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Abstract
Applying tools available in network science and graph theory to study brain networks has

opened a new era in understanding brain mechanisms. Brain functional networks extracted

from EEG time series have been frequently studied in health and diseases. In this manu-

script, we studied failure resiliency of EEG-based brain functional networks. The network

structures were extracted by analysing EEG time series obtained from 30 healthy subjects

in resting state eyes-closed conditions. As the network structure was extracted, we mea-

sured a number of metrics related to their resiliency. In general, the brain networks showed

worse resilient behaviour as compared to corresponding random networks with the same

degree sequences. Brain networks had higher vulnerability than the random ones (P <

0.05), indicating that their global efficiency (i.e., communicability between the regions) is

more affected by removing the important nodes. Furthermore, the breakdown happened as

a result of cascaded failures in brain networks was severer (i.e., less nodes survived) as

compared to randomized versions (P < 0.05). These results suggest that real EEG-based

networks have not been evolved to possess optimal resiliency against failures.

Introduction
Networked structures are abundant and many real-world systems can be modelled as networks
with nodes representing the individual units and edges representing the relations between
them. In recent years, with tremendous progress in computing tools and database systems,
techniques developed in Network Science have been applied to many real-world systems [1–3].
Graph theory tools have been extensively applied to the signals recorded from the brain [4, 5].
The brain can be described as a networked structure at both micro and macro levels. In brain
networks, nodes represent the defined brain regions and the edges correspond to anatomical/
functional relations between these regions. Anatomical brain networks can be studied using
diffusion tensor imaging (DTI) [6] while techniques such as functional magnetic resonance
imaging (fMRI), electroencephalography (EEG) and magnetocephalography (MEG) can be
used to discover functional brain networks [7–9]. Analysis of brain networks in health and dis-
ease has revealed that their structure might be disrupted in brain disorders such as epilepsy
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[10], Parkinson’s disease [11], schizophrenia [9, 12], Alzheimer’s disease [13–15], and psycho-
genic non-epileptic seizures [16].

Complex networks might undergo component failure and lose some of their nodes and/or
edges [17]. Component failures are often divided into two categories: errors and attacks. Errors
are random failures, while attacks are targeted failures of (often important) nodes/edges. Many
biological networks have shown to be robust against random errors that might happen in their
structure [17–19]; however, they might not be enough resilient against intentional attacks to
their hub components. Indeed, scale-free networks are fragile against attacks [17, 20], and
many real-world networks are scale-free, i.e., their degree distribution is power-law. Often,
structural properties of networks such as their global efficiency and the size of the largest con-
nected component are used to study failure tolerance of networks [17, 20–22]. Dynamical
properties such as synchronizability and cooperation have also been studied in networks
undergoing errors and attacks [23, 24]. Component failure might have a devastating outcome
when it results in a cascade of failures in other components [25–27]. Random or intentional
failures in some components of a network might cause other components to go beyond their
capacity. As a result, some other components might also fail and this process can lead to a cas-
caded failure, which breaks the network down and prevents it from proper functioning [28].

In this manuscript, we studied failure tolerance of EEG-based brain functional networks.
Our study, to the best of our knowledge, is the first one reporting failure tolerance of brain
functional networks. The EEGs recorded from 30 healthy subjects were used for the analysis.
The properties of the brain networks were compared with properly randomized networks with
the same degree-sequence as the original networks. Such network randomization strategy has
been previously suggested to discover the motifs in networks [29]. We used correlation analysis
[30] in order to obtain the network connectivity matrices. Our analysis revealed that brain net-
works are less efficient (in terms of communicability between the nodes) as compared to the
randomized versions. They are also less resilient than random networks; the brain networks
have higher vulnerability than random ones. Furthermore, cascaded failures have more devas-
tating outcome in the brain networks than random ones.

Methods

A. EEG recording
We used the EEGs of 30 healthy subjects (age 33.4 ± 10.8; 17 men; all right-handed) without
known neurological or psychiatric illness or trauma and without substance abuse or depen-
dence. These subjects have been previously used as healthy controls in our projects on studying
EEG signs of schizophrenia, Alzheimer’s disease and non-epileptic seizures [31–33]. All partic-
ipants in this study were fully informed about the study and gave written consent. All the pro-
cedures conformed to the Declaration of Helsinki (1964) by the World Medical Association
concerning human experimentation and were approved by the local ethics committee of Lau-
sanne University.

