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ABSTRACT: The drilling fluid rheology is a critical parameter during the oil and gas
drilling operation to achieve optimum drilling performance without nonproductive time or
extra remedial operation cost. The close monitoring for rheological properties will help the
drilling fluid crew to take quick actions to maintain the designed profiles for the drilling
fluid rheology, especially when it comes to the flat rheology drilling fluid system, which is a
new generation for harsh and specific drilling conditions that require flat profiles for the
mud rheology regarding the temperature condition changes. The current study introduces
a machine learning application toward predicting the rheology of synthetic oil-based mud
(flat rheology type) for the full automation system of monitoring the mud rheological
properties. Four models are developed, for the first time, to determine the rheological
characteristics of flat rheology synthetic oil-based system using artificial neural networks.
The developed models are capable of predicting the plastic and apparent viscosities, yield
point, and flow behavior index from only the mud density and Marsh funnel as model
inputs. The proposed models were trained and optimized from a real field dataset (369 measurements) with further testing the
models using an unseen dataset of 153 data points. The predicted rheological properties achieved a high degree of accuracy versus
the actual measurements and showed a coefficient of correlation range from 0.91 to 0.97 with an average absolute percentage error of
less than 9.66% during the training and testing phases. Besides, machine learning-based correlations are proposed for estimating the
rheological properties on the rig site without running the machine learning system for easy field applications.

1. INTRODUCTION

During the drilling operations for oil and gas wells, drilling fluids
are pumped for many functions such as controlling the drilled
formation pressure to prevent any kick situations during drilling
the abnormally pressured zones and carrying the drilled cuttings
to the surface through the circulation system for good hole
cleaning conditions.1 In addition, drilling fluids provide
lubrication and cooling of the drill string and the drill bit and
format a filter cake to provide good wellbore stability and
prevent mud filtration that causes formation damage.2

The drilling fluids are classified based on the base fluid for
preparing the mud that is mainly oil- or water-based. These two
classes are commonly utilized in the petroleum industry during
drilling operations.3−5 Each class provides special technical
aspects for the drilling fluid, and therefore, the mud program
provides the drilling fluid composition based on the drilled
formation sensitivity, drilling fluid activity, level of interest for
the drilled section, and safety issues.6 The composition of the
drilling fluids is technically designed to provide efficient
filtration and rheological properties for the drilling fluid for
better performance during the drilling operations.7

Synthetic oil-based mud is considered one of the oil-based
drilling fluid categories and is mainly customized to be utilized
through drilling the reservoir section for better drilling
performance and protecting the drilled section from formation

damage.8 Hence, the synthetic oil-based mud system has many
advantages such as nondamageable characteristics toward the
drilled zones and provide flat rheology performance during
drilling operations. Flat rheological properties are required for
some specific applications during the oil and gas well drilling
such as deep water drilling, extended reach drilling, and cold
drilling environment; the concept is to provide flat rheology for
the drilling fluid that does not change with the temperature
conditions.9 The flat rheology topic is introduced to the drilling
fluid research and field applications with newly developed
materials due to its efficient performance.10 The flat rheology
synthetic oil-based mud is one of the flat rheology mud
generations that is utilized for harsh and critical drilling
conditions for efficient drilling and hydraulic systems that will
greatly affect the drilling cost.11,12 The cost and fluid handling
precautions are considered main disadvantages for this mud
system in the drilling operations.
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1.1. Rheology Measurements and Automation Sys-
tem. The standard procedures for measuring the fluid rheology
are followed in the rig site during the drilling operation to
monitor the rheology profiles and assure the proficient
performance for the drilling fluid by the testing approaches.13

These measurements provide technical information about the
fluid rheological properties in terms of plastic viscosity, mud
yield point, and time gel strengths with routine testing with time
by the drilling mud crew. It is an essential process to
continuously measure the drilling fluid rheology as this affects
the mud functions, drilling performance, hydraulics, circulation
operations, and pressure losses.14−16

