pylori infection 
pathway and that the H. pylori infection rate in GC subtype 1 
was higher than in other subtypes. Therefore, the present study 
hypothesized that H. pylori infection was a specific pathway 
for GC subtype 1.

CACNA1E encodes a Cav2.3 R-type voltage-activated Ca2+ 
channel that is involved in gene expression regulation, cell 
differentiation and cell death (25). In addition, CACNA1E has 

Figure 3. Hierarchical cluster map of DEGs. The horizontal axis indicates the 
different sample types by color: Gastric cancer subtype 1, blue; subtype 2, 
red; subtype 3, pink; subtype 4, purple; normal, light green; gastrointestinal 
stromal tumors, yellow. The right vertical axis shows clusters of DEGs. Red 
represents higher expression values and green represents lower expression 
values. DEGs, differentially expressed genes.
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been reported to be upregulated in air pollution-associated lung 
cancer (26), and the abnormal expression of CACNA1E may be 

used to predict the occurrence of cancers (27). Results from the 
present study revealed that CACNA1E may be a specific gene 
of GC subtype 1, and miR-202/CACNA1E/type II diabetes 
mellitus was predicted to be an important subpath of subtype 1. 
In addition, the downregulated expression of miR-202 may 
suppress GC cell proliferation (28). Furthermore, CACNA1E 
expression may increase the risk of the type 2 diabetes, and 
there is close correlation between the metabolic syndrome and 
the development of gastric adenocarcinoma (29,30). Therefore, 
it was inferred that CACNA1E, as a target of miR-202, may be 
related to GC subtype 1 by participating in the type II diabetes 
mellitus related metabolic pathway.

For GC subtype 2, the results indicated that 
miR-338-CCL21-NF-κB signaling was one of the important 
subpaths. CCL21 encodes a C-C chemokine that is mainly 
presented in lymphoid tissue and serves an important role 
in dendritic cell recruitment and lymphoid neogenesis (31). 
In addition, NF-κB signaling is a major link between cancer 
and inflammation, which is triggered by proinflammatory 
cytokines such as CCL21 (32,33); several previous studies 
have indicated that the activation of NF-κB signaling is 

Table I. Subtype‑specific pathways related to gastric cancer and common pathways of all subtypes.

Subtype KEGG pathway Counta Allb P-valuec

Subtype 1 Renin-angiotensin system 3 17 0.007398
 Folate biosynthesis 2 10 0.014313
 Type II diabetes mellitus 1 9 0.01947
 Hedgehog signaling pathway 2 13 0.024601
 Helicobacter pylori infection 1 8 0.03013
Subtype 2 NF-κB signaling pathway 6 9 0.01016
 Tight junction 4 5 0.015905
Subtype 3 Fatty acid metabolism 2 3 0.044476
 Ribosome biogenesis in eukaryotes 4 7 0.006553
 Proteasome 5 10 0.004685
 Nucleotide excision repair 3 7 0.048337
 Cell cycle 4 11 0.040908
 Ubiquitin mediated proteolysis 6 11 0.001051
Subtype 4 PI3K/Akt signaling pathway 9 22 0.000675
 Vascular smooth muscle contraction 5 10 0.004185
 Alzheimer's disease 4 7 0.00597
 Focal adhesion 5 11 0.006911
 Cardiac muscle contraction 3 5 0.015628
 Pertussis 3 5 0.015628
 Hypertrophic cardiomyopathy 4 10 0.026485
 Dilated cardiomyopathy 4 10 0.026485
 Long-term depression 3 6 0.028424
 Porphyrin and chlorophyll metabolism 2 3 0.042385
 Salmonella infection 2 3 0.042385
 Glioma 2 3 0.042385
 Dopaminergic synapse 3 7 0.045265
 Melanoma 3 7 0.045265

aNumber of specific genes enriched in the corresponding pathways. bTotal number of differentially expressed genes. cSignificance level 
determined by Fisher's exact test. KEGG, Kyoto Encyclopedia of Genes and Genomes; PI3K, phosphoinositide 3 kinase.

Figure 4. Results of test training set. (A) The predicted results of the GC 
subtypes by using the NN model. (B) The predicted results of the GC subtypes 
by using LR model. The x axis represents real category labels, with the values 
of the four GC subtypes determined as 0, 0.33, 0.66 and 1, respectively. The 
y axis represents predicted category labels. GC, gastric cancer; NN, neural 
network; LR, logistic regression.
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related to GC oncogenesis (34-36). In addition, miR-338 was 
highly associated with GC through the inhibition the GC cell 
proliferation (37), which is similar with the present data. These 
results suggested that miR-338 may promote apoptosis of GC 
subtype 2 cells by activating the NF-κB signaling pathway 
through targeting CCL21.