The 3–4 minutes of resting-state eyes-closed EEG data were collected in a semi-dark room
with a low level of environmental noise while each subject was sitting in a comfortable chair.
The resting state EEGs were recorded with the 128-channel Geodesic Sensor Net (EGI, USA)
with all the electrode impedances kept under 30 kO. The recordings were made with vertex ref-
erence using a low-pass filter set to 100 Hz. The signals were digitized at a rate of 1000 sam-
ples/s with a 12-bit analog-to-digital converter. They were further filtered (FIR, band-pass of
1–70 Hz, notch at 50 Hz), re-referenced against the common average reference, and segmented
into non-overlapping epochs using the NS3 software (EGI, USA). Artefacts in all channels
were edited off-line: first, automatically, based on an absolute voltage threshold (100 μV) and
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on a transition threshold (50 μV), and then by thorough visual inspection, which allowed us to
identify and reject epochs or channels with moderate muscle artifacts not reaching threshold
values. We also excluded from further analysis the outer sensors due to low signal to noise
ratio. Finally, 111 sensors were used for further computation.

The interpretation of surface common average reference EEG is limited because of contami-
nation by volume conduction and reference electrode effects [34]. In this work, we used corre-
lation analsys to construct connectivity matrices, and it has been shown that correlation
coefficients are significantly infleunced by volume conduction [35]. These unwanted effects
were minimized with the high-resolution Laplacian transformed EEG signals, which isolates
source activity under each sensor [35, 36]. To this end, at each sample, a 2-D spline was fitted
to common-average-reference EEG, along the surface of the best-fit sphere [37]. For comput-
ing Laplacian transform of EEG signals, we used the CSD toolbox (psychophysiology.cpmc.
columbia.edu/Software/CSDtoolbox). To obtain greater confidence in the correlation esti-
mates, signals were segmented into non-overlapping 1-second epochs. The EEG time series
were analyzed in conventional frequency bands including theta (3–7 Hz), alpha (7–13 Hz),
beta (13–30 Hz) and gamma (30–50 Hz). We used a fifth order Elliptic bandpass filter with 0.5
dB of ripple in the passband and 20 dB of attenuation in the stopband.

B. Constructing brain functional networks
The filtered EEG time series were used to obtain the connectivity structure of the functional
brain networks. The first step in extracting the network structure from time series is to obtain
the correlation (or dependency) matrix between the nodes, i.e., EEG sensor locations. We
applied Pearson product momentum correlation coefficient for all electrode pairs, resulting in
a 111 × 111 weighted correlation matrix for each subject. The correlation coefficient between
sensors i and j can be obtained as

rij ¼
covði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðiÞvarðjÞp ; ð1Þ

where cov(i,j) is the covariance between nodes i and j, and var(i) is the variance of node i. By
averaging the absolute value of the correlation matrices over the artefact-free epochs, we com-
puted a weighted correlation matrix for each subject.

The next step is to construct the functional brain networks based on the correlation matri-
ces. Often, binary brain networks (with entries as 1 or 0) are studied [38]. A common method
for constructing binary networks is to threshold the weighted correlation matrices: if the corre-
lation between two nodes is larger than a certain threshold, the corresponding entry in the
binary adjacency matrix is set to 1, otherwise to 0. Networks can be defined arbitrarily on the
basis of different thresholds, but may not be comparable. Indeed, binarizing two correlation
matrices based on a specific threshold value might result in two networks with different density
values, i.e., number of links. An alternative approach is to build binary networks based on net-
work density, that is, to threshold them in such a way that they have equal density values [15,
39]. We binarized the weighted correlation matrices (under different threshold values) such
that they have the same number of links, i.e., with the same density. To this end, the density
values varied from 0.02 to 0.3 with 0.01 steps.

C. Resiliency metrics
Error and attack tolerance of complex networks is one of the major issues studied in network
science [17, 21, 40]. This is often studied by observing how various network properties change
as their components are removed randomly or intentionally. Among the properties studies in
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this context are the global efficiency and the size of the largest connected component. Global
efficiency of a network is closely related to its integration properties [41]. Network integration
is the ability of a network to combine the information of various parts. The global efficiency is
defined as

E ¼ 1

NðN � 1Þ
X

i;j

1

li;j
; ð2Þ

where N is the size of the network (N = 111 here) and li,j is the length of the shortest path
between nodes i and j. Global efficiency is analogous to the average path length; it can be
applied on both connected and disconnected networks, while the average path length cannot
be computed for disconnected networks. It scales from 0 to 1; complete networks have global
efficiency of 1, and very sparse networks with long paths between their nodes have global effi-
ciency near 0. The density-efficiency analysis of networks can give useful information on their
cost-economic structure. Both these metrics scale between 0 and 1, and substituting density
from efficiency, as shown in [39], results in a peak-shaped curve (see Fig 1), which shows the
density value for which the network has cost-efficient behavior. Indeed, as the network density
increases (i.e., the number of edges increases), its efficiency also increase. However, by increas-
ing the density from a certain value, the rate of increase in the efficiency decrease, and thus
density-efficiency curve (efficiency minus density) declines. The density value at which the effi-
ciency-cost curve reaches its maximum is often interpreted as the optimal density in terms of
the economic wirings of the network.

