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Abstract

Background—Human genetic susceptibility for tuberculosis (TB) has been demonstrated by 

several studies, but few have examined multiple innate and adaptive immunity genes 

comprehensively, age-specific effects, and/or resistance to Mycobacterium tuberculosis (Mtb) 

infection (RSTR). We hypothesized that RSTR, defined by a persistently negative tuberculin skin 

test, may have different genetic influences than Mtb disease.

Methods—We examined 29 candidate genes in pathways that mediate immune responses to Mtb 

in subjects in a household contact study in Kampala, Uganda. We genotyped 546 haplotype-

tagging single nucleotide polymorphisms (SNPs) in 835 individuals from 481 families; 28.7% had 

TB, 10.5% were RSTR, and the remaining 60.8% had latent Mtb infection.

Results—Among our most significant findings were SNPs in TICAM2 (p=3.6×10−6) and IL1B 

(p=4.3×10−5) associated with TB. Multiple SNPs in IL4 and TOLLIP were associated with TB 

(p<0.05). Age-genotype interaction analysis revealed SNPs in IL18 and TLR6 that were 

suggestively associated with TB in children ≤ 10 years old (p=2.9×10−3). By contrast, RSTR was 

associated with SNPs in NOD2, SLC6A3 and TLR4 (nominal p < 0.05); these genes were not 

associated with TB, suggesting distinct genetic influences.

Conclusions—We report the first association between TICAM2 polymorphisms and TB, and 

between IL18 and pediatric TB.
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INTRODUCTION

TB, caused by Mtb, remains a major public health threat globally, with a high burden in 

Sub-Saharan Africa. According to the World Health Organization, in 2011, Uganda's TB 

incidence rate was 193 per 100,000 people, compared to 3.9 per 100,000 in the United States 

(http://www.who.int/tb/country/data/profiles/en/).

Exposure to Mtb initiates the first steps in the pathogenesis of Mtb infection and subsequent 

active TB. Tuberculin skin tests (TST) and interferon-γ release assays (IGRA) measure T-

cell responses to Mtb and are utilized to identify Mtb-infected individuals. Infected 

individuals can remain healthy and without signs of active infection or disease (termed latent 

tuberculosis infection or LTBI), or progress to active TB. Only about 10% of healthy adults 

with Mtb infection develop active TB. Notably, using the TST as a marker for Mtb 

infection, we have found that ~10% of individuals who are household contacts of patients 

with pulmonary TB, remain uninfected for at least 2 years (1;2). Our TB household contact 

study is unique in that it has rigorously characterized resistance to Mtb infection in the face 

of persistent exposure with a 2 year follow-up period in both the household and TB-endemic 

community.

Human genetic susceptibility is involved in the pathogenesis of TB, with most research 

focusing on immune response genes (3;4). Previous research has shown that chromosomal 

regions linked to TB differed from those linked to resistance to Mtb infection (2). In this 

study, we examined this hypothesis further, by contrasting results of two analyses: 1) 

presence versus absence of active TB, and 2) resistance versus susceptibility to Mtb 

infection. Mtb uninfected individuals are characterized by a persistently negative TST 

(PTST-) over an extended period of exposure, and are referred to as resistors (RSTRs). Our 

previous work has shown that these persistently TST negative individuals have equivalent 

epidemiologic risk profiles to those who have positive TSTs, including exposure to the 

index TB case and clinical characteristics (5). In that study, we found the primary predictor 

of RSTR was young age, and we hypothesized that host factors, such as genetics and innate 

immunity, likely also influenced the RSTR phenotype.