Marsh funnel viscosity represents the time for flowing a
quantity of fluid volume (930 cm3) through the open orifice of
the funnel.17 A Fann35 rotating viscometer is used for
determining the mud rheological properties (viscosity and gel
strength of drilling mud) as the device recorded the shear stress
versus the shear rate for different speeds at 300 and 600
revolutions per minute (RPM); then, the plastic viscosity (PV),
yield point (YP), apparent viscosity (AV), and flow behavior
index (n) are, respectively, calculated through the following
equations18

R RPV 600 300= − (1)

R RYP 2 300 600= × − (2)

RAV 0.5 600= × (3)

R
R

3.32 log 600

300
η = ×

(4)

The frequency to measure each fluid property is different based
on the critical impact on the well control and drilling
operations19 as the mud density and Marsh funnel viscosity
properties are measured every hour from three to four times.
The alterations for the collected rheological measurements
provide a strong alert about the rock sensitivity and mud activity
and stability performance after exposure to the drilled
formations.20 The mud rheological properties were found to
have a good relationship with the two common properties for
the mud, which are mud weight and Marsh funnel viscosity. In
the literature, Pitt77 and Almahdawi et al.78 provided two
correlations that correlate themud apparent viscosity to themud
weight and Marsh funnel viscosity as

AV ( 25)m Fρ μ= × − (5)

AV ( 28)m Fρ μ= × − (6)

where AV is the apparent viscosity in (cP), ρm is the mud weight
in g/cm3, and μF is Marsh funnel viscosity in seconds.
However, the empirical correlations did not provide the

required accuracy level.21 Therefore, the application of machine
learning is considered an alternative research horizon for
predicting the mud rheological properties to overcome the
limitations of the mathematical correlations. Machine learning
can be defined as a computational coding process that provides a
learning capability from a set of data through the interrelations
between parameters. This technique is mainly developed based
on data statistical analysis and algorithms to achieve the learning
objective for classification or prediction purposes.22−24

The new research trend is to provide automated systems for
monitoring the mud rheological properties through the drilling
operations that will save time, be more accurate, and generate

the rheology measurements with high frequency.25−28 New
devices are developed in addition to machine learning
approaches for this objective; however, the prediction machine
learning systems are still needed for a complete loop system for
acquiring the rheological properties of different drilling fluid
types.29

1.2. Machine Learning Applications. The recent
applications using machine learning techniques for the
petroleum data are studied over a wide range of research
scope for exploration, drilling, production, field development,
and petroleum processing activities. The machine learning
applications provided successful improvements for the oper-
ation performance, solving technical problems, and cost savings.
The machine learning tools were utilized for several studies in
drilling operations for optimizing the drilling performance,30−34

studying the reservoir fluid characteristics35−40 and reservoir
rock properties such as density,41 porosity42 and permeabil-
ity,43,44 rock geomechanics.45−49

The drilling fluids’ rheological properties were studied
through many different studies for developing predictive models
for fluid rheology.50−54 These studies focused on predicting the
rheological properties for different mud systems such as oil-
based mud,50,55 water-based drill-in mud,51 invert emulsion
type,53,56 water-based KCl mud,57 drilling fluid CaCl2,

5858 and
water-based NaCl drill-in fluid.51 These applications contrib-
uted to enriching the literature with high-level accuracy machine
learning models that are developed for specific mud types.
Consequently, the current study introduces a new machine

learning model for predicting the flat rheology synthetic oil-
based mud system that will help achieve the optimum drilling
performance based on optimizing the mud functions. Hence, the
developed models will use the March funnel and mud density
measurements to predict the rheological properties of the
drilling fluid for better monitoring the mud functionality during
the drilling operations on the rig site. The full automation for the
mud rheologymonitoring is one of themain goals for the current
research to provide a full machine learning system for the most
common types of drilling fluids in the oil and gas field as invert
emulsion, all-oil, and Maxbridg mud systems.54,59,60

