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Abstract: Chromosomal instability (CIN) is associated with many human diseases, including
neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key
driver for disease initiation and progression. A major source of structural chromosome instability
(s-CIN) leading to structural chromosome aberrations is “replication stress”, a condition in which
stalled or slowly progressing replication forks interfere with timely and error-free completion of
the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the
cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss
recent evidence showing that these two forms of chromosomal instability can be mechanistically
interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing
on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement,
which prevent or contribute to specific types of structural chromosome aberrations and segregation
errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy
can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss
how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells
or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our
current knowledge may be exploited for developing cancer therapies.

Keywords: DNA replication stress; chromosomal instability; chromosome segregation; mitosis;
cancer; aneuploidy

1. Introduction

To maintain a stable genome, at each cell division, a cell must accurately duplicate its genetic
material and equally distribute the newly replicated chromosomes in each daughter cell during mitosis.
Dysfunctions in one of these processes are the main causes of chromosomal instability (CIN), which is
defined as an increased rate of chromosomal changes. As a form of genomic instability, CIN can be
manifested as either numerical (i.e., gain and/or loss of whole chromosomes) or structural (e.g., gain,
loss and/or rearrangements of parts of chromosomes) termed numerical chromosome instability (n-CIN)
and structural chromosome instability (s-CIN), respectively [1]. The source of n-CIN is presumed
to lie in mitosis. During mitosis, the cell undergoes a vast reorganization of the cytoskeleton and
assembles the mitotic spindle apparatus; the microtubules emanating from the centrosomes connect
both spindle poles to the individualized and condensed chromosomes by attaching to the kinetochore
structure organized at the centromeric chromatin. The spindle assembly checkpoint (SAC) ensures
that each chromosome is correctly aligned and attached to the microtubules emanating from the
opposite poles before the two chromatids separate and move towards the opposite poles at anaphase
and telophase, after which the cytokinetic furrow divides the two daughter cells. Chromosome
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segregation errors can occur because of mitotic dysfunctions such as spindle mono- or multipolarity,
altered microtubule stability or dynamics, cohesion defects and defective kinetochore assembly or
SAC function. In these contexts, major sources of whole chromosome mis-segregation are merotelic
attachments [2]. In these cases, one of the two kinetochores is attached to both poles; despite correction
mechanisms, the erroneous attachment can persist and cause the mal-oriented chromosome to lag at
anaphase, preventing its proper segregation [3].

In the second scenario, the source of s-CIN is distinguished as premitotic, since structural
aberrations mainly result from defects in the cellular processes that directly influence chromosome
integrity, such as DNA replication and repair. However, these two types of CIN can be interlinked,
and they often coexist in cancer cells [4].

Strikingly, one other hallmark of cancer that, similar to CIN, can also be detected in precancerous
and cancerous lesions and has a dual role in restraining and promoting cancer development and
progression is replication stress [5]. Recent advancements have shown that the co-occurrence of both
replication stress and CIN is not based on mere coincidence but that they are highly interdependent.

In the following paragraphs, we analyze the main mechanisms underlying this connection, as well
as explain how distinct CIN mechanisms can fuel each other.

2. Causes of Replication Stress and Its Role in Chromosomal Instability

“Replication stress” is a broad term that refers to any condition that leads to the hindrance of DNA
replication forks or the perturbation of replication dynamics. DNA replication is a highly regulated
process that takes place during the S phase of the cell cycle, when the cell duplicates its genetic material.
It starts at multiple loci called “origins of replication”, from which replication forks emanate and
travel in opposite directions to allow for complete replication of the genome. Replication origins are
established (licensed) in late mitosis and the G1 phase before being activated at the G1-S phase transition
and fired during the S phase, following a spatially and temporally regulated program [6]. The density
of licensed origins and their spatial organization are pivotal for providing the cell with sufficient
flexibility to execute the replication program. Indeed, some of the potential origins remain dormant and
can be used as backup in case of replication fork stalling [7]. Several exogenous and endogenous threats
can lead to replication stress, including DNA lesions or adducts induced by chemical compounds,
UV or ionizing radiation, reactive oxygen species (ROS), byproducts of cellular metabolism, nucleotide
pool imbalances or a shortage of replication factors [8,9]. Another potential cause of replication stress is
linked to the genetic and epigenetic features of specific loci, such as telomeres, centromeres, ribosomal
DNA (rDNA) loci or fragile sites, which are intrinsically difficult to replicate due to the presence of
repeat sequences that can form secondary structures, the chromatin conformation, origin distribution
and replication timing [10–14], as well as to the physiological obstacle presented by transcription [15].
Indeed, when not properly coordinated, the transcription and replication processes can interfere with
each other, altering their dynamics, inducing transcription-replication conflicts (TRCs) and promoting
the formation of R-loops, three-stranded structures constituted with an RNA-DNA hybrid and a
looped-out single-stranded DNA (ssDNA). All these sources of replication stress can slow or stall
replication forks and, in the case of sustained replication stress or pathological conditions, induce fork
breakage or collapse, resulting in replication-associated DNA double-strand breaks (DSBs) [16].

Replication stress is the main driver of genomic instability in the early preneoplastic stages of
tumor development [17,18]. Indeed, recent findings have suggested that the stalling or collapse of DNA
replication forks is the prevalent source of DNA damage due to oncogene activation or overexpression
(or inactivation of a tumor suppressor), which may contribute to genome instability in the majority of
human cancers [5]. Different oncogenes may induce a distinct landscape of genome instability [19],
likely reflecting different mechanisms, that, in some cases, overlap, by which they induce replication
stress [20]. For instance, RAS overexpression can alter fork speed and cellular metabolism and
deplete the nucleotide pool [21], while the deregulated expression of cyclin E can interfere with origin
licensing [22] or vice versa, increase origin firing and induce TRCs [23]. A recent study mapped the
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replication initiation and transcription genome-wide and showed that cyclin E overexpression induces
premature entry into the S phase, which leaves insufficient time for transcription to erase origins from
genic regions, thus leading to the firing of intragenic origins and TRCs [24]. Similarly, Myc amplification
or overexpression can also induce transcription-associated replication stress [24]. In addition, excessive
origin firing and deregulated replication dynamics can lead to the exhaustion of nucleotides and
reduce the availability of essential replication factors [25–27]. The effect of oncogene expression can
also depend on the level and duration of the stress, as well as the cell or tissue context [20].

It has become clear from these studies that different sources of stress often converge on a limited
pool of vulnerable sites that are particularly sensitive to replication stress and, under these conditions,
have the tendency to undergo breakage during mitosis [13]. These sites, called common fragile sites
(CFSs), have been known to cytogeneticists since the 1980s, when—while studying the cytological
expression of the fragile X chromosome associated with mental retardation—researchers observed
recurrent breaks in mitotic chromosomes in lymphocytes cultured in folate-deprived medium or
exposed to low doses of aphidicolin (APH), an inhibitor of DNA polymerase α [28,29]. Interestingly,
it has been shown that CFSs are also involved in DNA damage induction following oncogene activation
in early preneoplastic stages of tumor development, indicating that the induction of their instability
may be a key step in the tumorigenic process [17,18,30,31]. In addition to oncogene activation,
the loss-of-function of caretaker genes that encode proteins involved in the maintenance of genome
stability also enhances their instability [32–35]. The study of the mechanisms underlying CFS instability
has shed light on the important link between replication stress and CIN [36]. They have shown
that these loci often remain incompletely replicated during the S phase, leading to the persistence of
replication intermediates until G2 and mitosis, when they are processed by specific pathways that,
by resolving these structures, rescue cells from replication stress and allow proper sister chromatid
separation and mitotic cell division [37]. Hereafter, we discuss how replication stress can impact the
mitotic process and result in both structural and numerical CIN, acting to restrain proliferation or
promote genetic diversification during tumor evolution. This connection between replication stress and
CIN may be key to understanding the pathogenetic mechanisms involved in chromosomal instability
and cancer-prone syndromes, such as ataxia telangiectasia (AT), familial cutaneous telangiectasia and
cancer syndrome, Seckel syndrome, Bloom syndrome or Fanconi anemia, as well as to understanding
the role of CIN in cancer [38–43].

2.1. Mechanisms Protecting against Replication Stress and Under-Replicated DNA during Mitosis

To protect the genetic material from endogenous or exogenous assaults, eukaryotic cells have
evolved the DNA damage response (DDR), a complex signal transduction pathway in which DNA
damage is detected and activates the core DDR transducer kinases, the ataxia telangiectasia-mutated
(ATM), ATM and Rad3-related (ATR) and DNA-PKcs to orchestrate the cell response to specific DNA
lesions and alterations to the DNA structure and promote their repair [44]. The cellular response to
replication stress is primarily controlled by the ATR kinase, while ATM and DNA-PK most prominently
respond to DSBs and contribute to ATR activation under specific damaging conditions or act as a
backup [45–48]. ATR is activated by DNA damage or stress that impedes replication fork progression
and leads to the generation of ssDNA. The stepwise activation of ATR signaling and phosphorylation
of its main downstream effector CHK1 upon different levels of replication stress or the formation of
specific structures may elicit the different responses necessary to stabilize or resume replication fork
function, regulate origin firing, delay cell cycle progression and repair any damage before the cell
enters mitosis [45,49].

