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Introduction

Osteosarcoma (OS) is a serious public health issue (1). It 
derives from primitive transformed cells of mesenchymal 
origin, showing osteoblastic differentiation and producing 
malignant osteoid (2). OS is characterized by high 
malignancy and invasiveness, rapid growth, and early 
metastasis, leading to poor prognosis and high mortality. 

The main symptoms of OS are local pain and swelling, 
mainly in the long bones of the limbs, especially the knees. 
Nearly 20% of OS patients have distant metastases at initial 
diagnosis, 90% of which are lung metastases. Although the 
etiology and pathogenesis of OS are unclear, some studies 
have shown that it is closely related to genetic factors (3-5). 
In the field of OS research, the challenge is to elucidate its 
pathogenesis at the molecular level (6-10).
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At present, the clinical treatment of OS is mostly 
chemotherapy, radiotherapy, and tumor resection, but 
about 50% of patients still have tumor recurrence and 
distal metastasis after surgery. The 5-year survival rate for 
patients with OS remains low. Some target molecules have 
been reported to play an important role in the progression 
of OS (11-13). There is an urgent need to find diagnostic 
or prognostic markers with high specificity and sensitivity 
for disease diagnosis and treatment, to provide a basis for 
the optimization of clinical treatment and improve patient 
survival rate. Greater attention is being given to epigenetics, 
DNA methylation, histone modification, and chromatin 
remodeling involved in the formation of tumors, so in-
depth understanding of the genetic and molecular basis 
of OS will the provide a theoretical basis for molecular 
targeted therapy research (14).

In recent years, the use of high-throughput hybrid 
arrays and sequencing-based technologies has increased 
because they can measure the molecular abundance of 
messenger RNA (mRNA) and genomic DNA (15,16). 
Researchers increasingly expect high-throughput data sets 
to be published in the scientific literature, and there is an 
international effort to ensure microarray experimental 
results are properly interpreted and comparable to each 
other. The Gene Expression Omnibus (GEO), located in 
the National Institutes of Health (Bethesda, MD, USA) is a 
resource for storing and retrieving public high-throughput 
gene-expression and genomic hybridization data (17). It now 
stores inventory files from original research deposited by 
the scientific community, and data on more than 1 million 

samples are currently available in the public domain. GEO 
currently accepts data from a variety of assays, including 
serial analysis of gene expression (SAGE) and real-time 
polymerase chain reaction (RT-PCR) data in addition to 
some gene-expression matrix data, and data from various 
omics in the current field of disease research (18).

Susceptibility gene refers to the gene that can code 
genetic disease or obtain disease susceptibility under 
appropriate environmental stimulation, that is, the gene 
carried by genetically determined organisms prone to 
certain diseases or diseases. At present, studies have explored 
the role of differentially expressed genes (DEGs) in patients 
with OS, but there is a lack of research to explore the 
interaction between different genes. Therefore, we aimed 
to analyze gene expression profile chip data for OS, and 
the DEGs between OS and normal tissues were obtained 
by screening. In addition, DEGs Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were performed to build a 
protein-protein interaction (PPI) network, for exploration 
of possible molecular mechanisms and potential therapeutic 
targets of OS. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-6369/rc).

Methods

Data download

The gene expression profile of microarray data GSE16088 
was obtained from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/). The microarray expression extracted 
profiles from 17 samples, including 14 OS samples and 3 
normal control tissue samples. In this study, Affymetrix 
Human Genome U133A was used to genomeu133a on 
the GPL96 platform (HG-U133A) array [transcript (gene) 
version], expression data type for expression profiling 
by array, Homosapiens between species. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Data processing and DEGs analysis

The original data were analyzed by the affy software 
package in R language (R Foundation for Statistical 
Computing, Vienna, Austria). The original CEL file was 
processed by robust multiarray analysis (RMA) algorithm 
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for background correction, bootstrap correction of the 
original data, and then transformed into a probe table 
reach matrix. Then, according to the corresponding file 
GPL96 platform R language hugene10sttranscriptcluster.db  
package to name a probe into gene; DEGs also met 
|log2fold change (log2FC)| >2 and P<0.01. Heat maps of 
the top 100 significantly DEGs (defined as |log2FC|) were 
drawn using the gplots: heatmap.2 toolkit to visualize the 
expression of each DEG in each sample.