Numerous studies have informed our understanding of the role of host genetics in 

susceptibility to Mtb infection and disease. There are several classes of genes that are 

important for host responses to TB (6;7). These include the Toll-like and Nod-like receptor 

families of genes (TLR1, TLR2, TLR4, TLR6, TLR9, TIRAP, TOLLIP,TICAM1/2, 

MyD88, NOD1, NOD2), cytokines and their receptors expressed by macrophages (TNF, 

TNFR1/2, IL1α/β, IL4, IL6, IL10, IL18, IL12A/B, IL12RB1/2, IFNG, IFNGR1/R2), genes 

expressed by T-cells (IFNG, IL4, IL12, STAT1, IL12RB1/2, IL10), and key TB candidate 

genes (SLC11A1, SLC6A3). Many genes in these pathways have been studied extensively in 

animal, macrophage, and human studies and have shown varying degrees of association with 

TB, while others have not received much attention (3;4;6;7).
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Typically, studies exploring TB and genetic risk factors for disease have focused on a few 

polymorphisms within a few candidate genes. As a field, it is critical to examine genetic 

influences for developing TB broadly, validate other genetic findings, and avoid single 

candidate gene studies unless accompanied by validation and/or biology (8). In our current 

study, we have taken a comprehensive approach to the examination of genetic susceptibility 

to TB by investigating haplotype-tagging single nucleotide polymorphisms (SNPs) in 

multiple candidate genes involved in innate and/or adaptive immune pathways that affect 

host responses to mycobacterial invasion. The objective of our current study was to examine 

the association between these candidate genes and pulmonary TB and RSTR phenotypes 

within the context of a TB household contact cohort. Finally, our inclusion of household 

contacts of all ages and regardless of HIV status allowed us to explore the hypothesis that 

pediatric TB is different from adult TB in its genetic risk profile (9-11), and to explore the 

impact of HIV-infection on the TB genetic risk profile. The field of pediatric TB has been 

neglected and this study provides a unique opportunity to examine effects specific for 

children.

RESULTS

Genetic association with TB

We first examined whether 546 haplotype tagging SNPs in 29 immune pathway genes were 

associated with TB in 835 subjects from 481 families within 298 households (Table 1). 240 

individuals (28.7%) had TB (43% of the pediatric TB cases were culture positive, data not 

shown). The mean age was 18.43 (median=17) and 15% were HIV+. The percentage of HIV

+ individuals within each group was similar, with 15% HIV+ in the TB analysis and 13% 

HIV+ in the RSTR analysis (data not shown).

Genetic association analysis with pulmonary TB as the outcome of interest showed two 

SNPs met the studywide significance threshold, with 19 additional SNPs showing a 

nominally significant association (p < 0.05) (Table 2). The top SNPs in the TB analysis 

included 1 SNP within TICAM2 (aka TRAM) in the 5’ region, rs746566 (OR= 1.42, 

p=3.6×10−6) and 1 SNPs in IL1B, rs1143643 (OR=1.99, p=4.3×10−5). Multiple SNPs were 

associated with TB at the nominal p < 0.05 level in IL4 (best p=6.9×10−3), NOD1 (p= 

9.4×10−3), and TOLLIP (p =6.8×10−3). Allele frequencies in cases and unaffected 

individuals for SNPs significant at nominal p < 0.05 are provided in Supplemental Table 1, 

and results for all SNPs in TICAM2 and NOD1 are provided in Supplemental Table 2. To 

assess the impact of phenotype definition (both TST+ and RSTRs within the “control” 

group), we conducted a sensitivity analysis, restricting the controls to only TST+ 

individuals. The trend in results remained the same, albeit with reduced significance, 

because of the reduced sample size (data not shown).

While the association with IL1B has been reported in the literature before (12;13) , the 

associations with TICAM2 and NOD1 have not, so we sought to replicate these findings in 

an independent cohort. We obtained the Wellcome Trust (WTCCC) TB genome-wide 

association study data (14) and examined SNPs in TICAM2 and NOD1 (Supplemental Table 

3); this population (Gambia) is the same that previously showed an association with IL1B 

(12). Among the 42 SNPs in/near TICAM2 that passed QC, five showed significant 
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association with TB with uncorrected p-value < 0.05. The most significant SNP was 

rs1005551 with p=0.024 with adjustment for sex and tribe, which meets the threshold for 

independent replication (15). Among the 23 SNPs in/near NOD1 that passed QC, four were 

associated with TB with p-value < 0.05 (Suppl. Table 4), with the most significant SNP 

being rs42603 with p=0.00096 adjusting for sex and tribe, also meeting the threshold for 

independent replication.