Under replication stress conditions, the uncoupling of DNA polymerase and MCM helicase at
stalled replication forks results in the formation of ssDNA that is instantly protected by an RPA coating,
recruiting ATR and its partner ATRIP, which activate downstream effectors to stabilize the forks and
activate the checkpoint [50]. ATR signaling is allosterically stimulated by TOPBP1 [51], which may
serve to amplify ATR signaling [45]; strikingly, a study showed that the expression of a TOPBP1 protein
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mutated in the ATR-activating domain slowed the rate of DNA replication elongation while increasing
the origin firing in the S phase, providing evidence for the implication of ATR in the spatiotemporal
regulation of DNA replication and the response to replication stress [16,52]. The maintenance of the
spatiotemporal program of replication by ATR safeguards stalled replication forks from breakage
and prevents replication catastrophe. ATR confers this protection by suppressing the excessive firing
of replication origins that can otherwise lead to the exhaustion of the rate-limiting pool of RPA and
conversion of ssDNA at stalled replication forks to DNA double-strand breaks (DSBs) in the S phase,
a serious threat to genome stability [27].

Additionally, under unperturbed conditions, ATR and CHK1 are activated to limit dormant origin
firing in actively replicating sites. By stabilizing the PP1 phosphatase and RIF1 interaction, ATR and
CHK1 prevent the phosphorylation of RIF1 and inhibit the assembly of the CMG helicase at replication
origins [53]. Interestingly, studies on the activation of ATR-CHK1 in unperturbed conditions led to the
identification of a distinctive allosteric activator, Ewing’s tumor-associated antigen 1 (ETAA1) [16,54–56].
Although it is still unclear how the activation of ATR by ETAA1 is triggered in the unperturbed S phase,
it is thought that the transient ssDNA generated by ongoing DNA replication triggers this activation
that continues throughout the S phase to the transition point with G2. It has also been shown that
the phosphorylation of FOXM1, which is dependent on cyclin-dependent kinase 1 (CDK1) activation,
occurs at exactly this S/G2 transition, promoting the execution of a mitotic transcriptional program.
Accordingly, the delay in the activation of CDK1 itself is caused by CHK1, ensuring that the cell does
not progress to G2 prior to completion of DNA replication in the S phase [57]. Similarly, a recent
study by the Lindqvist laboratory has shown that active DNA replication restricts the activation of
CDK1 and PLK1 mitotic kinases through CHK1 [58]. Another recent study in yeast has shown that the
basal activation of the Mec1-Rad53 (the functional homologs of ATR-CHK1) pathway results from
the spontaneous replication stress triggered by an insufficient level of dNTPs in the early S phase
that contributes to the coordination of the origin activity with dNTP synthesis, a function conserved
in mammals [47,59,60]. Interestingly, however, the essential function of Mec1-Rad53 is linked to the
maintenance of replication fork integrity, which prevents cells bearing under-replicated and damaged
chromosomes from progressing to mitosis [59]. The stabilization of the replication fork protects the
stalled fork from degradation and maintains its competence to resume DNA synthesis upon removal
or bypass of the replication obstacle [45,61]. If the stalled fork cannot be rescued by an incoming fork
and cannot resume, then it can undergo fork collapse, a process that involves the generation of a DSB
at the fork. A DSB end can be an intermediate structure that enables a recombination-mediated restart
or can be the result of the active cleavage of terminally arrested or remodeled forks. Proteomic studies
of proteins associated with replication forks in the absence of ATR have shown that fork collapse
does not involve the dissociation of the replisome but a dynamic change in its composition [62].
For a detailed overview of the mechanisms involved in replication-coupled repair and the pathways
involved in the protection, remodeling and processing of stalled replication forks, the reader is directed
to the following reviews [16,63]. Homologous recombination (HR) factors such as RAD51, BRCA1
and BRCA2 and members of the FA pathway, disabled in the chromosome instability and cancer
predisposition syndrome Fanconi anemia, are central regulators of replication stress tolerance through
their functions in replication fork protection, which are distinct from their canonical roles in the
HR-mediated repair of collapsed forks [63]. Following replication stress, the recruitment of the FA
protein FANCD2 and of TOPBP1 to stalled forks is promoted by the microRNA pathway enzymes
Dicer and Drosha, which foster the activation of the ATR-dependent S phase checkpoint and limit cells
with under-replicated DNA from proceeding into mitosis [64].

These findings are in agreement with those of a previous study, showing that, in the presence of
ATR and CHK1, low levels of under-replicated DNA were able to escape surveillance and continue
into mitosis; furthermore, this portion of “leaked” under-replicated DNA was increased after ATR
depletion [65]. It is unclear whether this leakage underlies a low level of active forks or terminally
arrested forks that do not signal to the checkpoint. Indeed, several studies have shown that replication
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completion at some loci in the genome, notably CFSs, can be delayed after the S phase, particularly
after replication stress; thus, replication intermediates persist until G2 and mitosis [37,66]. A recent
study from Lafarga and collaborators identified the RNA-binding protein TIAR as a novel component
of a G2/M checkpoint that prevents cells with under-replicated or damaged DNA from entering mitosis.
TIAR accumulates in G2/M transition granules (GMGs) during an unperturbed cell cycle and upon
the induction of replication stress and retains CDK1, attenuating its activity. Interestingly, GMGs are
enriched with proteins recruited to stalled replication forks and with components of the transcription
machinery, suggesting that local transcription activity or TRCs may serve as signals that activate a
G2/M checkpoint [67].

The Cimprich laboratory has shown that the orientation of TRCs determines distinct DNA damage
responses, with head-on collisions between transcription and replication machineries promoting R-loop
formation and ATR activation, and co-directional collisions promoting R-loop resolution and leading
to ATM activation, likely as a consequence of DSB formation, at R-loop-prone sequences [68].

Previous studies have also suggested a role for ATM in the replication stress response, where
ATM with the MRE11–RAD50–NBS1 (MRN) complex promotes the HR-mediated recovery of stalled or
collapsed replication forks [9,69]. ATM has also been observed to cooperate with downstream helicases,
WRN and BLM, in the response to replication fork stalling [70,71]. Recently, and with a similar cellular
setup, Fugger et al. showed that, following hydroxyurea (HU)-induced replication stress, F-box
DNA helicase 1 (FBH1), which is implicated in replication fork regression, activates ATM signaling in
response to fork stalling independent of DSB formation. Interestingly, they also showed that, following
FBH1 depletion under the HU treatment conditions, the cells entered mitosis sooner than their control
counterparts, pointing towards a role for FBH1 in G2/M checkpoint control, which can limit the
genomic regions with inactivated or damaged forks from progressing into mitosis [72]. In addition, in a
role independent of DNA damage, ATM has been recently found to cooperate with p53 in the mitotic
surveillance pathway in nontransformed human cells. It has been reported that the relocalization of
p53 from the cytoplasm to mitotic centrosomes occurs only following its phosphorylation by ATM.
The authors also showed that inhibition of p53 centrosomal localization, or even acute p53 depletion,
led to centrosome fragmentation and, eventually, to cell death, highlighting another mechanism by
which genome stability is preserved before the next cell cycle is initiated [73]. Similarly, aside from its
role in the replication stress response, ATR has an independent role in preventing CIN in mitosis, as was
recently described. ATR was shown to be recruited to centromeres in an R-loop-dependent manner,
where it activates Aurora B to promote faithful microtubule binding and subsequent chromosome
segregation [74]. The tight coordination between the DDR pathways and cell cycle checkpoints
throughout the S phase and mitosis is thus key to preventing genome instability [66].

2.2. Replication Stress Links Structural and Numerical Chromosomal Instability

The first hints about a connection between the premitotic and mitotic origins of CIN came from
the identification of the role of factors known to be involved in DNA repair pathways, such as Bloom
syndrome helicase (BLM) and FA proteins, during mitosis [75–78]. The FA pathway, best known for
its function in the repair of interstrand crosslinks, toxic lesions that prevent DNA strand separation
and block replication and transcription, also plays a major role in the response to replication stress
and the maintenance of CFS stability [34,79,80]. By looking at the localization pattern and behavior
of FANCD2, a key member of the FA pathway, it was determined that part of the chromosomal
instability characteristic of FA-deficient cells was due to defects in chromosome segregation during
mitosis, particularly upon replication stress [78]. FANCD2 was shown to localize to discrete sites
on mitotic chromosomes after the induction of replication stress with low doses of APH, a common
inducer of CFS expression [29]. Indeed, FANCD2 was localized to APH-induced gaps and breaks
on mitotic chromosomes, where it colocalized with γ-H2AX, a marker of DBSs [76,77]. In addition,
by cooperating with the helicase BLM, FANCD2 was shown to promote the resolution of ultrafine
bridges (UFBs) [77], thin DAPI-negative DNA threads that evolve from joint DNA molecules, arising
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from replication or recombination intermediates that persist until mitosis and are resolved during
anaphase and telophase [81–84].