GO and KEGG analyses

KEGG is a knowledge library that systematically analyzes 
gene functions and enzyme pathways and connects 
the information of genes with higher-order functional 
information. GO is a powerful tool for integrating genes 
and product characteristics from all species. It is mainly 
used to integrate proteome data of different species, classify 
different proteins, predict the function of specific protein 
domains, and identify genes involved in specific diseases. In 
this study, GO and KEGG pathway enrichment analyses 
were performed on DEGs using the enrich-plot package 
of R language, and P<0.01 and false discovery rate (FDR) 
<0.05 were set as the critical values of significant gene 
enrichment.

Weighted analysis and construction of central gene network 
map

Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) is an online database that retrieves interactions 
between proteins. Network system cluster tree construction 
was conducted by dynamic shear method, and gene modules 
with height below 0.25 were merged.

Gene set enrichment analysis

The DEG list file was imported to the left functional area of 
the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) website (https://david.ncifcrf.gov/) 
for GO analysis of the genes, including molecular function 
(MF), biological process (BP), and cellular component 
(CC), and the specific functional categories and CCs 
involved in the DEGs were analyzed. Using the R language 
clusterProfiler package of variance analysis of enrichment of 
gene analysis and visualization, through the analysis of gene 
expression profile data, the results of the analysis of DEGs 
reveal which ones may be involved in signaling pathways, 

and reveal how well they are expressed in specific functional 
gene sets, and whether that expression is statistically 
significant.

Further analysis of the core genes

The 10 core genes obtained were further analyzed in depth, 
and the direct differential expression of these core genes in 
metastatic and non-metastatic OS patients within 5 years 
was extracted and compared in GSE21257.

Prognostic analysis

Of the 36 OS samples in the GSE39055 data set, 1 case 
was excluded, 35 cases were retained for survival analysis, 
and the expression of 10 core genes was extracted, as well 
as the clinical data of the 35 OS patients. Sangerbox online 
software (http://www.sangerbox.com/tool.html) was used 
to analyze the relationship between the 10 core genes and 
overall survival of OS patients. The 35 OS samples were 
divided into a high expression group and a low expression 
group according to the best isolation value of each core 
gene. Kaplan-Meier (K-M) survival curves were drawn, and 
P<0.05 was considered statistically significant.

Statistical analysis

Statistical data were analyzed by SPSS 23.0 software 
(IBM Corp., Armonk, NY, USA), quantitative data were 
represented as mean ± standard deviation, the independent 
sample t-test was applied for comparisons between groups, 
one-way analysis of variance (ANOVA) was used for 
multiple groups, and the least significant difference (LSD) 
t-test was used for pairwise comparisons between groups. 
Prism 7 statistical analysis was used for target genes (the 
10 core genes), and one-way ANOVA test was used for 
comparison between groups. P<0.05 indicated that the 
differences were significantly different (two-tailed).

Results

Screening for DEGs

A volcano map was drawn (Figure 1), which showed that the 
data quality of all samples was evenly distributed. Moreover, 
the data of each group were closely distributed, and there 
was no overflow value. The gene expression of each sample 
was mapped onto a heat map (Figure 2), and the gene 

https://david.ncifcrf.gov/
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expression differences between groups were statistically 
significant (P<0.05).

Weighted analysis and construction of central gene network 
map

A total of 4 gene co-expression modules were obtained after 
excluding representatives that failed to be assigned to any 
one known module. Among them, the blue module had the 
highest correlation with renal fibrosis, and the top 10 genes 
with the highest connectivity were selected from the blue 
module and blue module, respectively, and the interaction 
network was drawn, and these genes may play an important 
role in the disease process of fibrosis (Figure 3).

Analysis of subcomponent type

Consensus clustering cumulative distribution function 
(CDF) and relative change in the area under the CDF 
curve (CDF delta area) were used for analysis when cluster 
number varied from k−1 to k. The abscissa represents 
category number k, and the ordinate represents the relative 
change in the area. In the consistency analysis of the 
clustering results heatmap, rows and columns represented 
samples, and the different colors represent different types. 
In the expression heatmap of genes in different subgroups, 
red represented high expression, and blue represented low 
expression (Figure 4).