Examination of age-specific effects with TB

To assess whether genetic determinants of infection and disease were age-dependent, we 

used a genotype-age interaction analysis. Our primary focus here was on the interaction term 

of the model, since main effects cannot be interpreted independently in models with 

interaction terms. Six genes showed an association with TB in children, but not in adults 

(Table 3). The interaction term for rs2043055 (IL18 intron) attained suggestive significance 

(p=2.9×10−3), only one level of magnitude lower than the threshold for studywide 

significance (p=2×10−4), and 2 additional SNPs approached this same level of significance. 

Association with IL18 was not observed in the sample as a whole (Table 2). In addition, 3 

SNPs within TLR6 were suggestively associated with pediatric TB at this same level, with 

the most significant result at TLR6 3’ SNP rs5743832 (p=2.7×10−3). One SNP within IL1A, 

1 within IL1B, 5 within STAT1, 3 within TLR6, 2 within IL12B, 1 within TLR4, and 4 SNPs 

within IL18 were nominally (uncorrected p< 0.05) associated with pediatric TB.

Genetic association with RSTR

We next examined whether the same set of SNPs was associated with RSTR in 718 

individuals, including 75 individuals (10.5%) who were RSTR. None of the SNPs met the 

experiment-wide significance level in the analysis with RSTR as the phenotype (Table 4). 

However, 17 SNPs showed a nominal association, at the p < 0.05 level. The top SNPs in this 

analysis included 2 SNPs in NOD1, 2 SNPs in NOD2, and 3 SNPs in SLC6A3. STAT1 was 

associated with RSTR in the sample as a whole, though it was associated with TB in the 

pediatric sample (Table 3). To make sure that HIV seropositivity did not influence the 

results (eg. anergy resulting in negative TSTs), we conducted a sensitivity analysis, 

excluding the HIV+ individuals from this analysis, and found no difference in significance 

(data not shown). In the age x genotype analysis for RSTR (Table 5), several SNPs in both 

IL12RB1 and IL12RB2 had significant interaction effects (p < 0.01). These SNPs were 

associated with increased odds of RSTR in adults versus decreased odds of RSTR in 

children, or vice versa. Generally, these effects were only significant in adults or children.

DISCUSSION

Our study examined the association between 29 candidate genes involved in innate immune 

responses, and two distinct phenotypes that result as a consequence of Mtb exposure: 

resistance to infection and pulmonary TB. We identified novel associations between 

pulmonary TB and TICAM2; to our knowledge, we are the first to observe associations 

between this gene and TB, and we replicated this finding in an independent dataset. 

Moreover, we observed several SNPs with p<10−2 in NOD1 that were associated with TB. 

Although our results for NOD1 did not achieve significance after multiple testing correction, 
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this is the first report of an association between TB and NOD1, which we also replicated in 

an independent cohort. In addition, we observed novel suggestively significant interactions 

between SNPs in IL18 and TLR6 and age; these SNPs were associated with TB in children 

≤10 years old. Finally, we observed two SNPs in TOLLIP associated with TB (p<0.05), 

consistent with earlier findings (16).

Three SNPs within the TICAM2 gene were associated with TB with one SNP significant at 

the experiment-wide threshold. In addition, one TICAM2 SNP was nominally associated 

with RSTR. TICAM2, also known as TRAM, is a toll-like receptor adaptor that supports 

TLR4-mediated immune responses (17). In a recent study, TICAM2 levels predicted with 

80% accuracy whether subjects would be high or low responders to the MVA85A TB 

vaccine candidate (18). Ours is the first study to find an association with TICAM2 genetic 

variants and TB. In addition, we replicated association with TICAM2 SNPs (p<0.05) in the 

WTCCC data (14). Though our most significant SNP did not replicate, this may be due to 

differences in population genetic differences such as LD patterns and/or differences in 

ascertainment of cases and controls, as well as the design of the genotyping arrays (see 

Supplemental Material for detail) (8); a nearby TICAM2 SNP, rs17473484, which is ~7 kb 

away, showed p=0.034, and another rs10055514, ~51.5 kb away, showed p=0.039.