Pathway enrichment analysis of the specific genes in subtype 
3 demonstrated that most of the identified pathways were related 
to carbohydrate metabolism, such as fatty acid metabolism, 
ribosome biogenesis, ubiquitin-mediated proteolysis and protea-
some. Proteasome is protein complex which degrades unneeded 
or damaged proteins by proteolysis and mediates protein folding. 
In addition, PSMD3 was identified as a proteasome‑pathway 
related gene that may be regulated by miR-146A. Previous 
studies reported that PSMD3 was highly related to the progres-
sion of breast cancer and lung cancer (38,39). In addition, it 

has been indicated that miR-146A serves a key function in GC 
development by suppressing proliferation of GC cells (40,41). 
Therefore, the present study hypothesized that miR-146A may 
be related to GC subtype 3 by targeting PSMD3.

VCL encodes a cytoskeletal protein that contributes to the 
function of cell-cell and cell-matrix junctions, and is predicted 
to be associated with GC (42). This was consistent with the 
present results, which demonstrated that VCL was a specific 
gene for GC subtype 4. In addition, it has been reported that 
VCL may be a potential biomarker in many cancers, including 
GC, pancreatic cancer and colorectal cancer, as the downregu-
lated expression of VCL may promote metastasis and tumor 
progression (43-45). In addition, the miR-34 family/yin yang 
1 axis was reported to serve a crucial role in gastric carcino-
genesis (46). Therefore, miR-34A and miR-34C may depend 
on VCL to inhibit the spreading of GC subtype 4 cells by 
improving focal adhesion.

In summary, GC was divided into four subtypes 
based on the identified 1,263 DEGs in the PGD samples. 

Table II. Subtype‑specific subpaths of gastric cancer.

Subtype miRNA Pathway Targeta Score P-value

Subtype 1 miR-199B Helicobacter pylori infection GIT1 1.256062 0.0307
 miR-122A Helicobacter pylori infection GIT1 1.256062 0.0314
 miR-199A Helicobacter pylori infection GIT1 1.256062 0.0317
 miR-202 Type II diabetes mellitus CACNA1E 0.610109 0.0356
Subtype 2 miR-198 NF-κB signaling pathway PIAS4 1.156533 0.0181
 miR-338 NF-κB signaling pathway CCL21 1.170037 0.0195
 miR-370 NF-κB signaling pathway CCL21 1.16555 0.0211
 miR-508 Tight junction VAPA 1.857042 0.0372
Subtype 3 miR-146B Proteasome PSMD3 1.187736 0.008
 miR-524 Nucleotide excision repair ERCC8 1.532384 0.009
 miR-146A Proteasome PSMD3 1.187736 0.011
 miR-193A Fatty acid metabolism ACACA 2.006123 0.049
Subtype 4 miR-429 Salmonella infection LRP1 and CACNA1C 2.278013 0.022
 miR-34A Focal adhesion VCL 0.760521 0.029
 miR-205 Salmonella infection LRP1 1.085376 0.031
 miR-34C Focal adhesion VCL 0.760521 0.032
 miR-449 Focal adhesion VCL 0.760521 0.041

aSpecific genes in the corresponding subtype. ACACA, acetyl-CoA carboxylase α; CACNA1, calcium voltage-gated channel subunit α1; CCL21, 
C-C motif chemokine ligand 21; ERCC8, ERCC excision repair 8, CSA ubiquitin ligase complex subunit; GIT1, ARF GTPase-activating 
protein GIT1; LRP1, LDL receptor-related 1; NF-κB, nuclear factor-κB; PIAS4, protein inhibitor of activated STAT 4; PSMD3, proteasome 
26S subunit, non-ATPase 3; VAPA, VAMP-associated protein A; VCL, vinculin.

Table III. Predicting gastric cancer subtypes using the neural 
network model.

 Predicted
 ---------------------------------------------------------------------------------------
Type Subtype 1 Subtype 2 Subtype 3 Subtype 4

Observed
  Subtype 1 11 1 1 1
  Subtype 2 0 25 0 2
  Subtype 3 1 3 9 0
  Subtype 4 1 0 0 13

Table IV. Helicobacter pylori infection rate of four gastric 
cancer subtypes.

Subtype Infection ratio n

Subtype 1 0.67 24
Subtype 2 0.34 29
Subtype 3 0.58 19
Subtype 4 0.32 28
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Additionally, specific genes such as CACNA1E, CCL21, 
PSMD3 and VCL may be used as potential feature genes 
to identify different types of GC. It was concluded that the 
subtype‑specific subpaths such as miR‑202/CACNA1E/type 
II diabetes mellitus, miR-338/CCL21/NF-κB signaling, 
miR-146B/PSMD3/proteasome and miR-34A/VCL/focal 
adhesion and miR-34C/VCL/focal adhesion may serve crucial 
roles in the development of GC subtypes. Furthermore, 
the present study speculated that H. pylori infection was a 
specific pathway for GC subtype 1. However, further experi-
mentation is required to confirm these predicted outcomes.
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