DEG analysis associated with OS prognosis

From the OS data, the heatmap of the DEG expression 
showed different colors representing the trend in gene 
expression in different tissues. The top 50 upregulated genes 
and top 50 downregulated genes are shown in Figure 5. 
DEGs were mainly involved in the regulation of leukocyte 
chemotaxis and migration, vascular development, and other 
BPs; mediation of receptor ligand activity, growth factor 
binding, growth factor activity, integrin binding, and other 
MFs; and were enriched in the extracellular matrix (ECM). 
The enriched KEGG signaling pathways were selected 
to demonstrate the primary biological actions of major 
potential mRNA. The abscissa indicates the gene ratio and 
the enriched pathways are presented in the ordinate. In the 
GO analysis of potential targets of mRNAs, the BP, CC, 
and MF of potential targets were clustered based on cluster 
Profiler package in R software version 3.18.0 (Figure 5).

Further analysis of core genes

The 10 core genes identified were GAS6, IL-6, IGFBP4, 
IGFBP3, CYR61, LAMC1, FSTL1, FSTL3, APOE, and 
CSPP1 (Figure 6). Further analysis of the 10 core genes 
in the GSE21257 data set showed that the expressions of 
GAS6, IL-6, APOE, and IGFBP4 in the OS metastasis group 
were significantly lower than in the non-metastasis group 
(P values 0.0189, 0.0455, 0.0045, and 0.0068, respectively). 
The expression of IGFBP3 in the OS metastasis group 
was significantly higher than that in the non-metastasis 
group (P=0.0424). There was no significant difference in 
the expressions of CYR61, LAMC1, FSTL1, and FSTL3 
between the two groups. Finally, we found that the 
expression of GAS6, IL-6, and IGFBP4 were always low in 
the development of OS.

Discussion

OS is a highly aggressive primary bone tumor with a high 
incidence in young adults (19). Despite the continuous 
improvement in neoadjuvant chemotherapy regimens, the 
survival rate of OS patients has not improved, and the 5-year 
survival rate is still below 20%. Metastasis is considered 
one of the main causes of mortality (20). In order to find 
potential drug therapeutic targets and new tumor markers, 
the pathogenesis of OS needs to be elucidated. With the 
rapid development of gene chip technology, it is being 
widely used in disease diagnosis, treatment, and prognosis 
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assessment through bioinformatics (21). In this study, 
bioinformatics was used to screen DEGs in the GSE16088 
gene chip dataset of OS and normal bone tissue along with 
GO analysis, KEGG rich set analysis, and PPI analysis 
of selected DEGs. The GO analysis showed that DEGs 
were mainly involved in mitotic mitosis, sister staining 
monosomy separation, mitotic microtubule cytoskeleton 
organization, organelle fission, and other BPs, and mediated 
histone kinase activity, chemokine receptor binding, 
microtubule movement, tubulin binding, and other MFs. 
DEGs gene products were mainly enriched in chromosome 
regions, spindle microtubules, kinetochores, and centromere  

regions (22). KEGG pathway enrichment analysis showed 
that DEGs were enriched in the PI3K-AKT, chemokine, 
p53, NF-κB, and other signaling pathways (23).

At present, it is a research hotspot to study the biological 
characteristics of various malignant tumors (24-27). Invasion 
and metastasis are important biological characteristics 
of OS, and one of the main reasons for the poor survival 
rate of OS patients. Therefore, it is urgent to thoroughly 
explore the molecular mechanism of tumor invasion and 
metastasis. KEGG pathway enrichment analysis has shown 
that the ECM-receptor interaction pathway, leukocyte 
transendothelial migration signaling pathway, PI3K-
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AKT signaling pathway, and actin cytoskeleton regulation 
pathways play certain roles in OS (28). Dysregulation 
of the PI3K-AKT signaling pathway is found in many 
diseases such as cancer, diabetes, cardiovascular diseases, 
and neurological diseases (29). Leukocyte transendothelial 
migration signaling pathway can activate the transcription 
factor 3 signal transduction pathway in OS cells, thereby 
promoting their proliferation and metastasis. In cancer, two 
mutations have been identified that enhance the intrinsic 
kinase activity of PI3K. Numerous studies have also shown 
that this signaling pathway also plays an important role in 
OS, and that the ECM-receptor interaction pathway also 
plays a certain role in OS (30,31). Therefore, the PI3K-
AKT signaling pathway and ECM-receptor interaction 

pathway are expected to become potential drug therapeutic 
targets.

Limitations

We did not validate the expression of representative DEGs 
by experiments.

Conclusions

In this study, bioinformatic methods were used to analyze 
the relationship between OS-related genes, explore the 
genetic factors affecting the mechanism of OS, and provide 
a genetic basis for the prevention, diagnosis, and treatment 
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of OS. Although the research basis of cancer gene therapy is 
broad, there are still problems and challenges.
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