We observed a statistically significant association between TB and IL1B, more significant 

than in previous reports and in intronic rather than exonic variants (12;13). Intronic SNPs in 

IL4 were also associated with TB. This is the first report of an association of IL4 

polymorphisms with TB in an African population and replicates studies of IL4 in TB in non-

Africans (19;20). Our greater SNP density and use of haplotype-tagging SNPs allowed us to 

detect these genetic association effects (8;21). This greater coverage of genetic variation 

may explain why we achieved greater significance than in previous reports (12;13).

We investigated children age ≤10 years based on reports of age-specific genetic effects for 

TB (9;10), differences in immune responses of children compared to adults (22), and unique 

epidemiological risk profiles for Mtb infection in children (5). We found an association 

between TB and IL18 and TLR6 in children, and suggestive associations between TLR4 and 

IL12B and pediatric TB. Since most TB genetics studies focus on adults, this may explain 

why associations between TB and IL18 have not been reported before. IL18, similar to IL1β, 

is a pro-inflammatory cytokine that requires activation of the host cell inflammasome for 

secretion in its mature, bioactive form (23). Mature IL18 has a role in development of Th-1 

type immune responses, and with IL12 regulates IFN-γ production by T cells and NK cells 

(24). Although IFN-γ and IL1β are considered essential for control of Mtb, the role of IL18 

in immune responses to Mtb remains unclear. Some murine models have demonstrated a 

protective role for this cytokine following in vivo Mtb infection (25), and human in vitro 

studies suggest that IL18 synergizes with IL12 to provide optimal control of Mtb in human 

macrophages (26). The only previously reported association between IL18 and TB came 

from a meta-analysis of Chinese studies (27).

The association between genetic variation in TLR6 and TB has been investigated in a few 

prior reports. A meta-analysis of 4 study populations (3 ethnically diverse populations in the 

United States and an Indian population) showed modest association between a TLR6 
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polymorphism and TB, though these populations were presumably all adults (28). In young 

infants, TLR6 polymorphisms have also been associated with altered BCG-specific cytokine 

responses (29), particularly post-BCG vaccination (30). The causal SNP implicated by 

Randhawa et al., rs5733810, is in moderate LD with rs5743812 in Kenyan HapMap data. 

We observed association between rs5743812 and pediatric TB, but did not genotype the 

those two SNPs (30), so cannot examine LD in the Ugandan population. Furthermore, we 

did not observe association with TLR1, which is in strong LD with TLR6 in certain 

populations (31); given the lower LD seen in the Ugandan population (32) and non-

significant association with TLR1, these effects are likely due to TLR6 alone. Previously, we 

have detected signatures of natural selection in TLR6 in Ugandans (32), suggesting this gene 

may be important in infectious disease susceptibility. Regarding the contribution of TLR6 to 

innate control of Mtb infection, there has been one report demonstrating that recognition of 

Mtb by TLR2/TLR6 heterodimers contributes to activation of the host cell inflammasome, 

caspase-1 activation, and subsequent production of mature IL1β (33). Since children ≤10 

years are more likely to experience their first exposure to Mtb than adults living in TB 

endemic settings, genetic susceptibility to TB may differ whether the host has pre-existing 

immune sensitization to Mtb. Given the borderline p-values of some of our findings, our 

conclusion that they reflect unique age-based genetic susceptibility to TB may be premature. 

Our findings emphasize the importance of including children in genetic susceptibility 

studies, especially for diseases such as TB where disease risk and phenotype change as 

children grow older and their immune systems mature.