2.3. The Ultrafine Bridges (UFBs): An Overlooked Form of Anaphase Bridges

In 2007, a study from Erich Nigg’s laboratory led to the identification of the Plk1-interacting
checkpoint “helicase” (PICH), an SNF2 family ATPase that was found to decorate centromeric
thread-like structures connecting sister kinetochores from metaphase to anaphase [85]. In that same
year, by investigating the BLM helicase function in chromosome segregation, Ian Hickson’s laboratory
showed that BLM and PICH localized to the same DAPI-negative DNA bridges during anaphase [75].

These two studies defined a peculiar class of anaphase bridges, termed “UFB”, which are not
stained by conventional DNA dyes, such as DAPI or Hoechst, and are devoid of histones, contrary to
bulky chromatin bridges. While bulky anaphase bridges result from chromosome/chromatid fusion,
UFBs arise from persistent sister chromatid DNA entanglement.

Today, at least five different subclasses of UFBs are known based on their loci of origin and/or
underlying DNA structures (Figure 1), as discussed below: centromeric (c-UFBs), ribosomal (r-UFBs),
common fragile site (CFS-UFBs), telomeric (t-UFBs) and homologous recombination UFBs (HR-UFBs).
c-UFBs and r-UFBs arise from the formation of double-stranded DNA catenanes (i.e., completely
replicated intertwined DNA) driven by the repetitive nature and sequence content of centromeres
and rDNA loci. On the other hand, CFS-UFBs and t-UFBs are mainly derived from under-replicated
DNA or late-replication intermediates, and the newly identified HR-UFBs are derived from persisting
recombination intermediates [82,83,86]. A complex composed of BLM and its binding partners,
topoisomerase IIIα and RecQ-mediated genome instability protein 1 (RMI1) and RMI2 (BTRR), together
with PICH (DNA translocase) and topoisomerase II, act by untangling structures underlying different
types of UFBs, facilitated by additional factors such as the DNA translocase FANCM, RIF1 and TOPBP1,
which are recruited to a subset of UFBs [87–90].

c-UFBs are the most prevalent type of UFBs that form under physiological conditions as a
consequence of the late decatenation and disjunction of centromeric sister chromatid DNA [91,92].
Topoisomerase II inhibition increases UFB frequency, indicating its role in the decatenation of dsDNA
at c-UFBs. Similar to its role in c-UFBs, topoisomerase II is recruited by PICH to r-UFBs. It is believed
that the transcription that overlaps mitotic chromosome condensation and hinders topoisomerase II
activity drives r-UFBs [86,93].

In contrast to the c- and r-UFBs observed under normal conditions, CFS-UFBs were discovered
following replication stress induction by APH. Under replication stress conditions, under-replicated
DNA persists into mitosis, forming CFS-UFBs, and FANCD2 and FANCI mark sister chromatid
interlinked structures at their extremities, possibly to orchestrate their resolution by other factors [37,76,77].
RPA binding to ssDNA on the CFS-UFBs and the absence of an effect of topoisomerase II inhibition on
them reinforces the idea that CFS-UFBs are generated because of under-replicated DNA or unresolved
replication intermediates rather than dsDNA catenanes [76,81,94].

On the other hand, HR-UFBs arise as a consequence of double-strand break repair and the
subsequent formation of stable Holliday junctions. Persistent HR-UFBs can lead to segregation
defects in cells defective for recombination intermediate resolution [95]. HR-UFBs were defined by
the association of BLM and RPA with FANCD2 negative-UFBs in early anaphase. In late anaphase,
HR-UFBs are converted by PICH and BLM into RPA-bound ssDNA that is susceptible to breaks [96].
Camptothecin, a topoisomerase I inhibitor, increases HR-UFB levels, indicating that DSBs are required
for the formation of the recombination intermediates that induce HR-UFBs [37,83].

T-UFBs seem to possess some properties of CFS-UFBs, r-UFBs and c-UFBs. T-UFBs can be induced by
replication stress (similar to CFS-UFBs), which affects the completion of replication of difficult-to-replicate
loci. Impaired telomere replication in Werner’s syndrome (WS)-deficient cells induces the recruitment of
the BTR complex to facilitate t-UFB resolution [97]. T-UFBs can also be induced by the downregulation of
telomeric repeat binding factor 1 (TRF1), which facilitates telomere replication and protects telomeres
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from end-to-end fusion, or by the overexpression of TRF2 [97,98]. Surprisingly, t-UFBs are also induced
by topoisomerase II inhibition, similar to r-UFBs and c-UFBs, indicating that t-UFBs may comprise both
unresolved replication intermediates and dsDNA catenanes [99].

Finally, another kind of UFB, which depends on RAD51 and is prevented from forming
by 53BP1, has been observed in cancer cells and leads to a rupture of the sister chromatid
axes followed by chromosome bridging, resulting in gross chromosomal rearrangements [100].
This phenomenon is distinct from breakage-fusion-breakage cycles, in which anaphase bridges
generated by chromosome/chromatid fusions undergo breakage and then rejoining events [101,102].

Figure 1. The different types of ultrafine bridges (UFBs).

Diagram depicting the different types of UFBs. UFBs that arise from persistent double-stranded
catenanes are formed at centromeres (c-UFBs) or originate from rDNA loci (r-UFBs). Under-replicated
DNA or unresolved replication intermediates induce common fragile site UFBs (CFS-UFBs).
Recombination intermediates as Holliday junctions drive homologous recombination UFBs (HR-UFBs).
Unresolved replication intermediates and double-stranded catenanes induce telomeric UFBs (t-UFBs)
(cc-by [83]).
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When UFBs are not properly resolved before anaphase, the sister chromatids remain interlinked,
which can lead to chromosome nondisjunction or breakage, visible as micronuclei containing whole
chromosomes and/or chromosome fragments. In addition, when the DNA comprising the UFB is
not properly protected or resolved during anaphase or telophase, it may be ruptured by the end of
mitosis [37,78]. These findings thus showed that perturbed DNA replication or the failure to respond
to replication stress can have direct consequences on the mitotic process by preventing replication
completion or accurate repair of specific difficult-to-replicate regions. In addition, replication stress
was shown to induce numerical aneuploidy after the first mitotic division in the primary fibroblasts of
FA patients, demonstrating the link between replication stress and chromosome mis-segregation [77].
The formation of UFBs or bulky chromosome bridges in FA-deficient hematopoietic cells was also
reported to induce cytokinesis failure and lead to binucleation [87]. In agreement with these findings,
DNA lesions and mitotic aberrations following oncogene-induced replication stress have also been
found to induce cytokinesis failure and tetraploidization, leading to whole genome doubling [103],
a common step in tumor development [104].

2.4. Mitotic Rescue from Replication Stress

Further insights into the link between replication stress and CIN came from the discovery of the
replication stress protection conferred by specialized polymerases that are able to replicate across
noncanonical DNA and AT-rich sequences at difficult-to-replicate regions [105,106]. Notably, it was
shown that the translesion synthesis DNA polymerase eta is recruited to specific CFSs during the
S phase and promotes their timely replication [107]. Pol eta deficiency causes delayed replication
completion, as shown by the incorporation of the thymidine analogue EdU in late G2 and mitotic
cells and the persistence of under-replicated DNA at CFSs on mitotic chromosomes marked by
FANCD2, leading to the transmission of DNA damage to daughter cells, shielded in 53BP1 nuclear
bodies [107–109]. Recruitment of pol eta to replication forks during unchallenged replication or mild
replication stress was later shown to be regulated by pol η SUMOylation by the PIAS1 SUMO ligase
and RAD18, independent of the RAD18-mediated PCNA ubiquitylation that alternatively regulates
the recruitment of pol eta to UV-induced DNA lesions [110].

This work confirmed the long-standing observation indicating the late replication timing of
CFSs [111] and supporting the idea that, despite a functional checkpoint, some replication intermediates
or under-replicated DNA structures may be checkpoint-blind or tolerated, such that the cells can
enter mitosis with a fraction of its genome not completely replicated [112]. Intense work from
various laboratories has substantiated this concept and showed that under-replicated or unresolved
DNA structures are subjected to active processing and resolution in mitosis, allowing mitotic rescue
from replication stress (MRRS) and faithful chromosome segregation [37]. Notably, late replication
intermediates are processed by components of the structure-specific endonucleases SLX4, XPF-ERCC1
and MUS81-EME1 [113–116]. Importantly, by targeting under-replicated DNA, these endonucleases
promote the formation of chromosome breaks typically observed at CFSs in metaphase; however,
these breaks allow sister chromatid separation, preventing chromosome segregation defects and
mitotic catastrophe. Active processing by endonucleases is necessary to complete CFS replication in
mitosis by a mechanism akin to break-induced replication (BIR), which is dependent on POLD3 and
RAD52 [117,118]. This mechanism is also involved in rescuing replication stress at telomeres during
mitosis [119–122]. Furthermore, recent studies have shown that the ubiquitin ligase TRAIP promotes
replisome disassembly to drive mitotic DNA synthesis [123,124]. While this mechanism allows the cell
to complete replication and to limit chromosome segregation defects, it may also be mutagenic and
lead to chromosomal rearrangements [125]. Therefore, it is likely that the capability of a cell to respond
to replication stress and the outcome of the mitotic rescue from replication stress are dependent on the
magnitude of stress and the cellular context.