Networks may undergo random and/or intentional failures in their components, and their
resiliency against such a failure is of high importance for their proper functioning. If the perfor-
mance of the network is associated to its efficiency, the vulnerability of a node would be the
amount of drop in the performance when the node is removed from the network. More pre-
cisely, vulnerability of node i is calculated as

Vi ¼
E � Ei

E
; ð3Þ

where E is the efficiency of the original network and Ei is the efficiency of the network after
removal of node i. A measure for the network vulnerability is the maximum vulnerability for
all its nodes

V ¼ maxiVi ; i ¼ 1; 2; . . . ;N: ð4Þ

Another frequently considered framework to study resiliency of complex networks is cas-
caded failures [26–28]. We considered a redistribution rule for the cascaded failures [26–28,
42, 43]. First, each node is associated with a capacity value. Here, we considered the capacity of
each node to be a function of its load (betweenness centrality) in the original network. Node-
betweenness centrality Bi is a centrality measure of node i in a graph, which shows the number
of shortest paths making use of node i (except those between the i-th node with the other
nodes) [44]. More precisely,

Bi ¼
X

p6¼i 6¼q
ðGpqðiÞ=GpqÞ; ð5Þ

where Γpq is the number of shortest paths between nodes p and q and Γpq(i) is the number of
these shortest paths making use of the node i. Capacity of each node is calculated as

Ci ¼ ð1þ cÞBi; ð6Þ
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where c> 0 is a control parameter determining the relation between the capacity and the initial
load. The nodes become better tolerant (i.e., higher capacity) for higher values of c.

The algorithm used for cascaded failures is as follows. First, the betweenness centrality values
were calculated, and the capacities were obtained for a chosen value for c. Then, the node with
the highest betweenness value was removed from the network. Note that when a node is removed
from the network, all its connecting edges are also removed. Then, the betweenness values were
recalculated, and the nodes whose betweenness was higher than their capacity, were removed
from the network. This process continued until no further removal was needed and a steady state
solution was attained. Finally, the percentage of survived nodes (S) was calculated as an indicator
of cascade depth; the higher the S, the better resilient the network against cascaded failures.

D. Statistical assessments and correlation analysis
The attack tolerance of the brain functional networks was compared with that of properly ran-
domized version of the networks. For each binary network, we randomized it by shuffling the
edges such that the original nodes’ degree was kept in the randomized version. This randomi-
zation process was performed 100 times and the average values were used for statistical test.

Fig 1. Efficiency-cost plots (Global Efficiency (E) minus Network Density (D)) of EEG-based brain networks as a function of density values.Mean
values with bars corresponding to the standard errors of the efficiency-cost curves are plotted for different frequency bands including theta (3–7 Hz), alpha
(7–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz).The graphs show the metrics for the functional networks obtained from EEG time series of 30 healthy
subjects (black lines) and the randomized networks (cyan lines). The randomized networks have the same degree sequence as the original networks. The
red asterisk above the plots represent the density value for which the two populations have significantly different median (Wilcoxon’s ranksum test; P < 0.05).

doi:10.1371/journal.pone.0135333.g001
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Parameters of EEG-based brain networks and their randomized versions were passed through
Wilcoxon’s Ranksum test to assess whether the medians of the two populations are signifi-
cantly different. All values with P< 0.05 were considered to be significantly different. All the
computations were performed in MatLab.

Results
Fig 1 shows the efficiency-minus-density curves for the EEG-based functional networks, which
analysis has been proposed to study the economic structure of brain networks [7, 39, 45]. Our
results showed that EEG-based brain functional networks are less efficient (in terms of global
efficiency measure) than random networks. For all density values and frequency bands, ran-
dom networks had higher global efficiency than brain networks (P< 0.05). Furthermore, the
brain networks had the optimal economic wirings in higher density values (~ 0.2) as compared
with the random ones (~ 0.12). In other words, EEG-based brain networks require more wir-
ings than random ones for economic efficiency. Global efficiency is indeed measuring the gen-
eral communicability of a network. Our results indicate that brain networks have not been
evolved in a way to be optimal for communicability of its regions with each other, or at least,
there are other mechanisms controlling the evolution of brain networks.