This study introduces machine learning models for
monitoring the rheological properties for flat rheology synthetic
oil-based mud systems. The artificial neural network (ANN)
technique was employed to develop ANN-based models for
predicting four rheological properties, which are plastic viscosity
(PV), apparent viscosity (AV), yield point (YP), and flow
behavior index (η). The prediction models were built to have
only two inputs, which are mud weight (ρm) and Marsh funnel
viscosity (μF). Furthermore, the study proposed ANN-based
equations for estimating four rheological properties for easy
calculation and better tracking for the mud rheology during the
drilling operations that will enhance the drilling fluid perform-
ance.
This introduction will be followed by the detailed approach

used in this study in Section 2. All the results from this work are
explained and depicted on graphs in Section 3 with complete
discussion of the obtained results and comparing them to the
previous papers in Section 4. The last section in this paper shows
the conclusions of this work.

2. MATERIALS AND METHODS
The study used collected data for the flat rheology synthetic oil-
based mud system. The data were gathered from the mud
reports that cover all the measurements for the mud rheology.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c00404
ACS Omega 2022, 7, 15603−15614

15604

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00404?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The developed models were built by utilizing the ANN tool to
develop a separate model for each property based on the model
parameter optimization. Themodel accuracy was determined by
calculating the correlation coefficient (R) and the average
absolute percentage errors (AAPE) between the actual and
predicted values. The closer the R to 1 regardless of being
negative or positive, the stronger the relationship between the
variables. In this study, the positive correlation coefficient means
a direct relationship and negative R means an indirect
relationship.61

There are several machine learning techniques; but in this
research, ANN was used because of several advantages. The
most important benefit from using the ANN is the ability to
extract the weights and biases to be applied in an equation. This
makes the research results available for further investigation and
comparison. The training phase with ANN can go through
several runs with several parameters changing to get the
optimum parameters to get the most accurate model.
2.1. Study Approach. The methodology approach for the

study started from the data collection for the rheological
properties from the mud reports, followed by the data
preprocessing for enhancing the data quality by performing
data cleaning and filtering to remove the illogic values from the
wrong measurements and the outliers. The data statistical
analysis is very important especially for determining the data

range (minimum to maximum) for each property as this will
affect the model application limitations as the wide data range
will be better for providing a good range for the training database
for the developed models. The data analysis helped reveal the
interrelations between the rheological properties and the
complexity level for correlating these parameters. Building the
models started after the data preprocessing for the high-quality
data by optimizing the ANN model parameters for better
prediction and studying the sensitivity for each model parameter
on the prediction performance. The model performance was
checked to determine if the accepted accuracy level is achieved
or not based on the R and AAPE values. The model retraining
process might be encountered in case the performance level is
not accepted. Finally, the best model parameters and results
were reported.

2.2. Data Description and Statistics. The recorded
parameters covered all the six properties for the flat rheology
synthetic oil-based mud, which are plastic viscosity, apparent
viscosity, yield point, flow behavior index, and consistency factor
(model outputs), in addition to the mud weight and Marsh
funnel viscosity (model input parameters). This study
introduces a novel contribution regarding selecting only two
inputs for the model development, which are mud weight and
Marsh funnel viscosity, as the other studies in the literature
included other inputs such as the temperature, shear rate, and
solid content,62,63 and hence, the new approach will save time
and eliminate the measurement errors to the data.53 The study
uses only mud density andMarsh funnel as model inputs as these
parameters have high-frequency measurements (3−4 times per
hour) and are easy to measure on the rig site without advanced
lab testing.
The dataset covered 522 data points after the data cleaning

and preprocessing to remove all the illogic values and outliers. As
shown in Table 1, the data represented a wide range for the
rheological properties as the mud weight ranged from 70 to 120
pounds per cubic foot (pcf), Marsh funnel ranged from 44 to
120 s, plastic viscosity (PV) ranged from 14 to 74 cP, and

Table 1. Data Statistical Analysis

statistical
parameter

ρm
[pcf] μF [s]