A subsequent study confirmed that replication stress links n-CIN and s-CIN in colorectal cancer
cells [126]. In chromosomally unstable cancer cells, candidate suppressors of replication stress,
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such as PIGN, MEX3C or ZNF516, are often inactivated. When the authors silenced these genes
in chromosomally stable cells, replication stress increased the number of structural chromosome
aberrations and coincided with numerical aneuploidy, as revealed by the deviation from the modal
number of centromere signals of chromosomes 2 and 15. Furthermore, APH treatment in chromosomally
stable cells similarly affected the segregation of chromosomes 2 and 15, which led the authors to
suggest that replication stress can indeed induce n-CIN.

Interestingly, another study reported that homologous recombination (HR)-deficient cells are
characterized by endogenous replication stress that can have both local and global consequences on
chromosome segregation [44]. It showed that endogenous replication stress elicited by HR deficiency
or treatment with low doses of HU or APH altered the centrosome number, leading to multipolar
mitoses and global chromosome mis-segregation. Therefore, replication stress can impact not only
the segregation of under-replicated or structurally aberrant chromosomes but, also, the fidelity of the
mitotic process.

3. How Replication Stress Affects Mitotic Fidelity

The fidelity of the mitotic process is primarily surveilled by the spindle assembly checkpoint
(SAC) that, together with other error correction mechanisms, prevents the segregation of unattached
or incorrectly attached chromosomes in mitosis and delays mitotic exit [127,128]. Loss-of-function
mutations in SAC proteins are rare in tumors, most likely because they are incompatible with cell
survival [129,130]. Their operational necessity is nicely demonstrated in experiments performed with
CENPE inhibitors, which prevent correct chromosome attachment, used in conjunction with SAC
inhibition, which led to a high level of aneuploidy and cell death [131]. These data suggest that even if
a subpopulation of tumor cells might bear SAC mutations, they do not seem to be the main contributors
to numerical chromosomal instability in sporadic cancers. Here, we summarize evidence of replication
stress-dependent mechanisms that can activate and/or attenuate the SAC and may be responsible for
the occurrence of numerical aneuploidy in cancer cells.

3.1. Replication Stress and Spindle Assembly Checkpoint (SAC)

Each sister chromatid builds a multilayered proteinaceous structure onto centromeric DNA that
is locally restrained to zones of CENPA nucleosomes deposited in the previous G1 phase [132].
This multilayered structure, the kinetochore, is captured by microtubules emanating from the
centrosomes. The kinetochore of one chromatid will attach to one spindle pole, whereas the sister
kinetochore of the other chromatid attaches to the opposing spindle pole. In this “amphitelic”
configuration, the tension between the sister kinetochores that is created by the pulling forces of the
opposing centrosomal microtubules creates sister kinetochore distancing. This tension is needed
to stabilize end-on attachments (i.e., attachments to microtubule plus ends) and satisfy the SAC,
which permits progression into anaphase [127]. Mad1 and Bub1 occupy nonattached kinetochores,
and then, the mitotic checkpoint complex (MCC), consisting of Mad2, Bub3, BubR1 and Cdc20,
is assembled. Next, Mad2/BubR1-dependent signaling prevents the degradation of cyclin B1 and
securin, the action of which is normally triggered by the anaphase-promoting complex/cyclosome
(APC/C). Sustained high cyclin B1 activity prevents mitotic exit, and high securin levels inhibit the
activity of separase, which is necessary to cleave the remaining centromeric cohesion that holds both
sister chromatids together [127]. An Aurora B-dependent error correction pathway that detects and
corrects incorrectly attached kinetochores influences the SAC. Distinct populations of this kinase,
located at the centromere and kinetochore region [133], regulate its activity toward downstream targets
such as Ndc80 and Dsn1 that then facilitate the detachment of incorrectly attached microtubules.
Kinetochores that are not end-on attached recruit Mps1 kinase, which then wires this error correction
to the SAC by recruiting Mad2 and BubR1 [128].

The ability of the SAC to detect and respond to replication stress/DNA damage in mitosis appears to
be dependent on the severity of the stress, and, based on the experimental settings, different observations
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were made. Research conducted to study kinetochore detachment, kinetochore tension or asymmetric
DNA strand segregation induced mitosis with unreplicated genomes (MUGs). This condition can
be achieved by high doses of HU in combination with caffeine, cyclin A overexpression, HU-only
treatment or by silencing the origin of replication protein DUP [134–137]. The complete absence of
a sister chromatid may be considered an extreme case of replication stress/acute under-replication;
yet, despite prolonged mitotic timing, these cells with just one kinetochore eventually managed
to proceed into anaphase. Nocodazole (a tubulin-binding agent that interferes with microtubule
polymerization) did still potently arrest these cells in mitosis, which shows that the SAC was not
compromised [135], suggesting that the mitotic checkpoint is partially blind and that acute replication
stress can be transmitted throughout mitosis.

Recently, it was shown that strong replication stress in primary IMR90 fibroblasts leads to
p53-dependent interphase cell cycle arrest. The very same treatment in p53-deficient IMR90 E6E7
cells leads to sustained Mps1-dependent mitotic arrest and mitotic death, which suggests that severe
under-replication that escapes interphase surveillance can be sensed and retained in mitosis [138].
In the latter case, the replication stress induced by APH or HU led to a severe delay in interphase.
The more pronounced the interphase delay, the more it correlated with permanent mitotic arrest, which
insinuates that a specific threshold of under-replication and/or damage has to be reached before cells
are permanently arrested and die in mitosis. Mitotic cell death occurs via two independent pathways,
one involving apoptosis by BAX/BAK (Type 1) and another depending on telomere deprotection
and activation of an Aurora B-, TRF2- and ATM-dependent DNA damage response at telomeres
(Type 2) [138].

Whereas the first studies show that even completely unreplicated cells can enter anaphase and
exit mitosis, the second scenario shows that a high stress level leads to mitotic cell death, which
seem like contradictory findings. We envision that, in the first scenario, the complete absence of
one chromatid allows microtubules to attach to the remaining chromatid (merotelic attachment),
and the checkpoint is satisfied after prolonged mitosis. This theory fits with the proposition that
interkinetochore distance and tension are not needed to satisfy the checkpoint [135,139]. In the second
scenario, cells might have partially replicated genomes, and microtubules may try to catch both sister
kinetochores. It is possible that the centromere/kinetochore structure is somehow compromised here,
leading to a defective establishment of tension. Even though it does not directly activate the SAC,
an absence of tension may activate the Aurora B-mediated error correction [140], which would fuel
continuous Mad2/BubR1-dependent SAC signaling from unattached kinetochores, delaying anaphase
onset and allowing apoptotic cell death and telomere deprotection pathways.

Recent findings in yeast tubulin mutants with increased sensitivity to the DNA replication
stress/DNA-damaging agents HU and 4-nitroquinoline 1-oxide (NQO) substantiate the previous
suggestion. These mutants were shown to arrest in mitosis after treatments with high doses of HU
followed by release in a normal medium. This arrest was not due to the classical activation of the
SAC but to an Aurora B-dependent tension checkpoint, and the authors suggested that the observed
phenotype may arise because tubulin mutants fail to detect some DNA damage in interphase that
is carried over to mitosis. Such damage may cause tension defects, as the centromere, even if fully
replicated, may contain centromeric lesions that compromise kinetochore assembly and kinetochore
microtubule attachment [141].

As nonreplicated chromosomes hardly arise in a physiological context and strong HU/APH-induced
replication stress leads to mitotic death, we believe that the most severe threat comes from low replication
stress that is not or only partially sensed in mitosis. We hypothesized that, under these circumstances, cells
survive or at least exit mitosis, which we showed to be the case for noncancerous RPE1 cells challenged
by low doses of APH. As RPE1 cells are supposed to be proficient in all checkpoints, we concluded that
low replication stress remained below the threshold of detection in mitosis [142].

An interesting study in yeast provides one possible explanation of how a sustainable amount of
replication stress can attenuate/shut off SAC activation and, therefore, does not interfere with mitotic
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progression [143]. SUMO-targeted ubiquitin ligases (STUbls), such as Slx5/Slx8 (RNF4), regulate the
ubiquitination of SUMOylated proteins and, therefore, modulate their activity. The authors studied the
SUMO proteome in a Mcm10-deficient background that mimics replication stress and is synthetically
sick with a Slx5/Slx8 deletion and identified members of the chromosome passenger complex (CPC),
a complex consisting of Ipl1 (Aurora B), Sli15 (Incenp), Nbl1 (Borealin) and Bir1 (Survivin) that controls
several aspects of mitosis. The SUMOylated CPC proteins Sli15 and Bir1 were shown to be destabilized
in a Slx5/Slx8-dependent manner in the presence of replication stress. As a final conclusion, it was
suggested that replication stress partially activates the Mad1/2-dependent SAC and that the Slx5/Slx8
complex relieves mitotic arrest [143].