Figs 2 and 3 show to how much extent the brain networks are failure resilient as compared
to random ones. For a broad range of density values, the brain networks have higher vulnera-
bility (P< 0.05) than random networks (Fig 2). Vulnerability metric indicates how much

Fig 2. Vulnerability V (as defined in Eqs (3) and (4)) as a function of density in EEG-based brain functional networks and the corresponding
randomized versions.Other designations are as Fig 1.

doi:10.1371/journal.pone.0135333.g002
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vulnerable the network is, if its nodes are removed from the network. For example, vulnerabil-
ity of 0.1 indicates that the network loses up to 10% of its efficiency, when a single most vulner-
able node is removed from the network. Our results showed that sparse brain networks (with
density values smaller than 0.1) were more vulnerable than random ones across all frequency
bands (P< 0.05). Although high density networks in alpha band did not significantly differ in
their vulnerability values, we identified a significant difference in theta, beta and gamma bands,
for which brain networks had higher vulnerability than random ones.

Fig 3 shows the normalized size of the survived nodes (S) as a function of network density,
when a cascaded failure happed in the network. Cascaded failures are devastated failures in
which breaking down a component leads other components not to tolerate the extra load, and
consequently fail. Studying how the brain reacts against cascaded failures is an important issue,
since information processing in the brain is highly hierarchal [46], and the failure can rapidly
propagate through the network. In all frequency bands, random networks showed significantly

Fig 3. Cascaded failures in EEG-based brain functional networks and the corresponding randomized versions. The graphs show the normalized size
of the survived nodes (the mean value with bars indicating the standard error) as a result of a cascaded failure. The graphs are for different values of
parameter c (see Eq (6) for details), where higher values of c indicate higher load capacity for the nodes, and consequently, better resiliency against a
cascaded failure. The failure starts by removing the node with the highest betweenness centrality value, then redistributing the loads, and then removing the
nodes for which the load is higher than the capacity. The process is repeated until no further removal is needed and a steady state solution is obtained.
Finally, the percentage of the survived nodes (S) is plotted as a function of the network density.

doi:10.1371/journal.pone.0135333.g003
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better resiliency against cascaded failures as compared to the brain networks (P< 0.05). For
small values of c, the statistical significant is widespread across all density levels (c indicates the
relation between the capacities of the nodes with their initial loads such that the higher the c,
the higher the tolerance of the nodes; see Methods for detailed explanation). However, as c
increased, we found no significant differences for high density values.

Conclusion and Discussion
Graph theory tools have been extensively applied to study anatomical and functional networks
of human brain [3, 4]. The brain is an extraordinary complex network, with nodes representing
the individual regions and links the anatomical/functional connections between them, and
studying its properties can help us better understand the brain. Connectomics view, which deals
with comprehensive mapping the brain interconnections, gets increasing attention in under-
standing brain disorders [3, 47]. Graph theoretical analysis of anatomical/functional brain net-
works in health and disease has provided their specifications. Studying how removal of some
components affects the network functionality is important for the brain networks, since some
brain regions might, for some reasons, lose functionality and fail to communicate with other
regions.

In this work we investigated failure tolerance of EEG-based brain functional networks and
compared with that of properly randomized networks. Our results showed that global effi-
ciency (analogous to the inverse of average path length) of brain networks were significantly
less as compared to the corresponding random networks. This means that the wirings of brain
functional networks have been placed primarily not for providing optimal communication
between the regions, but for other neurophysiological reasons for which the regional connec-
tions are needed. Indeed, if global efficiency had a major role in optimizing the neuronal con-
nections, the brain networks should have comparable efficiency with random ones. We also
studied how removing the nodes affected the network properties. To this end, we performed
two experiments. In the first experiment, the vulnerability of the networks was studied; brain
networks were more vulnerable than random ones indicating that they significantly lose the
normal functionality if the vulnerable regions are subject to attack. Vulnerability of the brain
networks was 0.12 in some cases, which means that the network loses 12% of its efficiency
when only a single node (out of 111 nodes) is removed from the network. As the second experi-
ment, we studied how brain networks response to cascaded failures. The results revealed
weaker resiliency of brain networks as compared to random ones against cascaded failures. We
showed that by simulating the cascaded failure by first failing the highly loaded nodes, and
then propagating it along the network, the brain networks had significantly less survived nodes
than randomized versions.

In summary, our results suggest that brain networks are fragile to targeted attacks. However,
due to short period of EEG recordings (3–4 minutes), the interpretations of the results are lim-
ited and should be replicated with longer EEGs. Also, to have better understanding of resilient
behaviour of brain networks, further experiments should be carried out using other neuroim-
aging techniques such as fMRI, MEG and DTI.
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