PV
[cP]

YP
[lb/100 ft2] η

AV
[cP]

minimum 70 44 14 11 0.52 22.50
maximum 120 120 74 30 0.87 89
mean 98.92 67.78 37.39 15.83 0.75 45.31
median 104 67 36 15 0.77 44
standard
deviation

13.08 11.52 13.04 3.05 0.06 13.89

kurtosis −0.70 1.25 0.35 5.96 0.36 0.72
skewness −0.70 0.75 0.63 1.89 −0.74 0.77

Figure 1. Model input and output profiles for the study.
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apparent viscosity (AV) ranged from 22.5 to 89 cP. The mud
yield point (YP) ranged from 11 to 30 lb/100 ft2, and the flow
behavior index (η) has a range of 0.52−0.87. Figure 1 shows the
model input and output profiles for the study.
2.3. Data Analysis. The correlation coefficients were

studied between the model inputs and outputs and showed a
strong direct relationship between the mud weight with both
plastic and apparent plastic viscosity (R is 0.70); R is 0.64
between mud weight and flow behavior index, and R is 0.37
between the mud weight with yield point, which is considered
the lowest correlation coefficient. The Marsh funnel reported a
strong direct relationship with the outputs with R ranging from

0.45 with the flow behavior index to 0.70 with the apparent
viscosity as shown in Figure 2.
The model inputs are plotted versus every output individually

to study the scatter plots for the data as shown in Figure 3. There
is no clear type of relationship between the parameters, and this
ensures the complexity of the problem in this study. The
application of machine learning is considered helpful for this
case as it will provide a high learning capability between the
relationships of the parameters.

2.4. Artificial Neural Network Technique. Machine
learning has many tools that can be employed for the models’
development, and the artificial neural network is one of the most

Figure 2. Correlation coefficients between the model inputs and outputs.

Figure 3. Scatter plots between the model inputs versus (a) PV, (b) YP, (c) η, and (d) AV.
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common tools for machine learning utilization and modeling
applications in the petroleum industry.64−67 The tool has the
capability to mimic the biological neural system for thinking by
problem learning.68,69 The structure of the ANN tool starts from
a minimum of three layers named the input layer for the input
parameters, hidden layer for processing, and output layer for the
target parameter prediction.70−73 The tool has interconnected
neurons for linking the layers and affects the performance of the
network processing.74,75 The learning approach for the data is
achieved through different learning algorithms.76 Developing a
machine learning model using the ANN tool must be studied
through a deep analysis for each network parameter and analysis
of its effect on the prediction accuracy. These parameters cover
the network function, training function, transfer function,
number of hidden layers, and number of neurons in the hidden
layer/s.
The data were divided into two sets for the training process

and testing the model, and different learning algorithms were
utilized to obtain the best learning for the relationships between
the inputs and output rheological property. For each rheological
parameter, the best model parameters were reported based on
the best model accuracy.

3. RESULTS

3.1. Model Parameter Optimization. The model
performance is highly affected by the model parameters for

the ANN, and hence, sensitivity analysis through many trial
procedures for the best model parameters in terms of the
number of hidden layer/s, the number of neurons in the hidden
layer/s, network function, training function, and transfer
function should be performed to record and save all of these
parameters. Increasing the number of hidden layers and neurons
will help increase themodel accuracy; however, this will cause an
increase in the computational processing time for running the
model. The simple ANN structure with fewer hidden layers and
neurons will supply better computational processing time for the
model but might not provide high accuracy for the developed
model. Hence, achieving the best accuracy results with the
simple ANN structure (hidden layers and neurons number) is
needed through the sensitivity analysis process for the model
development.
The sensitivity analysis was executed for the dataset, and the

model accuracy was evaluated through the statistical metrics
such as the correlation coefficient (R) and average absolute
percentage error (AAPE) between the actual and predicted
values. The sensitivity was completed for a wide range of the
model parameters, and Table 2 shows the best parameters for
each rheological property with the accuracy for the training and
testing results.
The sensitivity showed that all the models achieved high

results for both training and testing phases during developing the
rheology prediction models as Rwas higher than 0.91 and AAPE
was less than 9.6%. The correlation coefficient of testing for the