Intriguingly, another target regulated by RNF4 (Slx5/Slx8) is FANCD2/FANCI. Extraction of the
FANCD2/I complex from damaged foci was shown to depend on RNF4-dependent polyubiquitination
and consequent proteasomal degradation. Such timely turnover at damaged sites seems to be required
to guarantee downstream repair pathways to correctly take over [144]. FANC-deficient cells show
defects/leaks in the SAC, which might partially explain their numerical aneuploidy phenotype [145].
We could speculate that FANC proteins are recruited to kinetochores after replication stress to coordinate
mitotic progression based on the amount/severity of stress and that such coordination/surveillance
is absent in FANC-deficient cells, engendering a leaky SAC. However, more studies are needed to
investigate this hypothesis, as FANC proteins have not been found to date at the kinetochore after
APH treatment [113].

Another interesting study conducted in yeast found that DNA damage can lead to an “inflammation
zone” at the chromosome, and when this zone is sufficiently close to a centromere, it can lead to
epigenetic centromere changes; these changes are premitotically detected by the SAC (in this case
Mad2), which then overlaps with the canonical Mec1/Tel1 (ATR/ATM) checkpoint and delays G2.
This finding indicates an involvement of the SAC in cell cycle delay even earlier than originally
anticipated and not only prior to anaphase [146]. Finally, this outcome might be attributed to the
interdependency of Rad53 (CHK1) and Mad2 after replication stress, as it has been shown that origin
firing is compromised in yeast Mad2 mutants in a Rad53 mutant background. Mad2 actively promotes
S phase cyclin translation that then influences replication origin firing [147].

In conclusion, we suggest that low replication stress is the most severe threat to genome integrity,
as mitotic checkpoints are either blind to detecting it or can actively override it. In the end, such a
mitotic exit can be accompanied by structural and numerical chromosomal aberrations [126,142,148].

3.2. Replication Stress and Spindle Microtubules

The previously discussed checkpoint in mitosis is strongly interdependent with microtubule
dynamics, as indicated by the finding that compromised microtubule stability and/or turnover possibly
lead to erroneous kinetochore-microtubule attachments [149].

Microtubule stability is posttranscriptionally regulated and depends on the stability of its own
mRNA to ensure that microtubules can react promptly to diverse insults [150]. This mechanism depends
on the availability of tubulin monomers, which negatively regulate mature spliced mRNA [151]. It could
be that the extent of DNA damage that is transmitted into mitosis is wired to the dynamic instability of
the microtubules that can promptly react to these changes. When this adaptation is compromised,
as might be the case for the tubulin mutants, viability is decreased [141].

It has been shown that DNA repair factors can be recruited to mitotic spindles [145,152,153]
or the main microtubule organizing centers, the centrosomes [145,154–159]. However, it remains
difficult to determine whether the presence of these proteins in mitosis has an actual role in regulating
microtubule stability, as experiments using protein depletion make it complicated to discern the role of
these proteins in interphase and mitosis. Factors such as 53BP1 or RNF8 that are phosphorylated and
therefore inactivated by mitotic kinases need to remain silent, and their reactivation in mitosis can lead
to Aurora B-mediated telomere fusion and aneuploidy [160]. Notwithstanding the partial activation of
the DNA damage response, at least the initial steps, such as γ-H2AX and ATM autophosphorylation,
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proceed in mitotic cells [161]. The idea is that assuring a timely passage through mitosis is prioritized
over DNA repair and that DNA repair in mitosis would be anyways more deleterious than beneficial.
It is also suggested that the sites of DNA damage are marked by DNA repair factors to guarantee
faithful repair in the following interphase [108,161].

Our own data from experiments with low-dose replication stress confirmed that mitotic
microtubule stability is altered when cells are exposed to APH in the previous interphase [142].
As we detected a dose-dependent increase in metaphase breaks, we speculated that mitotic damage
leads to microtubule stabilization under these conditions. Centriole disengagement was used as
a proxy for this stabilization, as we suggested that the dominant problem caused by microtubule
stabilization was premature disengagement of the centrioles. We rescued centriole disengagement
with ATR inhibition [142], suggesting that DNA replication stress/DNA damage activates ATR and
that ATR signaling stabilizes microtubules. Other studies have reported that mild induced replication
stress or intrinsic replication stress in CIN+ cells alter microtubule dynamics by increasing microtubule
plus-end growth. Merotely and chromosome mis-segregation occurred here in the absence of spindle
multipolarity and was entirely due to microtubule alterations [148].

Another study by Bakhoum and colleagues confirmed the abovementioned findings and provided
a possible explanation for how DNA damage impacts microtubule stability. This is one of the
few reports that observed prompt microtubule dynamicity changes after DNA insults within the
same mitosis. The dominant chromosome segregation error was whole chromosome lagging due
to increased microtubule stability. Slow decaying kinetochore microtubules were the ones affected
by DNA damage, suggesting that the attachment to kinetochores is specifically stabilized. γ-H2AX,
ATM and CHK2 signaling were implicated in stabilizing microtubule attachment after DNA damage.
The downstream actors that were hyperphosphorylated under these conditions and directly interfered
with microtubule stability were Aurora A and PLK1. In conclusion, a DNA damage-signaling cascade
with ATM-CHK2-PLK1-Aurora A leads to microtubule stabilization and lagging chromosomes and
connects the DNA damage response to the cytoskeleton [162].

Centrosomes are the main microtubule-nucleating center in cells and recruit DNA repair factors,
which, in turn, can influence microtubule nucleation rates. The Bastian laboratory showed that
chromosomally instable (CIN+) colorectal cancer (CRC) cells have increased microtubule plus-end
growth, compared to nontumorous RPE1 and CIN− CRC cells, as shown by the microtubule plus-end
protein EB3 tracking in space and time. Aurora A and CHK2 were identified as the main regulators
of microtubule assembly in CIN+ CRC cells. CHK2-dependent phosphorylation of BRCA1 at the
centrosomes limits the centrosomal pool of Aurora A, which complies with normal microtubule
assembly rates generated by the centrosomes. Loss of CHK2 or Aurora A overexpression led
to excessive accumulation of Aurora A on centrosomes and increased the microtubule assembly
rates [163], suggesting that the CHK2-BRCA1 axis attenuates Aurora A activity at centrosomes to
prevent chromosome mis-segregation [164]. Altogether, this finding provides another mechanism by
which DDR factors in mitosis influences microtubule stability and dynamics and connects DNA insults
to the cytoskeleton.

3.3. Replication Stress and Centrosomes

Now, we briefly discuss how centrosomes duplicate and how replication stress/DNA damage
interferes with this process. Centrosome duplication is a semi-conservative process that has to be precisely
synchronized with DNA replication in order to enter mitosis with two centrosomes, each containing two
centrioles [165]. That this vulnerable process is already aberrant/misregulated in precancerous lesions
was recently shown, and many cancer cells show centrosome overamplification [166]. As multiple
centrosomes might jeopardize canonical bipolar segregation, cells overcome this issue by clustering
supernumerary centrosomes before anaphase [167,168]. In G1, centrosomes consist of one centriole each.
Procentriole formation is initiated at G1/S and elongation of the procentriole, and distancing from the
mother centriole occurs in S, G2 and mitosis [169]. The perpendicular establishment of the daughter



Genes 2020, 11, 642 13 of 34

is suggested to create an intrinsic block to reduplication. Initially, it was proposed that PLK1 in early
mitosis and separase later in mitosis drive centriole separation, as PLK1 inhibition partially delays
disengagement [170]. Distancing of the daughter centrioles within one centrosome is a PLK1-dependent
process, which seems to depend on pericentriolar material (PCM) maturation. Increased PLK1-dependent
PCM maturation accompanied by the distancing of both centrioles within centrosomes is believed to be
the driving event of canonical centriole disengagement at the mitotic exit [171].

Pioneering work from Sibon et al. established the link between checkpoint-proficient mutants
that presented under-replicated DNA in mitosis and consequent mitotic failures. This was based on
initial observations of interphase-checkpoint-deficient Drosophila embryos, in which mitotic spindle
establishment was affected by the lack of components of the PCM, leading to anastral spindles.
This so-called “centrosome inactivation pathway” was considered a backup mechanism in case
replication and/or repair processes were not completed by mitotic entry. In the end, this mechanism
would prevent the propagation of genetic instability in the next generation [172]. DmChk2 checkpoint
kinase is essential for this inactivation [173], and together with the observation that several components
of the checkpoint/repair machinery are frequently detected at centrosomes, such as BRCA1 [174],
p53 [175], BRCA2 and CHK1 [158], it was suggested that centrosomes are actively implicated in the
response to DNA damage in mitosis.