Though not significant at the experiment-wide threshold, SNPs from both NOD1 and NOD2 

were associated with TB and the RSTR phenotype, respectively. One study in a Chinese 

population identified a single SNP in NOD2 gene associated with TB susceptibility (34), 

although we observed an association between this gene and RSTR. NOD2, a cytosolic 

pattern recognition receptor, has been implicated in recognition of Mtb products that are 

secreted from the macrophage phagosome into the cytosol. Thus, NOD2 may play a role in 

activation of the host cell inflammasome with subsequent production of mature IL1β and 

IL18 (33;35;36). Ours is the first study to report associations between NOD1 and TB, and 

we replicated this finding in the WTCCC study data. Even though the NOD1 SNPs did not 

achieve experiment-wide statistical significance, it is noteworthy because this is the first 

report of a possible role for NOD1, and no other studies have examined genetic influences 

on RSTR.

While many studies designed to uncover genetic associations with TB focus on TB, few 

have explored the genetic association or genetic linkage with the TST- phenotype (2;37). 

Since most studies do not include tuberculin skin testing in the characterization of non-

diseased individuals (8), there is usually no assessment of the unaffected subject's exposure 

and/or infection with Mtb. Our use of data from a longitudinal household contact study not 

only provides opportunity to collect follow-up data, but also confirms Mtb household 

exposure of all study participants (38). The RSTR phenotype is of special interest since 

these individuals do not appear to become infected by Mtb over a two-year period, despite 

heavy exposure to an individual with active pulmonary TB and residence in a high TB 

endemic area (5). Though we did not find any SNPs to be significantly associated with the 

Hall et al. Page 6

Genes Immun. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RSTR phenotype at the p <2×10−4 (studywide α =0.05) level, we did find a nominally 

significant association with three SLC6A3 SNPs. This finding replicates the Cobat et al. 

cross-sectional study, conducted in South Africa, that associated SLC6A3 with TST 

reactivity (37). Because we observed nominal associations between various genes and TB 

and not with RSTR, this further suggests these distinct clinical outcomes are regulated by 

different genetic mechanisms. It is possible that we did not detect significant genetic 

associations with the RSTR phenotype because the vast majority of RSTRs were young 

children, and the age-specific models may have been underpowered to detect an effect. 

Larger cohorts will be needed to more closely examine this trait. Lastly, the impact of HIV 

on the characterization of RSTR is not well known. TST positivity is defined using a lower 

threshold for HIV positive individuals, and in our previous work, we saw no difference in 

the distribution of HIV in RSTRs versus non-RSTRs (5). Because most of these study 

subjects were enrolled before CD4 counts were done in HIV positive individuals (pre 2004), 

we are unable to evaluate the impact of low CD4 and potential anergy in the RSTRs. Only 4 

of the RSTRs were HIV+, so possible anergy likely had little influence on our findings.

Interestingly, we only observed one SNP within the 3’ region of the SLC11A1 gene (aka 

NRAMP1) that was associated with TB, and it did not achieve experiment-wide statistical 

significance (p=0.026). SLC11A1 has been associated with TB in meta-analyses (39-41), so 

the lack of statistically significant associations might be surprising. Non-replication could be 

due to study design, including differences in diagnostic criteria for TB cases and controls 

and issues of targeted polymorphisms versus comprehensive LD coverage (8;15). Another 

possible explanation for our weak association between TB and SLC11A1 could be due to 

interactions between SLC11A1 and other genes, where TLR2 acted as a modifier of 

SLC11A1-associated TB risk (42).

Our findings are limited by our sample size and the fact that we had no Ugandan replication 

sample. Despite these limitations, we identified significant and novel associations between 

SNPs in immune response genes and TB, such as TICAM2, NOD1, and IL1B, as well as 

pediatric TB-specific effects for IL18 and TLR6. Our findings warrant further study with a 

larger sample size. Our candidate gene, hypothesis-based approach, as opposed to a genome-

wide analysis, may have prevented us from observing additional genes significantly 

associated with the RSTR phenotype, so further work is needed. Our age-based analysis 

suggests that genetic susceptibility for TB in adults and pre-adolescent children may differ 

and warrant further investigation in a larger cohort of Mtb-exposed children.