Table 2. Sensitivity Analysis Results

ANN model parameters training results resting results

model neurons number training function transfer function R AAPE (%) R AAPE (%)

YP 12 Bayesian regularization backpropagation radial basis 0.91 5.65 0.92 8.19
PV 10 tan-sigmoid 0.94 9.59 0.94 9.66
η 18 0.94 1.55 0.92 2.69
AV 10 0.97 5.13 0.95 6.79

Figure 4. Training results for the rheological propery prediction. (a) PV, (b) YP, (c) η, and (d) AV.
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plastic viscosity model same as the apparent viscosity model, and
it was 0.94 which is more than the other two models. The
correlation coefficient of testing for the yield point and the
behavior index was only 0.92, and themaximumAAPE of testing
for all the models was 9.7% for the plastic viscosity model.
All models were tested for the neuron number from 5 to 40

using only one hidden layer to have a simple structure for the
ANN models, and the N ranged from 10 for the PV and AV
model to record 18 for the behavior index model. The best
training function for all rheological property models was
achieved by Bayesian regularization backpropagation. The
optimum transfer functions between the inputs and hidden
layer were tan-sigmoid transfer functions for PV, η, and AV
models. The YP-developed model has a radial basis transfer
function between the inputs and hidden layer.
3.2. Model Training Results. The training of the network

was done to obtain the best models that can predict the output
rheological property from the input data. Input for all models
was only the mud weight and the Marsh funnel viscosity. The
training dataset for developing the models is the 369 dataset that
is separate from the testing dataset. The predicted values for the
training dataset were compared to the actual recorded values to
show the models’ accuracy.

The final acceptance of the developed models is not decided
till the model is tested by the testing dataset that is unseen by the
model during the training process. In this research, the accuracy
of the predicted values for the training and testing datasets is
shown separately to show the quality of the predicted models.
The predicted values were compared to the actual values in

terms of R and AAPE. The model that obtained the highest
correlation coefficient (R of 0.97) for the training dataset was the
apparent viscosity (AV) as shown in the plot of Figure 4d. The
yield point has the lowest correlation coefficient for its
developed model, which was an R of 0.91 (Figure 4b). Both
plastic viscosity and behavior index have the same correlation
coefficient of 0.94, which shows excellent accuracy for the
models (Figure 4a,c).
The highest average absolute percentage error was for the

plastic viscosity (PV) that had only 9.59% (Figure 4a), while the
behavior index (η) was the lowest AAPE with only 1.55%
(Figure 4c). The apparent viscosity (AV) and the yield point
(YP) models were of only 5.13 and 5.65% AAPE (Figure 4b,d).
In addition, the rheological property plots for the actual versus

predicted are shown in Figure 5, which shows the high degree of
match for the log profiles of each rheological property (PV, YP,
η, and AV) as shown in the plots of Figure 5a−d, respectively.

Figure 5. Rheological property logs for actual versus predicted values (training set). (a) PV, (b) YP, (c) η, and (d) AV.
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The Y-axis shows the index of the data that is the test point
measurement.
3.3. Model Testing Results.Themain criteria to accept the

trained model are the accuracy with a separate dataset that is
unseen by the model during training. The chosen testing set is of
almost the same range as the training dataset to assure the
integrity of the model. The developed models were tested with
the unseen dataset (153 data points) for the testing process. The
plots of Figure 6 show the testing results for the rheological
property prediction for PV, YP, η, and AV rheological property
models (Figure 6a−d respectively). The correlation coefficient
recorded higher than 0.92 for all models (Figure 6), and the
AAPE ranged from 2.69% (for the behavior index model) to
9.66% (for the plastic viscosity model). These AAPE values are
accepted based on the values of the rheological properties for the
current dataset in addition to the log profiles for the actual and
predicted values.
The rheological property profiles were plotted to show the