In mammalian systems, hampered DNA replication/DNA damage seems to lead to slightly
different phenotypes. Here, the centrosome and its components are present and not “inactivated”;
however, the integrity of the PCM is affected, leading to centrosome splitting and the PCM containing
only one centriole. High doses of HU and APH were used to completely block DNA synthesis,
and caffeine was used to drive Chinese hamster ovary cells (CHO) cells into mitosis, despite the
presence of nonreplicated DNA. Mitotic exit was accompanied by multipolar division, thus leading
to aneuploid progeny [176]. The authors showed that colcemid, but not cytochalasin, and therefore,
microtubules, but not actin filaments, are critical for centrosome splitting [176]. Centrosome splitting
was also observed when DNA was damaged with the crosslinking agent MMC or in repair-deficient
mutants (with defective homologous recombination) [176–178]. Furthermore, the Sibon laboratory
provided evidence that BRCA1 is recruited to centrosomes and that the absence of BRCA1 leads to
centrosome number problems [179]. Damaged BRCA1-deficient cells that were forced into mitosis first
showed correct bipolar establishment of the spindle, followed by failed anaphase segregation, leading
to tetraploid cells with double the number of centrosomes. Subsequently, these tetraploid cells might
fail to establish a bipolar spindle or efficiently cluster their centrosomes in the following mitosis.

Since failures such as centrosome splitting or overduplications are phenotypes observed
after the depletion of several different repair/replication proteins; the link between hampered
replication/repair and impaired centrosome integrity may be indirect. We believe that the actual
presence of repair/replication proteins at centrosomes is not necessarily required; rather, the absence
of these proteins during interphase creates a cell cycle delay and/or DNA damage. As synchrony
between DNA replication and centriole duplication has to be guaranteed for a correct number and
integrity of the centrosomes, any defect that delays the cell cycle could interfere with the centriole
duplication/centrosome maturation process. Direct evidence comes from our own experiments
showing that, in RAD51- or BRCA2-deficient cells, spindle multipolarity was suppressed by the simple
suppression of the intrinsic replication velocity deficiencies of these cells [178,180] and that low doses
of APH causes premature centriole disengagement [142].

Many experiments suggest that delaying interphase in S or G2 can lead to a continuous centrosome
duplication cycle [181–183]. These results were mainly obtained in p53-deficient cells, and indeed,
they showed that such continuous centrosome cycling is strongly suppressed in p53-proficient RPE1
cells [184], making it clear that multiple centrioles/centrosomes due to asynchrony between DNA
replication and centrosome cycle can be generated but are restrained in checkpoint-proficient cells.
Still, this restriction has limitations, as it was shown that continuous centriole duplication can occur
in G2-arrested (RO-3306) noncancerous RPE1 cells but in the absence of obvious DNA damage or
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replication stress [185]. This suggests that activation of the DNA damage/DNA replication checkpoint
in interphase is crucial to limiting aberrant centriole duplication cycles [184]. Concluding on the
previous observations, it seems that centrioles could “in theory” continue to duplicate in the presence
of DNA damage, which indeed seems to be the case for checkpoint-deficient cells, and might be limited
in noncancerous cells or precancerous lesions. However, the predominant phenotype in noncancerous
cells is premature mitotic centriole disengagement, which, in the very end, also leads to multipolarity
during mitosis [142].

We think that centriole disengagement is a multicomponent phenomenon, where advanced
centriole and centrosome maturation come together with increased microtubule stability during mitosis.
Only this toxic combination drives centrioles to disengage and centrosomes to split. Both centrioles
of the centrosome might, at this point, be surrounded by PCM and nucleate microtubules; in this
case, microtubule forces may indeed tear the two centrioles apart. As it was shown that PCM
integrity is altered after DNA damage [186], we speculate that microtubule-dependent forces destroy
PCM integrity.

3.4. Replication Stress and Cohesion

One common idea is that centrioles, similar to sister chromatids, are held together by cohesion [187]
and that both start separating at anaphase onset because of increased separase activity. Here, we summarize
what is known about of the premature loss of cohesion that holds sister chromatids together. The premature
loss of cohesion during mitosis is suspected to lead to faulty attachment of chromosomes due to the
possibility that microtubules of opposing spindle poles attach to the same kinetochore [188]. Many studies
have shown how cohesion and its correct maintenance or release impact DNA repair and replication
processes [189], but less is known about how replication stress impacts cohesion maintenance in mitosis.

Under physiological conditions, WAPL opens cohesin rings, specifically at the chromosome arms,
in prophase (“prophase pathway”), and centromere cohesion, protected by shugoshin, remains intact
until anaphase onset, when separase cleaves it. This two-step pathway of cohesion removal, which
gives metaphase chromosomes their characteristic X-shape, is crucial to maintain genetic stability [190].

Whereas we and others reported no significant increase in cohesion defects after moderate
replication stress [126,142], high doses of APH and HU in p53-deficient cells led to varying degrees
of cohesion defects [138]. Such defects depended on the cohesion-removing activity of WAPL,
and it was suggested that a WAPL-dependent regulation of centromere cohesion is critical to
achieving SAC-dependent mitotic arrest in cells challenged with lethal doses of replication stress [138].
Intriguingly, it was shown that, under sublethal APH doses, a BIR-like process in early mitosis depends
on a cohesion release by WAPL [117]. Diminished cohesion is essential for the repair of damage
occurring after exposure to replication stress and is one possible strategy by which cancer cells sustain
proliferation after oncogene induction. In fact, many cancer cells with no mutations in cohesion
subunits have adapted this strategy and show varying degrees of cohesinopathy [191].

TRF1, telomere-repeat binding factor 1, is part of the shelterin complex at telomeres and ensures
correct replication at telomeres. However, it also has a largely unrecognized role in mitosis, as TRF1
depletion leads to accelerated mitotic timing, cohesion defects and merotelically attached chromosomes
that induce elevated levels of n-CIN [192]. TRF1 has not been directly detected at the centromere,
but its absence led to reduced levels of Aurora B and Shugoshin at centromeres and increased
intercentromere distance, reminiscent of cohesion loss. Whether DNA damage signaling/replication
stress that apparently is activated at telomeres after TRF1 depletion can also influence sister chromatid
cohesion or whether TRF1 is directly recruited to centromeres remain open questions. Recent studies
from the Gilson laboratory suggested that TRF2, but not TRF1, can be directly detected at pericentromere
regions and is needed to ensure replication of the pericentromeric heterochromatin [193]. Whether TRF2
depletion elicits similar defects as TRF1 depletion and leads to increased interkinetochore distance,
cohesion defects, an increased number of merotelic attachments and lagging chromosomes remains to
be elucidated.
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In yeast, age-related cohesion loss depends on the downregulation of cohesion subunits and
is accompanied by the downregulation of DNA repair factors, which suggests that DNA damage
accumulation with age is accompanied by the imperfect holding of sister chromatids together [194].
Oocytes show age-related cohesion loss [195] that might be linked to increased oxidative stress during
ageing, [196,197], and oxidative stress is known to impede replication [180]. These results suggest that
age-related oxidative/replication stress may be critical to the loss of sister chromatid cohesion. On the
one hand, this outcome can represent a mechanism useful for eliminating “old” cells; on the other
hand, failed elimination can lead to the propagation of aneuploid progeny and, eventually, cancer
(cancer as an ageing condition).

In conclusion, it seems that the cell in the most vulnerable cell cycle phase has found quite
drastic means to respond to replication stress. Even when mitotic checkpoints can partially detect
replication stress, it seems that, at least, low-dose stress is transmitted through the following interphase.
Furthermore, we summarized evidence that replication stress can hamper the correct bipolar spindle
assembly, microtubule stability and cohesion maintenance, all of which can lead to increased levels
of merotelically attached chromosomes (Figure 2), which, in a cell with 46 chromosomes, can have
drastic consequences.

Figure 2. The impact of replication stress on the mitotic process. Diagram summarizing the type
of mitotic dysfunctions occurring after replication stress. Replication stress can induce nonattached
kinetochores and activate the spindle assembly checkpoint (SAC), change microtubule stability, induce
multiple spindle poles due to centriole disengagement and lead to cohesion defects. SAC override might
contribute to the mis-segregation of chromosomes with wrongly attached kinetochores. Changes in
microtubule stability could lead to impaired error corrections that rely on the dynamic instability of
microtubules. Multipolarity can occur transiently, because centrioles within one centrosome split before
spindle poles cluster back together. Cohesion can be prematurely relieved at the centromere, which
can induce chromosome mal-attachments because of altered kinetochore geometry. Wrongly attached
kinetochores that are less efficiently corrected can favor merotelically attached chromatids, where
microtubules of opposing spindle poles attach to the same kinetochore. Such chromatid appears as
lagging in-between the two segregating DNA masses and can be either reintegrated into the correct
daughter cell, integrated into the wrong daughter cell (thus leading to aneuploidy) or get enclosed by
its own nuclear envelope (micronucleus).
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4. How Mitotic Defects and Aneuploidy Can Lead to Replication Stress and Feed CIN to Create a
Vicious Circle

Having considered how replication stress can lead to mitotic defects and chromosome
mis-segregation, we now examine the evidence showing that mitotic defects and aneuploidy may,
in turn, generate replication stress and DNA damage, thus creating a vicious circle (Figure 3).