MATERIALS AND METHODS

Study Participants

Data used in this analysis was gathered from two phases of a household contact study 

conducted in Kampala, Uganda. Subjects from the Household Contact Study were enrolled 

from 1995-1999 (43) , while subjects from the Kawempe Community Health Study were 

enrolled from 2002-2008 (38). The study protocol was reviewed and approved by the 

National HIV/AIDS Research Committee, The Uganda National Council of Science and 

Technology, and the institutional review board at University Hospitals Case Medical Center, 

Cleveland, OH. Individuals who presented at the study clinic with active culture positive 
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pulmonary TB were enrolled as index cases. All household members who provided 

informed consent were also enrolled and evaluated at study entry with TST, HIV testing, 

chest X-ray, and a history and physical exam for signs and symptoms of TB. Healthy 

household contacts underwent a follow-up evaluation every three months for the first six 

months, then every six months thereafter. Diagnosis of TB for this analysis was based on 

isolation of Mtb from clinical samples (sputum or gastric aspirates) of all adult patients and 

the many pediatric cases (44% of those in this analysis) (44) at any time during the study 

period. There were no individuals with disseminated TB (TB meningitis or miliary TB) 

included in this analysis. RSTR individuals were defined as having TSTs that remained 

negative throughout the two-year follow-up period. A positive TST was defined by 

induration at the injection site greater than 5mm for children ≤5 years old or HIV-infected 

individuals, and greater than 10mm for all others; the 10mm cutoff is used in settings where 

BCG vaccine coverage is high (5;45).

Genotyping

In our analysis, we focused on 29 genes involved in the TNF, interleukin, TLR/NLR, and 

IFNG/IL12 pathways, genotyping 546 haplotype-tagging SNPs within these genes. Tag 

SNPs were selected to capture common genetic variation (minor allele frequency ≥ 5%) with 

strong coverage (linkage disequilibrium r2 ≥ 0.8) in any of the 3 African HapMap 

populations, based on our previous work (32), and were identified using Genome Variation 

Server (GVS) (http://gvs.gs.washington.edu/GVS137/index.jsp). Genotyping was conducted 

using the Illumina iSelect platform. Once SNPs were selected using GVS, their availability 

on the iSelect platform was verified; if a specific SNP was not available on iSelect, a nearby 

SNP was selected to replace it. Genotype calling and quality control was performed using 

Genome Studio, filtering the SNPs by call frequency, replicate errors, and clustering quality 

(AB R Mean, AB T Mean); 14 SNPs were removed in this process. Self-reported family 

relationships were confirmed using genetic data and corrected where needed.

Statistical Analysis

Sample allele frequencies were calculated adjusting for family structure by means of the 

maximum-likelihood approach implemented in FREQ, part of the S.A.G.E. package (46). 

Genetic association analyses were conducted by logistic regression using generalized 

estimation equations to account for genetic relatedness within households, as implemented 

in the R package gee. Observations were clustered by subfamily, defined as groups of first-

degree relatives living within a household. Genetic association analyses were conducted 

separately to examine two distinct phenotypes: active TB (versus absence of active TB) and 

RSTR (versus susceptibility to Mtb infection); TST+ individuals without active disease were 

included in the control group for both analyses, and RSTRs did not have active TB by 

definition. Each subject had only one clinical classification (RSTR, TST+, or TB). 

Genotypes were coded as both additive and dominant genetic models, using the minor allele 

as the effect (“risk”) allele. Recessive models were not tested because the rare allele 

homozygote was usually too infrequent for the models to be reliable. Sex and HIV status 

were included as covariates in all analyses. An exchangeable correlation matrix was used in 

the GEE model, except where the minor allele was too rare for the exchangeable model to 

converge to a maximum, in which cases an independence model was fitted. A single-SNP p-
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value of 2×10−4, corresponding to a study-wide significance threshold of α=0.05, was 

determined by estimating the number of independent tests based on LD among the SNPs 

passing QC (47) using the program SNPSpDlite (http://gump.qimr.edu.au/general/daleN/

SNPSpDlite/).