actual versus predicted values for the testing dataset as
represented in Figure 7a−d plots for PV, YP, η, and AV
rheology models.
The real measurements versus the predicted values were

plotted to present the rheology logs based on the obtained
results’ accuracy from training and testing results. The rheology
data profiles proved the accepted accuracy for the models based
on the recorded statistical metrics R and AAPE.
3.4. Machine Learning-Based Equations. New ANN-

based equations were extracted from the developed ANN
rheological prediction models. The ANN-based equations are
proposed to be used easily without the need for the developed
machine learning code. To utilize the developed empirical
correlation, the input values should be normalized to be in the
range between −1 and 1 based on the minimum and maximum
values for all parameters that are listed in Table 1. The proposed
equations can be used for rheological property prediction in the

normalized form. The form for each property is determined by
the model transfer function as shown in the following equations
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where N represents the optimized neuron number, w1i and w2i

are the weights between the input layer and the hidden layer and
the hidden layer and the output layer respectively. b1i is the
associated bias with each hidden layer neurons, and b2 is the
associated bias for the output layer.
The weights and biases were extracted from the ANN

structure of the developed models after saving the final
optimized network for each output. The correlations use the
weights and biases that are listed in Tables 3−6 for the four
rheological properties.

4. DISCUSSION
The current study presented new contributions of the
automation process for predicting the mud rheological proper-
ties for better monitoring during the drilling operation. As
mentioned in Section 2, the study utilized only two features
(mud density and Marsh funnel viscosity) to develop the four
prediction models, and these two parameters are easy to
measure on the rig site in addition to the high frequency of
measurement for these parameters during the mud monitoring

Figure 6. Testing results for the rheological property prediction. (a) PV, (b) YP, (c) η, and (d) AV.
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process (3−4 times per hour). Consequently, the study will
provide the rheological properties with high-frequency data
based on the input measurement frequency rather than the long
time for the experimental lab measurements for the mud
rheology.
In addition, the study implemented the ANN technique to

build four different models for the mud rheology, and deep
sensitivity was checked for the best ANN parameters to acquire
the best results for the rheology prediction. It worthy to mention
that it might be better to estimate several variables (rheological

properties) with only one ANN model; however, it is not
applicable in this case due to the complexity of the problem, the

Figure 7. Rheological property logs for actual versus predicted values (testing set). (a) PV, (b) YP, (c) η, and (d) AV.

Table 3. Weights and Biases for the AV Model

i w1i,1 w1i,2 b1i w2i b2

1.00 −4.18 −1.24 −0.14 −1.43 0.16
2.00 1.69 −2.43 0.76 −2.00
3.00 −1.56 −3.74 1.18 −3.12
4.00 −2.16 −0.93 −0.49 −2.24
5.00 2.47 4.42 −0.95 −1.97
6.00 −0.33 2.91 0.19 1.57
7.00 −1.51 4.59 −0.64 1.92
8.00 −3.97 0.41 0.08 2.39
9.00 4.54 1.80 0.80 1.99
10.00 −4.19 2.76 0.17 −2.95

Table 4. Weights and Biases for the η Model

i w1i,1 w1i,2 b1i w2i b2

1.00 2.54 −2.47 −0.19 2.69 0.32
2.00 −0.36 1.25 0.14 2.42
3.00 −0.31 1.21 0.46 −2.42
4.00 −0.49 1.75 −0.18 −2.53
5.00 −0.87 −0.84 0.19 −3.25
6.00 1.19 2.04 0.26 1.78
7.00 −2.17 −0.34 −0.38 1.81
8.00 −0.20 3.38 0.21 −1.46
9.00 4.66 2.57 −0.51 −1.91
10.00 −4.31 −1.14 0.08 1.60
11.00 1.97 −5.14 0.07 0.89
12.00 −6.01 −2.26 0.03 −1.50
13.00 −2.53 −1.27 −0.22 −1.45
14.00 −5.45 −0.22 −0.69 1.94
15.00 2.17 0.34 1.08 2.39
16.00 −3.27 3.36 −0.45 −1.38
17.00 2.62 −0.87 0.01 1.73
18.00 −1.01 4.28 0.20 −2.70
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data behavior, in addition to the new trend to use only two
inputs for the prediction. The model development process
tested this approach during the model development and found
that the current results are optimum for this specific approach
but might work for another scope or dataset.
The obtained results from the developed models were