Figure 3. Replication stress and mitotic defects feed chromosomal instability (CIN) in a vicious
circle. Diagram summarizing the vicious circle of CIN. Replication stress induced by several
endogenous and exogenous sources, represented as under-replicated DNA, leads to mitotic defects
(multipolar spindles in prometaphase and metaphase or lagging chromosomes, bulky and ultrafine
DNA bridges in anaphase). Mitotic defects and chromosome mis-segregation will consequently
lead to s- or n-CIN (structural chromosome rearrangements, micronuclei and numerical aneuploidy).
Aneuploidy-associated stressors [198] (proteotoxic, metabolic, oxidative stress and altered levels of
replication factors) due to gene dosage imbalance will, in turn, fuel replication stress, thus completing
the CIN propagation circle. This vicious cycle can be evaded or stopped when the accumulated genomic
alterations activate elimination pathways (apoptosis, senescence or immune system-mediated killing
by p53, SASP or cGAS-STING), thus breaking the cycle. ROS: Reactive oxygen species.

Chromosome segregation defects may directly lead to DNA damage and structural aberrations
when lagging chromosomes become trapped in the cleavage furrow, which has been shown to provoke
double-strand breaks and activation of the DNA damage response [199]. Alternatively, mis-segregating
chromatin and persistent anaphase bridges can induce furrow regression and tetraploidization, despite
the presence of an Aurora B-dependent checkpoint that delays abscission in the presence of chromosome
bridges at the cytokinetic furrow [200–202]. In addition, a mis-segregating chromosome incorporated
in a micronucleus can undergo asynchronous and inefficient replication, leading to DNA damage
and chromosome pulverization due to premature chromosome condensation [203], which may be the
mechanism underlying the extensive chromosome rearrangements typical of chromothripsis [204].
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In addition to the direct effects of segregation errors on genome stability, aneuploidy itself may
have genome destabilizing effects [205,206]. As we explained in the previous section, mutations
in genes controlling the mitotic process can severely compromise cell viability and fitness, because
aneuploidy alters chromosome stoichiometry and leads to gene dosage imbalance. Various studies
have highlighted that the different cellular stresses associated with aneuploidy are associated with
both chromosome-specific and general effects associated with the aneuploid state [207–210]. One of
the main effects of aneuploidy on cell physiology are alterations in the transcriptome and, to a lesser
extent, in the proteome, which lead to an unbalanced production and assembly of multiprotein
complexes. This imbalance can overwhelm the cellular systems that maintain proper protein folding
and homeostasis, inducing proteotoxic stress [211], and impair specific cellular functions associated
with the affected multiprotein complexes [198].

One of the main consequences linked to disturbed proteostasis is the alteration of cellular
metabolism and increased production of reactive oxygen species (ROS). A higher level of ROS and
altered energy metabolism have been shown in disomic yeast strains, mouse embryonic fibroblasts
(MEFs) and Drosophila [212–214]. ROS induction in MEFs has been shown to induce oxidative
DNA damage and to activate an ATM- and p53-dependent checkpoint that limits the proliferation of
aneuploid cells (see below). In addition, it has been shown that aneuploidy may induce replication
stress by perturbing the stoichiometry of the replication machinery, thus leading to replication fork
slowing and genome instability [215]. Furthermore, replication slowing or stalling has been linked to
aneuploidy-driven decreases in the expression of replication proteins [209].

4.1. Emerging Concepts: Chromosomal Instability/Aneuploidy Tolerance and the Immune Response

The bidirectional interplay between replication stress and chromosome mis-segregation not only
promotes genome instability and transformation but may also perpetuate CIN, thus providing a
mechanism of evolution for cancer cells.

Whereas replication stress and CIN play fundamental roles in driving tumor evolution, aneuploidy
is known to restrain cell proliferation [216]. One of the main surveillance mechanisms arresting the
proliferation of cells with abnormal karyotypes is mediated by p53 [217,218], a well-known tumor
suppressor that is activated following the induction of a number of cellular stresses, including genotoxic,
oncogenic and metabolic stresses [219,220].

The activation of p53 as a result of mitotic defects and aneuploidy has been attributed to different
mechanisms [216], including the induction of p38 stress kinase [221], p14ARF [222], a prolonged
prometaphase duration [223,224], DNA damage [199], telomere uncapping [225] and oxidative
stress [214], leading to an ATM-dependent DDR. Whether chromosome mis-segregation and aneuploidy
per se can induce p53 activation is still debated. An interesting study by Hinchcliff and collaborators
has shown that mis-segregating chromosomes were marked along their arms by phosphorylation
of the histone variant H3.3 on Ser31, which spread to both aneuploid daughter nuclei and induced
p53 stabilization [226]. Another study used single-cell sequencing to show that p53 inhibited the
propagation of aneuploid cells harboring structural chromosomal aberrations, while it was permissive
to a subset of whole chromosome aneuploidies [227]. Similarly, another study also used single-cell
sequencing to follow cell fate after chromosome mis-segregation and showed that the activation of p53
and G1 arrest occurred only in cells with highly aberrant karyotypes and was partially dependent
on DDR signaling, while the majority of cells that continued to divide harbored genomic imbalances
involving less than 5% of the genome [228]. Interestingly, aneuploid cells that continued to proliferate
showed signs of replication stress in the following S phase and entered mitosis with under-replicated
DNA, followed by the formation of UFBs and the accumulation of DNA damage, as detected by 53BP1
bodies in the next G1 phase.

These findings indicate that aneuploidy per se may not be sufficient to elicit p53 activation and
that the proliferation defects of aneuploid cells may result from multiple converging stress signaling
pathways [229]. In addition, aneuploidy-associated stressors, such as proteotoxic or oxidative stress,
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which scale with aneuploidy, can exacerbate replication stress to further induce mitotic aberrations
and DNA damage [198,216,230].

Therefore, the propagation of CIN in cancer can arise through inactivation or bypass of the p53 pathway
and the acquisition of mechanisms that allow tolerance of replication stress and aneuploidy-associated
stressors, such as activation of the proteasome and autophagy and CIN adaptation [198,229,231]. While low
and moderate levels of CIN may allow the evolution of advantageous karyotypes and the emergence of
genomic alterations that provide resistance to therapy, tumors may not tolerate high CIN levels [232–238].
Interestingly, it has been reported that, in addition to acquiring CIN tolerance, tumors undergo CIN
attenuation or buffering. One of the mechanisms enabling cells to decrease the level of CIN is by monoallelic
inactivation of the anaphase promoting complex-cyclosome (APC/C) subunits [239]. Cells with decreased
APC/C efficiency spend more time (approximately 10 min) in mitosis, which reduces the rate of chromosome
mis-segregation. Mechanisms allowing an increase in mitotic fidelity by increasing mitotic duration
include a reduced frequency of merotelic attachments [2] and centrosome clustering [240]. It would be
interesting to know whether lengthening the metaphase duration may also lead to partial reactivation of
p53 [241]. Another mechanism involved in CIN attenuation in tumors evolving from tetraploid cells is the
loss of supernumerary centrosomes [167].

Another key brake to the proliferation of aneuploid cells is the immune system [228]. Santaguida and
collaborators showed that cells with complex karyotypes induce a proinflammatory state characterized
by a senescence-associated secretory phenotype (SASP), the activation of interferon alpha/beta signaling
and the innate immune response through the induction of natural killer (NK) cell ligands, which renders
these cells sensitive to NK-mediated elimination. Indeed, aneuploid cells were shown to activate cyclic
GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling, an antiviral pathway that
senses cytosolic DNA [228]. The activation of cGAS-STING can be associated with DNA damage-induced
cellular senescence [242–244] due to incomplete nuclear envelope formation around micronuclei that
exposes chromosomal DNA [245–247] or to the release of ssDNA from stalled replication forks upon
replication stress [248]. Therefore, tumor cells with abnormal karyotypes must evolve mechanisms to
evade the immune system.

The capacity of tumors with CIN to activate or suppress immune signaling and to drive metastasis
is an emerging area in cancer biology and immunotherapy [249,250]. By analyzing the genomic data of
several human tumors from The Cancer Genome Atlas, Davoli and collaborators showed that high
levels of arm- and whole-chromosome somatic copy number alterations (SCNAs) were correlated with
the reduced expression of markers of cytotoxic immune cell types and proinflammatory cytokines
and a suppressed response to checkpoint blockade immunotherapy [251]. The immunogenic or
immunosuppressive responses may also be dependent on the levels of CIN and the magnitude or
duration of the immune responses [252]. Interestingly, chronic cGAS-STING activity in chromosomally
unstable cancer cells has been shown to activate a noncanonical NF-κB pathway downstream of STING
that promotes cell migration, invasion and metastasis [247]. In addition, cGAS has been reported to
directly modulate the DNA damage response through the suppression of homologous recombination
and, thus, further promotes genomic instability [253,254].

Developing new methods to detect tumor CIN, as well as therapeutic strategies based on leveraging
CIN to modulate tumor fitness and immunogenicity, are therefore of utmost importance in cancer
treatment [229,250].