We also conducted an analysis including an age x genotype interaction term to explore age-

specific genetic effects, where age was a binary variable of age ≤ 10y. This age cutoff was 

based on similarity of epidemiological risk factor distribution within children ≤ 10 years of 

age compared to older children and adults (5). When the interaction term was significant, we 

conducted stratified analyses (separate models for age ≤ 10 and age >10) to evaluate 

whether the significant genetic effect was in the children, adults, or both. Similarly, we 

conducted an HIV x genotype analysis, based on our earlier observation that HIV 

seropositivity may have a synergistic genetic effect on TB risk (48); these analyses were 

restricted to the TB phenotype, because there were too few HIV-infected individuals that 

were RSTR. Results did not attain statistical significance in the HIV-genotype interaction 

models (Supplemental Table 5).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Sample characteristics
a

Total individuals 835

Families 481

Female 485 (58.1%)

Age, years 18.4 ± 13.6

Age ≤ 10 years 303 (36.3%)

TB+ 240 (28.7%)

    TB cases among Age ≤ 10 35 / 303 (11.6%)

    RSTR
b 75 / 718 (10.4%)

RSTRs among Age ≤ 10 55 / 303 (18.2%)

HIV+ 122 (14.6%)

a
Figures given as N, N (%) or mean ± SD.

b
The analysis of RSTR was restricted to a subset of individuals with complete tuberculin skin test follow-up data (N = 718 from 435 families).
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Table 2

Results of genetic association analysis of TB phenotype (SNPs with nominal p-values <0.05)

SNP Gene Location OR (95% CI) p Best Model

rs2569254 IL12B intron 1.75 (1.05, 2.90) 3.1E-02 Dom

rs5744229 IL18 intron 1.63 (1.05, 2.51) 2.8E-02 Dom

rs1143643 IL1B intron 1.99 (1.43, 2.76)
4.2E-05

* Dom

rs1143633 IL1B intron 1.59 (1.13, 2.24) 7.7E-03 Dom

rs2243270 IL4 intron 0.67 (0.51, 0.90) 6.9E-03 Dom

rs2243274 IL4 intron 0.72 (0.53, 0.96) 2.8E-02 Dom

rs2243290 IL4 intron 0.64 (0.45, 0.91) 1.3E-02 Dom

rs17159043 NOD1 intron 1.56 (1.11, 2.17) 9.4E-03 Dom

rs2970499 NOD1 intron 1.91 (1.17, 3.13) 9.8E-03 Dom

rs13062 SLC11A1 flanking 3’ UTR 1.48 (1.05, 2.09) 2.6E-02 Dom

rs2550936 SLC6A3 intron 1.35 (1.04, 1.76) 2.4E-02 Add

rs256946 TICAM2 flanking 5’ UTR 0.67 (0.46, 0.99) 4.6E-02 Dom

rs419939 TICAM2 flanking 5’ UTR 0.79 (0.63, 0.99) 4.4E-02 Add

rs746566 TICAM2 flanking 5’ UTR 1.42 (1.22, 1.65)
3.6E-06

* Add

rs4624663 TLR1 3’ UTR 1.52 (1.02, 2.27) 4.2E-02 Dom

rs11938228 TLR2 flanking 5’ UTR 0.66 (0.44, 0.99) 4.4E-02 Dom

rs5743818 TLR6 Coding A644A 0.52 (0.28, 0.96) 3.8E-02 Add

rs4963062 TOLLIP intron 1.44 (1.05, 1.98) 2.4E-02 Dom

rs5743867 TOLLIP intron 1.52 (1.12, 2.05) 6.8E-03 Dom

*
Experiment-wide significant (p < 2 × 10−4)
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