compared with the most common models in the literature to
check the model accuracy over the existing model for field
applications. The study compared the obtained results with

Pitt,77 and Almahdawi et al.78 developed correlations for
estimating the apparent viscosity. Figure 8 presents the log
profile for the testing dataset that shows the good accuracy and
high match between the actual measurements and the predicted
values from the ANNmodel; however, the two correlations (Pitt
and Almahdawi et al.) show a high degree of overestimation for
the AV. The statistical accuracy metrics show that R is 0.82 for
Pitt and Almahdawi et al. correlations with high errors (AAPE is
36.1 and 45.9 for Almahdawi et al. and Pitt, respectively). The
newly developed ANN-AV model overcomes the two
correlations with high accuracy for a high R-value (0.95) and
low errors (6.8%) between the predicted and actual measure-
ment of apparent viscosity.

5. CONCLUSIONS
The current study presented a new contribution for the
rheological properties automation monitoring system for the
flat rheology synthetic oil-based mud through the machine
learning application. The study employed the ANN technique to
develop rheological prediction models for the mud plastic and
apparent viscosities, yield point, and flow behavior index. The
following outcomes are concluded from the obtained results and
analysis:

• Deep sensitivity analysis for the model parameters was
achieved and found that the best parameters are only one
hidden layer, from 10 to 18 neurons; the training function
is Bayesian regularization backpropagation, with different
optimum networks and transfer functions for the
developed models.

• The training results showed thatR is greater than 0.91 and
AAPE did not exceed 9.6% for the four models.

• The developed models were tested and showed a great
prediction performance in terms of R and AAPE, as R
ranges from 0.92 to 0.95 and AAPE from 6.3 to 2.7%.

• New ANN-based equations were developed based on the
optimized ANN models that can be used to estimate the
mud rheology with high accuracy in real-time good

Table 5. Weights and Biases for the PV Model

i w1i,1 w1i,2 b1i w2i b2

1.00 −1.44 1.64 0.63 2.28 1.13
2.00 1.98 −5.55 −1.27 3.07
3.00 −2.01 −6.66 1.18 4.03
4.00 −4.83 3.32 0.37 4.00
5.00 −6.05 0.36 0.04 −4.16
6.00 −0.47 −5.96 4.98 −2.42
7.00 3.76 −5.47 0.18 2.34
8.00 2.16 −0.12 −0.64 2.85
9.00 −4.25 −2.74 −0.53 −2.67
10.00 −3.95 −3.57 −0.98 −3.82

Table 6. Weights and Biases for the YP Model

i w1i,1 w1i,2 b1i w2i b2

1.00 −2.14 −1.61 0.42 2.08 0.04
2.00 0.43 4.24 −0.02 −2.15
3.00 0.00 0.00 −0.29 1.64
4.00 −0.07 2.24 0.27 −2.40
5.00 −1.19 −1.04 −0.28 −1.87
6.00 2.81 −3.77 0.14 −3.20
7.00 5.10 0.82 −0.16 2.24
8.00 −3.33 −2.08 0.19 −1.63
9.00 0.00 0.00 0.00 −2.14
10.00 2.47 −4.22 −0.42 2.69
11.00 1.68 0.24 −0.17 −2.51
12.00 −0.29 2.42 −0.35 −1.74

Figure 8. AV prediction comparison with published models. Log profile (left) and accuracy metrics (right).
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monitoring for the drilling fluid performance without the
need to have the code.
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