4.2. Chromosomal Instability as a Double-Edged Sword in Preneoplastic and Tumor Cells

Over a century ago, the work of von Hansemann, who reported the presence of abnormal mitotic
figures in tumors, and the experiments of Theodor Boveri showing the abnormal development of sea
urchin eggs after dispermic fertilization, founded the hypothesis that an abnormal chromosome
constitution (aneuploidy) produced by abnormal mitosis could be involved in the process of
tumorigenesis (see [255]).
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However, aneuploidy does not always act as a driver of tumorigenesis and, instead, is mostly
detrimental for cell and organismal fitness [198,216,256]. Indeed, aneuploidy is one of the main
causes of miscarriages, and very rare instances of constitutional aneuploidies compatible with life are
associated with developmental disorders such as trisomy 13 (Patau syndrome), trisomy 18 (Edwards
syndrome) or trisomy 21 (Down syndrome) [257]. The proliferative disadvantage associated with
aneuploidy is due to the alterations in gene dosage and proteome imbalances associated with distinct
metabolic changes and cellular stress [198,258,259]. The dichotomy of the role of aneuploidy in normal
development and cancer [260] can be explained when comparing untransformed cells undergoing
normal proliferation with cells subjected to environmental or endogenous stress, where the generation
of new combinations of chromosomes allows the cells to adapt and to select variants that provide
a proliferative advantage under stress conditions [229,261]. Therefore, the propensity of a cell to
acquire alterations in chromosome number or structure, i.e., an ongoing CIN, a common feature
of cancer [262], is also associated with developmental diseases and neurodegenerative conditions.
Perhaps the best examples of how CIN and aneuploidy can lead to different outcomes are found in the
studies of chromosome instability syndromes and animal models [38,263–265]. These studies have
further revealed a relationship between aneuploidy and ageing [266,267], raising the possibility that
aneuploidy is involved in tissue dysfunction and age-related pathologies [268,269].

When we discuss CIN, we have to consider it in the precancerous and cancerous contexts;
although CIN is known to fuel intratumor heterogeneity, it can be detected during early tumorigenesis.
Specifically, the DNA damage and chromosomal aberrations that occur in precancerous lesions as
a consequence of replication stress have been shown to activate the DNA damage response that
helps to eliminate damaged cells or induce them into senescence (as proposed for oncogene-induced
senescence) [5,30]. However, this barrier to cell proliferation increases the selective pressure for cells
harboring mutations that allows them to escape this blockade, leading to a stepwise accumulation of
mutations that, in the very end, promote uncontrolled proliferation. In fully grown tumors, on the
other hand, CIN is presumed to fuel genetic instability but becomes detrimental when a certain
threshold is exceeded, which is extensively exploited in cancer therapy. Therefore, in each case, CIN is
a double-edged sword. On the one hand, cells are prone to die, as random mutations likely do not
provide any growth advantage, or die under treatment, as exacerbating an already elevated level of
CIN specifically kills these cells. On the other hand, CIN harbors the risk that a cell with one mutation,
which provides a growth advantage, overgrows/outgrows the rest of the population, and in both pre-
and cancerous lesions, this advantage can lead to the survival and clonal expansion of this cell, which
will again rapidly undergo nonclonal expansion.

As replication stress and CIN fuel cancer evolution, the problem of treating tumors that are not
merely the clonal expansion of one single mutated cell but of many mutated cells becomes more
complicated. Multiple mutations reduce the benefits of an initially efficient treatment, as the nonclonal
expansion of cells leads to rapid adaptation to drugs. Intratumor heterogeneity not only often makes
chemotherapeutic treatment ineffective but also renders the search for biomarkers, such as differently
expressed proteins or tumor signatures, a race against time. As a logical consequence, targeting DNA
replication, transcription or mitosis and, thus, processes that are similar for many different clones
within a tumor has been revealed as a potent strategy to attenuate unrestrained proliferation.

5. Chromosomal Instability and Cancer Therapy

Here, we briefly discuss how cancer treatment is approached today and what we believe is
missing in the current discussions. The knowledge that replication stress fuels structural and numerical
chromosome aberrations simultaneously could be and should be used to target cells with intrinsic
replication stress. We believe that, regardless of the underlying cause of replication stress (e.g.,
replication/repair deficiencies, checkpoint aberrations or metabolic stress), a common phenotype links
them during mitosis, making mitosis-targeting drugs attractive investments in this context.
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Classical methods to target replication stress and DNA damage include drugs that either increase
DNA replication stress and/or lead to interphase DNA damage, such as cisplatin, gemcitabine, olaparib,
doxorubicin or topotecan. Healthy cells should escape such treatment, as they are supposed to be
not/low proliferating and/or proficient in pathways that repair the introduced DNA damage [270].
In the case of DNA double-strand breaks, the cell can repair in a rather error-prone process in G1 or
in a more accurate homology-directed repair in S- and G2. In repair-deficient cells and/or cells with
replication stress, introduced DNA damage and stress places additional burden on repair mechanisms.
A very prominent example is the use of PARP inhibitors for BRCA1/2-deficient tumors. Nevertheless,
such therapies eventually also affect healthy cells, and it has been shown that moderate stress is best
suited to target tumor cells specifically [271] and for the use of combination treatments [272].

5.1. Microtubule-Targeting Drugs

The oldest and most efficient chemotherapeutic agent to date is paclitaxel—that is, the microtubule
stabilizing compound Taxol [273], which is mainly used for breast, ovarian and lung cancer treatments.
Severe side effects are neuropathies, which might arise from the action of these drugs on the interphase
and their interference with microtubule-based vesicle transport or cell signaling [274]. Recently, it has
been shown that intratumor concentrations of this drug do not, as believed for years, engage mitotic
cell death but, rather, favor multipolar division [275].

Pioneering studies from the late 1990s demonstrated that p53 activation/stabilization after DNA
damage, such as UV irradiation, bleomycin or doxorubicin, decreased Map4 (microtubule-associated
protein 4) expression. Decreased expression of this microtubule binder leads to less stable microtubules
and increased sensitivity to microtubule destabilizing drugs such as Vinca alkaloids [276]. Another more
recent study was conducted on patient-derived xenografts (PDXs) generated from luminal or
triple-negative breast cancer cells. Here, the combined inhibition of p38, which increases replication
stress and/or DNA damage, and taxanes (paclitaxel and docetaxel) showed enhanced tumor responses.
The authors also showed that nonresponders amongst PDXs had the least CIN at the basal level,
suggesting that such a combined treatment is most beneficial in CIN+ tumors [277].

We discovered a synthetic lethal situation with replication stress and Taxol, which increased the
number of multipolar dividing cells even when used at very low doses. Since replication stress leads to
premature centriole disengagement, we propose that Taxol, which already increases multipolarity on
its own, shows additive effects with APH [142]. We suspect that Taxol mainly targets centrioles that are
susceptible to disengagement and microtubules that are already more stable, but we do not completely
understand the mechanism. Further studies will be needed to answer the question of how APH primes
cells for Taxol sensitivity. We (unpublished) and others observed that microtubule stability [278] or
assembly and attachment [163] is increased in chromosomally unstable cell lines, and we provided
a partial explanation of how this increased stability arises [142]. In contrast, the Bastian laboratory
rescued the increased microtubule polymerization rate in CIN+ cells and in cells treated with APH by
using nanomolar doses of Taxol. This treatment rescued the lagging of entire chromosomes, suggesting
a synthetic viable constellation in this case [148]. Altogether, these data suggest that chromosomally
unstable cells are intrinsically more vulnerable to microtubule-interfering drugs and could benefit from
a combination of drugs targeting repair and/or replication in interphase and microtubules in mitosis.

5.2. Centrosome-Targeting Drugs

Spindle multipolarity due to centriole disengagement is the dominant and most intriguing
phenotype acquired after replication stress. Indeed, we clearly observed that RPE1 noncancerous
cells clustered spindle poles and ultimately divided in a bipolar manner. This data indicates an
opportunity to interfere with clustering and force cells to divide in a multipolar manner, which should
be detrimental. As we also observed that cells with multiple centrioles tend to disengage [142], and that
many cancer cells have multiple centrioles [166], we propose that centrosome declustering drugs
could be synthetically lethal when applied with replication stress. Many drugs seem to interfere with
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centrosome clustering [279], such as inhibitors of the motor protein HSET, Aurora A Aurora B, NEK6,
PARP6 and PLK1, which provides us with a large repertoire of drugs that have been already partially
established in clinics.

6. Conclusions

Replication stress and CIN are hallmarks of cancer that fuel each other during its evolution;
however, they also represent an Achilles heel that can be exploited in cancer therapy. The identification
of the molecular mechanisms underlying this bidirectional link can be useful to find biomarkers to
selectively target cancer cells and to design new preventive or therapeutic strategies acting on the
premitotic and postmitotic causes of CIN. The study of the molecular pathogenesis of CIN syndromes
and of the mechanisms underlying their phenotypic heterogeneity will be key to informing these
strategies. This knowledge can lead either to therapies attenuating the effects of replication stress in a
precancerous setting or to exacerbation of the endogenous stress of cancer cells over a threshold level
to induce mitotic catastrophe. Finally, the identification of CIN signatures and their relationship with
the activation of inflammatory pathways and immune responses will be of increasing importance to
stratify patients and select them for immune therapies.
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